Oenological Capabilities of Yeasts Isolated from High-Sugar Matrices (Manna and Honey) as Potential Starters and Co-Starters for Winemaking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Origins, DNA Extraction, and RFLP Analysis
2.2. Strain Typing and Species Identification
2.3. Technological Screening
2.4. Growth Kinetics on a Single Source of Sugar
2.5. Fermentation of Grape Must
2.6. Microbiological and Oenological Parameters
2.7. Statistical Analysis
3. Results and discussion
3.1. Isolation, Identification, and Strain Typing of Yeasts
3.2. Technological Characteristics of Yeast Strains
3.3. Micro-Fermentation
3.4. Microbiological Counts
3.5. Physico-Chemical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleet, G.H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef]
- Binati, R.L.; Junior, W.J.L.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef]
- Esteves, M.; Barbosa, C.; Vasconcelos, I.; Tavares, M.J.; Mendes-Faia, A.; Pereira Mira, N.; Mendes-Ferreira, A. Characterizing the Potential of the Non-Conventional Yeast Saccharomycodes ludwigii UTAD17 in Winemaking. Microorganisms 2019, 7, 478. [Google Scholar] [CrossRef]
- Kheir, J.; Salameh, D.; Strehaiano, P.; Brandam, C.; Lteif, R. Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts. Eur. Food Res. Technol. 2013, 237, 655–671. [Google Scholar] [CrossRef]
- Gschaedler, A. Contribution of non-conventional yeasts in alcoholic beverages. Curr. Opin. Food Sci. 2017, 13, 73–77. [Google Scholar] [CrossRef]
- Binati, R.L.; Innocente, G.; Gatto, V.; Celebrin, A.; Polo, M.; Felis, G.E.; Torriani, S. Exploring the diversity of a collection of native non-Saccharomyces yeasts to develop co-starter cultures for winemaking. Food Res. Int. 2019, 122, 432–442. [Google Scholar] [CrossRef]
- Rollero, S.; Bloem, A.; Ortiz-Julien, A.; Camarasa, C.; Divol, B. Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences. FEMS Yeast Res. 2018, 18, foy055. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef]
- Andorra, I.; Monteiro, M.; Esteve-Zarzoso, B.; Albergaria, H.; Mas, A. Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiol. 2011, 28, 1483–1491. [Google Scholar] [CrossRef]
- David, V.; Terrat, S.; Herzine, K.; Claisse, O.; Rousseaux, S.; Tourdot-Maréchal, R.; Masneuf-Pomarede, I.; Ranjard, L.; Alexandre, H. High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation. J. Ind. Microbiol. Biotechnol. 2014, 41, 811–821. [Google Scholar] [CrossRef]
- Wang, C.; Esteve-Zarzoso, B.; Mas, A. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. Int. J. Food Microbiol. 2014, 191, 1–9. [Google Scholar] [CrossRef]
- Zott, K.; Miot-Sertier, C.; Claisse, O.; Lonvaud-Funel, A.; Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 2008, 125, 197–203. [Google Scholar] [CrossRef]
- Albertin, W.; Zimmer, A.; Miot-Sertier, C.; Bernard, M.; Coulon, J.; Moine, V.; Colonna-Ceccaldi, B.; Bely, M.; Marullo, P.; Masneuf-Pomarede, I. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Appl. Microbiol. Biotechnol. 2017, 101, 7603–7620. [Google Scholar] [CrossRef]
- Clemente-Jimenez, J.M.; Mingorance-Cazorla, L.; Martínez-Rodríguez, S.; Las Heras-Vázquez, F.J.; Rodríguez-Vico, F. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol. 2004, 21, 149–155. [Google Scholar] [CrossRef]
- Andorra, I.; Landi, S.; Mas, A.; Esteve-Zarzoso, B.; Guillamón, J.M. Effect of fermentation temperature on microbial population evolution using culture-independent and dependent techniques. Food Res. Int. 2010, 43, 773–779. [Google Scholar] [CrossRef]
- Viana, F.; Gil, J.V.; Genovés, S.; Vallés, S.; Manzanares, P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and oenological traits. Food Microbiol. 2008, 25, 778–785. [Google Scholar] [CrossRef]
- Matraxia, M.; Alfonzo, A.; Prestianni, R.; Francesca, N.; Gaglio, R.; Todaro, A.; Alfeo, V.; Perretti, G.; Columba, P.; Settanni, L.; et al. Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiol. 2021, 99, 103806. [Google Scholar] [CrossRef]
- Ruiz, J.; Belda, I.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Santos, A.; Benito, S. Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl. Microbiol. Biotechnol. 2018, 102, 8501–8509. [Google Scholar] [CrossRef]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef]
- Belda, I.; Conchillo, L.B.; Ruiz, J.; Navascués, E.; Marquina, D.; Santos, A. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 2016, 223, 1–8. [Google Scholar] [CrossRef]
- Medina-Trujillo, L.; González-Royo, E.; Sieczkowski, N.; Heras, J.; Canals, J.M.; Zamora, F. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the first fermentation on the foaming properties of sparkling wine. Eur. Food Res. Technol. 2017, 243, 681–688. [Google Scholar] [CrossRef]
- Windholtz, S.; Redon, P.; Lacampagne, S.; Farris, L.; Lytra, G.; Cameleyre, M.; Barbe, J.C.; Coulon, J.; Thibon, C.; Masneuf-Pomarede, I. Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT 2021, 149, 111781. [Google Scholar] [CrossRef]
- Morata, A.; Escott, C.; Bañuelos, M.A.; Loira, I.; Del Fresno, J.M.; González, C.; Suárez-Lepe, J.A. Contribution of non-Saccharomyces yeasts to wine freshness. A review. Biomolecules 2019, 10, 34. [Google Scholar] [CrossRef]
- Pandilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine Aroma complexity. Front. Microbiol. 2016, 7, e00411. [Google Scholar] [CrossRef]
- Alfonzo, A.; Prestianni, R.; Gaglio, R.; Matraxia, M.; Maggio, A.; Naselli, V.; Craparo, V.; Badalamenti, N.; Bruno, M.; Vagnoli, P.; et al. Effects of different yeast strains, nutrients, and glutathione-rich inactivated yeast addition on the aroma characteristics of Catarratto wines. Int. J. Food Microbiol. 2021, 360, 109325. [Google Scholar] [CrossRef]
- Guarcello, R.; Gaglio, R.; Todaro, A.; Alfonzo, A.; Schicchi, R.; Cirlincione, F.; Moschetti, G.; Francesca, N. Insights into the cultivable microbial ecology of “Manna” ash products extracted from Fraxinus angustifolia (Oleaceae) trees in Sicily, Italy. Front. Microbiol. 2019, 10, 984. [Google Scholar] [CrossRef]
- Gaglio, R.; Alfonzo, A.; Francesca, N.; Corona, O.; Di Gerlando, R.; Columba, P.; Moschetti, G. Production of the Sicilian distillate “Spiritu re fascitrari” from honey by-products: An interesting source of yeast diversity. Int. J. Food Microbiol. 2017, 261, 62–72. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Belloch, C.; Uruburu, F.; Querol, A. Identification of yeasts by RFLP analysis of the 5.8 S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Evol. Micr. 1999, 49, 329–337. [Google Scholar] [CrossRef]
- Legras, J.L.; Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterization. FEMS Microbiol. Lett. 2003, 221, 249–255. [Google Scholar] [CrossRef]
- Francesca, N.; Sannino, C.; Settanni, L.; Corona, O.; Barone, E.; Moschetti, G. Microbiological and chemical monitoring of Marsala base wine obtained by spontaneous fermentation during large-scale production. Ann. Microbiol. 2014, 64, 1643–1657. [Google Scholar] [CrossRef]
- Di Maro, E.; Ercolini, D.; Coppola, S. Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. Int. J. Food Microbiol. 2007, 117, 201–210. [Google Scholar] [CrossRef]
- Settanni, L.; Sannino, C.; Francesca, N.; Guarcello, R.; Moschetti, G. Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. J. Biosci. Bioeng. 2012, 114, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Validation of bismuth-containing indicator media for predicting H2S producing potential of Saccharomyces cerevisiae wine yeasts under oenological conditions. Am. J. Enol. Vitic. 1995, 46, 269–273. [Google Scholar] [CrossRef]
- Mestre Furlani, M.V.; Maturano, Y.P.; Combina, M.; Mercado, L.A.; Toro, M.E.; Vazquez, F. Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: A strategy to obtain wines with reduced ethanol content. FEMS Yeast Res. 2017, 17, fox010. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.M.; Robert, V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 87–110. [Google Scholar] [CrossRef]
- Hall, B.G.; Acar, H.; Nandipati, A.; Barlow, M. Growth rates made easy. Mol. Biol. Evol. 2014, 31, 232–238. [Google Scholar] [CrossRef]
- Vaquero, C.; Escott, C.; Loira, I.; Guamis, B.; del Fresno, J.M.; Quevedo, J.M.; Gervilla, R.; de Lamo, S.; Ferrer-Gallego, R.; González, C.; et al. Cabernet Sauvignon Red Must Processing by UHPH to Produce Wine Without SO2: The Colloidal Structure, Microbial and Oxidation Control, Colour Protection and Sensory Quality of the Wine. Food Bioproc. Technol. 2022, 15, 620–634. [Google Scholar] [CrossRef]
- Pallmann, C.L.; Brown, J.A.; Olineka, T.L.; Cocolin, L.; Mills, D.A.; Bisson, L.F. Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 2001, 52, 198–203. [Google Scholar] [CrossRef]
- Martin, V.; Valera, M.J.; Medina, K.; Boido, E.; Carrau, F. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—A review. Fermentation 2018, 4, 76. [Google Scholar] [CrossRef]
- Sannino, C.; Francesca, N.; Corona, O.; Settanni, L.; Cruciata, M.; Moschetti, G. Effect of the natural winemaking process applied at industrial level on the microbiological and chemical characteristics of wine. J. Biosci. Bioeng. 2013, 116, 347–356. [Google Scholar] [CrossRef]
- OIV-MA-AS313-15; Compendium of International Methods of Wine and Must Analysis. OIV (International Organisation of Vine and Wine): France, Paris, 2011. Available online: https://www.oiv.int/it/node/2011/download/pdf (accessed on 25 January 2024).
- OIV-MA-AS313-01; Compendium of International Methods of Wine and Must Analysis. OIV (International Organisation of Vine and Wine): France, Paris, 1995. Available online: https://www.oiv.int/it/node/1995/download/pdf (accessed on 25 January 2024).
- Mazzei, P.; Francesca, N.; Moschetti, G.; Piccolo, A. NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. Anal. Chim. Acta. 2010, 673, 167–172. [Google Scholar] [CrossRef]
- Alonso, A.; Belda, I.; Santos, A.; Navascués, E.; Marquina, D. Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control 2015, 51, 129–134. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-wesley: Reading, MA, USA, 1977; Volume 2, pp. 131–160. [Google Scholar]
- Englezos, V.; Pollon, M.; Rantsiou, K.; Ortiz-Julien, A.; Botto, R.; Segade, S.R.; Giacosa, S.; Rolle, L.; Cocolin, L. Saccharomyces cerevisiae-Starmerella bacillaris strains interaction modulates chemical and volatile profile in red wine mixed fermentations. Food Res. Int. 2019, 122, 392–401. [Google Scholar] [CrossRef]
- Loira, I.; Vejarano, R.; Bañuelos, M.A.; Morata, A.; Tesfaye, W.; Uthurry, C.; Villa, A.; Cintora, I.; Suárez-Lepe, J.A. Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. LWT-Food Sci. Technol. 2014, 59, 915–922. [Google Scholar] [CrossRef]
- Hranilovic, A.; Gambetta, J.M.; Schmidtke, L.; Boss, P.K.; Grbin, P.R.; Masneuf-Pomarede, I.; Bely, M.; Albertin, W.; Jiranek, V. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 2018, 8, 14812. [Google Scholar] [CrossRef]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spano, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef]
- Malfeito-Ferreira, M.; Diako, C.; Ross, C.F. Sensory and chemical characteristics of ‘dry’ wines awarded gold medals in an international wine competition. J. Wine Res. 2019, 30, 204–219. [Google Scholar] [CrossRef]
Strain Origin | Number of Isolates | Size Amplicons 5.8S-ITS (bp) | Size of Restriction Fragment (bp) a | Number of Strains b | Species | Range Size of the PCR Products (bp) | Acc. No. (Range % Similarity) | ||
---|---|---|---|---|---|---|---|---|---|
CfoI | HaeIII | HinfI | |||||||
Manna | 4 + 1 c | 700 | 330 + 210 | 450 + 200 + 80 | 390 + 320 | 4 + 1 c | Citeromyces matritensis | 543–565 | PP695356-59 (99.26–100) |
Manna | 29 + 19 c | 680 | 320 + 275 | 300 + 210 + 80 | 345 | 3 + 4 c | Lachancea thermotolerans | 551–581 | PP695351-53 (99.82–100) |
Honey | 2 + 1 c | 600 | 310 + 260 | 400 + 125 + 80 | 320 | 1 + 1 c | Meyerozyma guillermondii | 563–568 | PP695355 (99.64) |
Honey | 1 | 400 | 180 + 175 | 280 + 190 | 220 | 1 | Starmerella magnoliae | 441 | PP695354 (100) |
Manna | 1 + 1 c | 850 | 370 + 330 | 310 + 240 + 175 + 130 | 370 + 360 + 120 | 1c | Saccharomyces cerevisiae | Guarcello et al. [23] | Guarcello et al. [23] |
Strain | H2S α | Ethanol Resistance β | MBSK Resistance γ | Osmotic Resistance δ | Copper Resistance ε | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
4% | 8% | 12% | 150 mg/L | 200 mg/L | 220 g/L | 270 g/L | 320 g/L | 2.5 mM | 5 mM | 10 mM | ||
MN114 | P | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MN117 | P | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
YS209 | − | + | − | − | + | + | +/− | +/− | +/− | + | + | + |
MN85 | PP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MNF138 | PP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MNF289 | PP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MNF308 | PP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
YS82 | PP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MN28 | − | + | + | − | + | + | + | + | + | + | + | +/− |
MN93 | − | + | + | − | + | + | + | + | + | + | +/− | − |
MN136 | − | + | + | − | + | + | + | + | + | + | + | +/− |
MN400 | − | + | + | − | + | + | + | + | + | + | + | +/− |
MNF104 | − | + | + | − | + | + | + | + | + | + | + | +/− |
MNF105 | − | + | + | − | + | + | + | + | + | + | + | +/− |
YS1 | − | + | + | − | + | + | + | + | + | + | + | +/− |
YS246 | PP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
YS300 | P | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MN113 | + | + | + | + | + | + | + | + | + | + | + | +/− |
MN412 | − | + | + | − | + | + | + | + | + | + | +/− | − |
MN417 | − | + | + | − | + | + | + | + | + | + | +/− | +/− |
YS292 | − | + | − | − | + | + | +/− | +/− | +/− | + | + | + |
Strain | Glucose | Fructose |
---|---|---|
non-Saccharomyces spp. | ||
MN28 | 2.11 | 1.10 |
MN136 | 1.63 | 0.84 |
MN93 | 1.58 | 1.03 |
MN400 | 2.14 | 0.89 |
MNF104 | 1.27 | 0.97 |
MNF105 | 1.61 | 1.06 |
YS1 | 1.51 | 1.04 |
MN412 | 1.51 | 1.87 |
MN417 | 1.60 | 1.27 |
YS292 | 0.57 | 0.27 |
YS209 | 0.73 | 0.52 |
Saccharomyces spp. | ||
MN113 | 2.42 | 2.66 |
EC1118 (Control) | 2.71 | 2.04 |
Samples | Microbial Loads (Log CFU/mL) | |||||
---|---|---|---|---|---|---|
TR1 | TR2 | TR3 | TR4 | TRC | S.S. | |
Saccharomyces spp. | ||||||
T0 | n.d. | n.d. | n.d. | 6.49 ± 0.15 a | 6.79 ± 0.23 a | n.s. |
T3 α | 6.48 ± 0.08 b | 6.53 ± 0.12 b | 6.57 ± 0.07 b | 7.44 ± 0.24 a | 7.36 ± 0.17 a | *** |
T8 | 7.18 ± 0.20 a | 7.13 ± 0.11 a | 7.26 ± 0.37 a | 7.35 ± 0.22 a | 7.26 ± 0.24 a | n.s. |
End of AF | 6.67 ± 0.33 a | 6.36 ± 0.15 a | 6.32 ± 0.16 a | 6.40 ± 0.16 a | 6.23 ± 0.21 a | n.s. |
Non-Saccharomyces spp. | ||||||
T0 | 5.94 ± 0.27 a | 6.05 ± 0.11 a | 6.21 ± 0.10 a | n.d. | n.d. | n.s. |
T3 | 7.20 ± 0.32 a | 7.23 ± 0.10 a | 7.11 ± 0.13 a | n.d. | n.d. | n.s. |
T8 | 6.65 ± 0.28 a | 6.48 ± 0.22 a | <2.00 | n.d. | n.d. | n.s. |
End of AF | 4.25 ± 0.20 a | 4.30 ± 0.14 a | <2.00 | n.d. | n.d. | n.s. |
Parameters | Musts | Micro-Vinification | |||||
---|---|---|---|---|---|---|---|
End of Alcoholic Fermentation | |||||||
TR1 | TR2 | TR3 | TR4 | TRC | S.S. | ||
Residual sugars α | 221.83 ± 2.26 | 0.24 ± 0.05 a | 0.15 ± 0.04 a | 0.26 ± 0.09 a | 0.28 ± 0.05 a | 0.24 ± 0.04 a | n.s. |
Ethanol β | n.d. | 11.34 ± 0.05 b | 11.36 ± 0.05 ab | 11.35 ± 0.05 ab | 11.47 ± 0.05 ab | 11.50 ± 0.05 a | * |
Malic acid α | 1.71 ± 0.15 | 1.47 ± 0.04 b | 1.57 ± 0.06 ab | 1.59 ± 0.04 ab | 1.66 ± 0.07 ab | 1.66 ± 0.06 a | * |
Lactic acid α | n.d. | 0.69 ± 0.04 a | 0.02 ± 0.04 b | 0.03 ± 0.02 b | 0.06 ± 0.02 b | 0.03 ± 0.01 b | * |
Glycerol α | n.d. | 7.40 ± 0.15 a | 6.20 ± 0.17 b | 5.30 ± 0.11 c | 4.80 ± 0.10 d | 5.10 ± 0.14 cd | *** |
pH | 3.63 ± 0.01 | 3.67 ± 0.02 a | 3.68 ± 0.02 a | 3.69 ± 0.02 a | 3.69 ± 0.02 a | 3.68 ± 0.01 a | n.s. |
VA α | n.d. | 0.36 ± 0.02 ab | 0.18 ± 0.02 c | 0.28 ± 0.03 b | 0.30 ± 0.04 b | 0.38 ± 0.02 a | *** |
TA α | 5.10 ± 0.02 | 5.55 ± 0.05 a | 4.96 ± 0.10 b | 4.98 ± 0.06 b | 5.04 ± 0.12 b | 5.04 ± 0.07 b | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craparo, V.; Viola, E.; Vella, A.; Prestianni, R.; Pirrone, A.; Naselli, V.; Amato, F.; Oliva, D.; Notarbartolo, G.; Guzzon, R.; et al. Oenological Capabilities of Yeasts Isolated from High-Sugar Matrices (Manna and Honey) as Potential Starters and Co-Starters for Winemaking. Beverages 2024, 10, 48. https://doi.org/10.3390/beverages10030048
Craparo V, Viola E, Vella A, Prestianni R, Pirrone A, Naselli V, Amato F, Oliva D, Notarbartolo G, Guzzon R, et al. Oenological Capabilities of Yeasts Isolated from High-Sugar Matrices (Manna and Honey) as Potential Starters and Co-Starters for Winemaking. Beverages. 2024; 10(3):48. https://doi.org/10.3390/beverages10030048
Chicago/Turabian StyleCraparo, Valentina, Enrico Viola, Azzurra Vella, Rosario Prestianni, Antonino Pirrone, Vincenzo Naselli, Filippo Amato, Daniele Oliva, Giuseppe Notarbartolo, Raffaele Guzzon, and et al. 2024. "Oenological Capabilities of Yeasts Isolated from High-Sugar Matrices (Manna and Honey) as Potential Starters and Co-Starters for Winemaking" Beverages 10, no. 3: 48. https://doi.org/10.3390/beverages10030048
APA StyleCraparo, V., Viola, E., Vella, A., Prestianni, R., Pirrone, A., Naselli, V., Amato, F., Oliva, D., Notarbartolo, G., Guzzon, R., Settanni, L., Moschetti, G., Francesca, N., & Alfonzo, A. (2024). Oenological Capabilities of Yeasts Isolated from High-Sugar Matrices (Manna and Honey) as Potential Starters and Co-Starters for Winemaking. Beverages, 10(3), 48. https://doi.org/10.3390/beverages10030048