Optimization and Validation of Analytical Methodology for Determination of Pesticides in Grape, Must and Wine Samples with QuEChERS Extraction and Gas Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sampling and Sample Preparation
2.2.1. Grape
2.2.2. Must
2.2.3. Wine
2.3. GC–MS Analysis
2.4. Validation Characteristics
3. Results
3.1. Optimization of QuEChERS Method
Grape Samples
3.2. Validation Characteristics
3.3. Application to Samples Collected from Winery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Organisation, I. International Organisation of Vine and Wine 2022. World Wine Production Outlook OIV First Estimates. November 1924, pp. 1–8. 2022. Available online: https://www.oiv.int/what-we-do/statistics (accessed on 25 June 2024).
- Fantke, P.; Juraske, R. Variability of Pesticide Dissipation Half-Lives in Plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef]
- Ryberg, M.W.; Rosenbaum, R.K.; Mosqueron, L.; Fantke, P. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment. Chemosphere 2018, 197, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Čuš, F.; Česnik, H.B.; Bolta, Š.V.; Gregorčič, A. Pesticide residues in grapes and during vinification process. Food Control 2010, 21, 1512–1518. [Google Scholar] [CrossRef]
- Fernández, M.J.; Oliva, J.; Barba, A.; Cámara, M.A. Fungicide dissipation curves in winemaking processes with and without maceration step. J. Agric. Food Chem. 2005, 53, 804–811. [Google Scholar] [CrossRef]
- Flori, P.; Frabboni, B.; Cesari, A. Pesticide decay models in the wine-making process and wine storage. Ital. J. Food Sci. 2000, 12, 279–289. [Google Scholar]
- He, Z.; Xu, Y.; Wang, L.; Peng, Y.; Luo, M.; Cheng, H.; Liu, X. Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry. Food Chem. 2016, 196, 1248–1255. [Google Scholar] [CrossRef]
- Kosma, C.I.; Koloka, O.L.; Albanis, T.A.; Konstantinou, I.K. Accurate mass screening of pesticide residues in wine by modified QuEChERS and LC-hybrid LTQ/Orbitrap-MS. Food Chem. 2021, 360, 130008. [Google Scholar] [CrossRef]
- Navarro, S.; Barba, A.; Oliva, J.; Navarro, G.; Pardo, F. Evolution of residual levels of six pesticides during elaboration of red wines. Effect of wine-making procedures in their disappearance. J. Agric. Food Chem. 1999, 47, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; García, B.; Navarro, G.; Oliva, J.; Barba, A. Effect of Wine-Making Practices on the Concentrations of Fenarimol and Penconazole in Rosé Wines. J. Food Prot. 1997, 60, 1120–1124. [Google Scholar] [CrossRef]
- Pelajić, M.; Peček, G.; Pavlović, D.M.; Čepo, D.V. Novel multiresidue method for determination of pesticides in red wine using gas chromatography–mass spectrometry and solid phase extraction. Food Chem. 2016, 200, 98–106. [Google Scholar] [CrossRef]
- Schusterova, D.; Hajslova, J.; Kocourek, V.; Pulkrabova, J. Pesticide residues and their metabolites in grapes and wines from conventional and organic farming system. Foods 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Čepo, D.V.; Pelajić, M.; Vrček, I.V.; Krivohlavek, A.; Žuntar, I.; Karoglan, M. Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chem. 2018, 246, 394–403. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, B.; Zhang, H.; Hao, L.L.; Ma, T.Z.; Wang, J.; Han, S.Y. Monitoring of 49 Pesticides and 17 Mycotoxins in Wine by QuEChERS and UHPLC–MS/MS Analysis. J. Food Sci. 2019, 84, 2688–2697. [Google Scholar] [CrossRef] [PubMed]
- Commission, E. Regulation (EC) No 396/2005, Maximum residue levels of pesticides in/on food and feed of plant and animal. Off. J. Eur. Union 2005, L70, 1–16. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32005R0396 (accessed on 28 June 2024).
- Corrias, F.; Taddeo, R.; Arru, N.; Angioni, A. Effect of the technological process from vine to wine on pesticide residues in vernaccia di oristano cultivar. Foods 2021, 10, 1295. [Google Scholar] [CrossRef] [PubMed]
- Cabras, P.; Angioni, A. Pesticide residues in grapes, wine, and their processing products. J. Agric. Food Chem. 2000, 48, 967–973. [Google Scholar] [CrossRef]
- Martins, J.; Esteves, C.; Simões, T.; Correia, M.; Delerue-Matos, C. Determination of 24 pesticide residues in fortified wines by solid-phase microextraction and gas chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2011, 59, 6847–6855. [Google Scholar] [CrossRef]
- Doulia, D.S.; Anagnos, E.K.; Liapis, K.S.; Klimentzos, D.A. Removal of pesticides from white and red wines by microfiltration. J. Hazard. Mater. 2016, 317, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Doulia, D.S.; Anagnos, E.K.; Liapis, K.S.; Klimentzos, D.A. Effect of clarification process on the removal of pesticide residues in white wine. Food Control 2017, 72, 134–144. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Simal-Gándara, J. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew. Food Chem. 2011, 125, 549–560. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Bernal, J.L.; del Nozal, M.J.; Bernal, J.; Toribio, L. Persistence and degradation of metalaxyl, lindane, fenvalerate and deltamethrin during the wine making process. Food Chem. 2007, 104, 216–223. [Google Scholar] [CrossRef]
- Sen, K.; Cabaroglu, T.; Yilmaz, H. The influence of fining agents on the removal of some pesticides from white wine of Vitis vinifera L. cv. Emir. Food Chem. Toxicol. 2012, 50, 3990–3995. [Google Scholar] [CrossRef]
- Kittelmann, A.; Müller, C.; Rohn, S.; Michalski, B. Transfer of Pesticide Residues from Grapes (Vitis vinifera) into Wine—Correlation with Selected Physicochemical Properties of the Active Substances. Toxics 2022, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Rosello, C.; Bélanger, R.; Ratti, C. Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods 2020, 9, 1468. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, G.-D.; Teodosiu, C.; Cotea, V.V. Management of Pesticides from Vineyard to Wines: Focus on Wine Safety and Pesticides Removal by Emerging Technologies. In Grapes and Wine; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Grimalt, S.; Dehouck, P. Review of analytical methods for the determination of pesticide residues in grapes. J. Chromatogr. A 2016, 1433, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sivaperumal, P.; Anand, P.; Riddhi, L. Rapid determination of pesticide residues in fruits and vegetables, using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry. Food Chem. 2015, 168, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Velkoska-Markovska, L.; Petanovska-Ilievska, B.; Jankulovska, M.S.; Ilievski, U. Development and validation of high-performance liquid chromatography method for determination of some pesticide residues in table grape. Acta Chromatogr. 2018, 30, 250–254. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, W.; Chen, H.; Ding, Q.; Li, Q.; Zhang, L. In situ fabrication of nitrogen doped graphitic carbon networks coating for high-performance extraction of pyrethroid pesticides. Talanta 2021, 233, 122542. [Google Scholar] [CrossRef] [PubMed]
- Kasperkiewicz, A.; Pawliszyn, J. Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. 2021, 339, 127815. [Google Scholar] [CrossRef]
- Dong, B.; Yang, Y.; Pang, N.; Hu, J. Residue dissipation and risk assessment of tebuconazole, thiophanate-methyl and its metabolite in table grape by liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 260, 66–72. [Google Scholar] [CrossRef]
- Hou, X.; Xu, Z.; Zhao, Y.; Liu, D. Rapid analysis and residue evaluation of six fungicides in grape wine-making and drying. J. Food Compos. Anal. 2020, 89, 103465. [Google Scholar] [CrossRef]
- Qin, G.; Chen, Y.; He, F.; Yang, B.; Zou, K.; Shen, N.; Zuo, B.; Liu, R.; Zhang, W.; Li, Y. Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China. J. Food Compos. Anal. 2021, 95, 103663. [Google Scholar] [CrossRef]
- Valera-Tarifa, N.M.; Santiago-Valverde, R.; Hernández-Torres, E.; Martínez-Vidal, J.L.; Garrido-Frenich, A. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS. Food Chem. 2020, 315, 126304. [Google Scholar] [CrossRef] [PubMed]
- Volpatto, F.; Wastowski, A.D.; Bernardi, G.; Prestes, O.D.; Zanella, R.; Adaime, M.B. Evaluation of QuEChERS sample preparation and gas chromatography coupled to mass spectrometry for the determination of pesticide residues in grapes. J. Braz. Chem. Soc. 2016, 27, 1533–1540. [Google Scholar] [CrossRef]
- de Melo Abreu, S.; Caboni, P.; Cabras, P.; Garau, V.L.; Alves, A. Validation and global uncertainty of a liquid chromatographic with diode array detection method for the screening of azoxystrobin, kresoxim-methyl, trifloxystrobin, famoxadone, pyraclostrobin and fenamidone in grapes and wine. Anal. Chim. Acta 2006, 573–574, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Economou, A.; Botitsi, H.; Antoniou, S.; Tsipi, D. Determination of multi-class pesticides in wines by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 5856–5867. [Google Scholar] [CrossRef]
- Wong, J.W.; Webster, M.G.; Halverson, C.A.; Hengel, M.J.; Ngim, K.K.; Ebeler, S.E. Multiresidue Pesticide Analysis in Wines by Solid-Phase Extraction and Capillary Gas Chromatography−Mass Spectrometric Detection with Selective Ion Monitoring. J. Agric. Food Chem. 2003, 51, 1148–1161. [Google Scholar] [CrossRef]
- Zambonin, C.G.; Quinto, M.; De Vietro, N.; Palmisano, F. Solid-phase microextraction—Gas chromatography mass spectrometry: A fast and simple screening method for the assessment of organophosphorus pesticides residues in wine and fruit juices. Food Chem. 2004, 86, 269–274. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Xu, J.; Pan, C.; Zhang, J.; Niu, W. Multiresidue method for the determination of 77 pesticides in wine using QuEChERS sample preparation and gas chromatography with mass spectrometry. Food Addit. Contam. Part A 2009, 26, 859–866. [Google Scholar] [CrossRef]
- Pelajić, M.; Pelajić, I.; Pavlović, D.M.; Čepo, D.V. GC-MS Modified Quechers Method for Multiresidue Pesticide Determination in Red Wine. Croat. Chem. Acta 2019, 92, 419–428. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Rodríguez-Ramos, R.; Socas-Rodríguez, B.; Díaz-Romero, C.; Rodríguez-Delgado, M.Á. Comparison of Pesticide Residue Levels in Red Wines from Canary Islands, Iberian Peninsula, and Cape Verde. Foods 2020, 9, 1555. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Samsidar, A.; Siddiquee, S.; Shaarani, S.M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. [Google Scholar] [CrossRef]
- Camino-Sánchez, F.J.; Zafra-Gómez, A.; Ruiz-García, J.; Bermúdez-Peinado, R.; Ballesteros, O.; Navalon, A.; Vílchez, J.L. UNE-EN ISO/IEC 17025:2005 accredited method for the determination of 121 pesticide residues in fruits and vegetables by gas chromatography–tandem mass spectrometry. J. Food Compos. Anal. 2011, 24, 427–440. [Google Scholar] [CrossRef]
- Afify, A.S.; Abdallah, M.; Ismail, S.A.; Ataalla, M.; Abourehab, M.A.; Al-Rashood, S.T.; Ali, M.A. Development of GC–MS/MS method for environmental monitoring of 49 pesticide residues in food commodities in Al-Rass, Al-Qassim region, Saudi Arabia. Arab. J. Chem. 2022, 15, 104199. [Google Scholar] [CrossRef]
- Huertas-Pérez, J.F.; Baslé, Q.; Dubois, M.; Theurillat, X. Multi-residue pesticides determination in complex food matrices by gas chromatography tandem mass spectrometry. Food Chem. 2024, 436, 137687. [Google Scholar] [CrossRef] [PubMed]
- Belarbi, S.; Vivier, M.; Zaghouani, W.; De Sloovere, A.; Agasse-Peulon, V.; Cardinael, P. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC–MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chem. 2021, 359, 129932. [Google Scholar] [CrossRef]
- Pihlström, T.; Fernández-Alba, A.R.; Amate, C.F.; Poulsen, M.E.; Hardebusch, B.; Anastassiades, M.; Lozano, A.; Alba, F. Analytical Quality Control and Method Validation Procedures for Pestice Residues Analysis in Food and Feed. Sante/11312/2021, p. 42, 2022, [Online]. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11813_2017-fin.pdf (accessed on 28 June 2024).
- Bakırcı, G.T.; Hışıl, Y. Fast and simple extraction of pesticide residues in selected fruits and vegetables using tetrafluoroethane and toluene followed by ultrahigh-performance liquid chromatography/tandem mass spectrometry. Food Chem. 2012, 135, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Payá, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef]
- Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ. 2012, 433, 281–289. [Google Scholar] [CrossRef]
- Łozowicka, B.; Rutkowska, E.; Jankowska, M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ. Sci. Pollut. Res. 2017, 24, 7124–7138. [Google Scholar] [CrossRef]
- Nannou, C.I.; Boti, V.I.; Albanis, T.A. A modified QuEChERS approach for the analysis of pharmaceuticals in sediments by LC-Orbitrap HRMS. Anal. Bioanal. Chem. 2019, 411, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J. Determination of Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate: Collaborative Study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed]
- EN 15662; Foods of Plant Origin—Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—QuEChERSmethod. Austrian Standards Institute: Vienna, Austria, 2009.
- Jadhav, M.R.; Oulkar, D.P.; Shabeer, T.A.; Banerjee, K. Quantitative Screening of Agrochemical Residues in Fruits and Vegetables by Buffered Ethyl Acetate Extraction and LC-MS/MS Analysis. J. Agric. Food Chem. 2015, 63, 4449–4456. [Google Scholar] [CrossRef]
- Shabeer, T.P.A.; Jadhav, M.; Girame, R.; Hingmire, S.; Bhongale, A.; Pudale, A.; Banerjee, K. Targeted screening and safety evaluation of 276 agrochemical residues in raisins using buffered ethyl acetate extraction and liquid chromatography–tandem mass spectrometry analysis. Chemosphere 2017, 184, 1036–1042. [Google Scholar] [CrossRef]
- Commission, E. Pesticide Residues. [Online]. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls/searchpr (accessed on 6 June 2024).
- Venkateswarlu, P.; Mohan, K.R.; Kumar, C.R.; Seshaiah, K. Monitoring of multi-class pesticide residues in fresh grape samples using liquid chromatography with electrospray tandem mass spectrometry. Food Chem. 2007, 105, 1760–1766. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J. Chromatogr. A 2012, 1225, 17–25. [Google Scholar] [CrossRef]
- Bakırcı, G.T.; Acay, D.B.Y.; Bakırcı, F.; Ötleş, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef]
- Castro, G.; Pérez-Mayán, L.; Carpinteiro, I.; Ramil, M.; Cela, R.; Rodríguez, I. Residues of anilinopyrimidine fungicides and suspected metabolites in wine samples. J. Chromatogr. A 2020, 1622, 461104. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhu, J.; Li, H.; Li, D.; Liu, Z.; Sun, X.; Wang, B.; Wang, Q.; Gao, Y. Disposable Pipette Extraction (DPX) Coupled with Liquid Chromatography–Tandem Mass Spectrometry for the Simultaneous Determination of Pesticide Residues in Wine Samples. Food Anal. Methods 2019, 12, 2262–2272. [Google Scholar] [CrossRef]
Pesticides | Linearity R2 | LOQ ng g−1 | Recoveries and RSDs (n = 5) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 ng g−1 | 50 ng g−1 | 100 ng g−1 | |||||||||
Rec (%) | RSDr (%) | RSDR (%) | Rec (%) | RSDr (%) | RSDR (%) | Rec (%) | RSDr (%) | RSDR (%) | |||
Cyprodinil | 0.9977 | 1.0 | 76.7 | 6.6 | 5.0 | 86.2 | 9.4 | 9.0 | 78.2 | 8.1 | 5.4 |
Deltamethrin | 0.9992 | 10.0 | 71.3 | 5.2 | 7.1 | 80.5 | 11.3 | 8.2 | 75.7 | 8.5 | 10.7 |
Difenoconazole | 0.9991 | 2.5 | 69.8 | 6.0 | 12.2 | 87.9 | 14.1 | 9.1 | 81.2 | 8.9 | 11.7 |
Fenhexamid | 0.9987 | 25.0 | - | - | - | 80.8 | 14.0 | 8.1 | 75.4 | 4.4 | 7.5 |
Fludioxonil | 0.9950 | 50.0 | - | - | - | 71.7 | 11.6 | 10.8 | 78.9 | 14.8 | 1.9 |
Folpet | 0.9978 | 50.0 | - | - | - | 68.6 | 2.7 | 2.2 | 70.3 | 1.3 | 1.8 |
Iprovalicarb | 0.9987 | 5.0 | 93.4 | 6.4 | 4.1 | 87.6 | 13.2 | 7.5 | 82.3 | 1.2 | 3.7 |
Kresoxim-methyl | 0.9973 | 5.0 | 80.2 | 7.9 | 12.8 | 83.3 | 13.7 | 10.8 | 74.7 | 12.8 | 10.2 |
λ-cyhalothrin | 0.9995 | 5.0 | 90.2 | 6.5 | 11.9 | 89.0 | 12.5 | 11.0 | 85.1 | 7.6 | 6.5 |
Metalaxyl-m | 0.9966 | 1.0 | 92.7 | 9.9 | 1.1 | 84.8 | 14.6 | 9.1 | 82.6 | 3.1 | 2.1 |
Myclobutanil | 0.9993 | 5.0 | 84.0 | 10.1 | 6.9 | 81.6 | 14.8 | 5.4 | 78.9 | 5.0 | 3.0 |
Penconazole | 0.9981 | 2.5 | 73.9 | 7.9 | 9.6 | 80.8 | 13.4 | 10.4 | 78.4 | 7.1 | 6.0 |
Pyraclostrobin | 0.9991 | 5.0 | 95.0 | 8.4 | 11.6 | 89.3 | 13.2 | 7.8 | 90.1 | 1.0 | 3.6 |
Pyrimethanil | 0.9966 | 5.0 | 89.2 | 6.3 | 5.3 | 88.7 | 9.3 | 9.1 | 82.7 | 6.7 | 2.5 |
Tebuconazole | 0.9996 | 10.0 | 78.1 | 4.3 | 3.6 | 92.2 | 13.6 | 11.3 | 84.6 | 2.3 | 3.3 |
Pesticides | MRL [61] (μg/Kg) | White Grape (μg/Kg) | Red Grape (μg/Kg) | ||||
---|---|---|---|---|---|---|---|
Sample GrW1 2022 | Sample GrW1 2021 | Sample GrR1 2022 | Sample GrR1 2021 | Sample GrR2 2022 | Sample GrR2 2021 | ||
Cyprodinil | 3000 | n.d. | n.d. | n.d. | 8.3 | n.d. | <LOQ |
Deltamethrin | 200 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Difenoconazole | 3000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Fenhexamid | 15,000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Fludioxonil | 4000 | n.d. | n.d. | n.d. | <LOQ | n.d. | n.d. |
Folpet | 20,000 | n.d. | n.d. | n.d. | <LOQ | n.d. | n.d. |
Iprovalicarb | 2000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Kresoxim-methyl | 1500 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
λ-cyhalothrin | 200 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Metalaxyl-m | 1000 | n.d. | n.d. | n.d. | n.d. | 98.5 | 32.4 |
Myclobutanil | 1500 | 57.4 | 40.5 | n.d. | 20.8 | n.d. | n.d. |
Penconazole | 500 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pyraclostrobin | 2000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pyrimethanil | 5000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Tebuconazole | 1000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pesticides | MRL (μg/Kg) | White Wine (μg/Kg) | Red Wine (μg/Kg) | Rosé Wine (μg/Kg) | |||||
---|---|---|---|---|---|---|---|---|---|
Sample WW1 2022 | Sample WW1 2021 | Sample WR1 2022 | Sample WR2 2022 | Sample WR1-WR2 * 2021 | Sample WR2 2021 | Sample WRo1 2021 | Sample WRo1 2022 | ||
Cyprodinil | 3000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Deltamethrin | 200 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Difenoconazole | 3000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Fenhexamid | 15,000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Fludioxonil | 4000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Folpet | 20,000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Iprovalicarb | 2000 | n.d. | n.d. | n.d. | 7.8 | n.d. | n.d. | n.d. | n.d. |
Kresoxim-methyl | 1500 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
λ-cyhalothrin | 200 | <LOQ | n.d. | n.d. | n.d. | <LOQ | n.d. | <LOQ | n.d. |
Metalaxyl-m | 1000 | 6.1 | 4.1 | 4.6 | 7.2 | n.d. | 5.2 | 5.8 | 4.2 |
Myclobutanil | 1500 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Penconazole | 500 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pyraclostrobin | 2000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pyrimenthanil | 5000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Tebuconazole | 1000 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sykalia, D.L.; Trantopoulos, E.P.; Tsoutsi, C.S.; Albanis, T.A. Optimization and Validation of Analytical Methodology for Determination of Pesticides in Grape, Must and Wine Samples with QuEChERS Extraction and Gas Chromatography–Mass Spectrometry. Beverages 2024, 10, 53. https://doi.org/10.3390/beverages10030053
Sykalia DL, Trantopoulos EP, Tsoutsi CS, Albanis TA. Optimization and Validation of Analytical Methodology for Determination of Pesticides in Grape, Must and Wine Samples with QuEChERS Extraction and Gas Chromatography–Mass Spectrometry. Beverages. 2024; 10(3):53. https://doi.org/10.3390/beverages10030053
Chicago/Turabian StyleSykalia, Dionysia L., Epameinondas P. Trantopoulos, Charoula S. Tsoutsi, and Triantafyllos A. Albanis. 2024. "Optimization and Validation of Analytical Methodology for Determination of Pesticides in Grape, Must and Wine Samples with QuEChERS Extraction and Gas Chromatography–Mass Spectrometry" Beverages 10, no. 3: 53. https://doi.org/10.3390/beverages10030053
APA StyleSykalia, D. L., Trantopoulos, E. P., Tsoutsi, C. S., & Albanis, T. A. (2024). Optimization and Validation of Analytical Methodology for Determination of Pesticides in Grape, Must and Wine Samples with QuEChERS Extraction and Gas Chromatography–Mass Spectrometry. Beverages, 10(3), 53. https://doi.org/10.3390/beverages10030053