Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration
Abstract
:1. Introduction
2. Basic Characteristics and Functions of HA in Osteogenesis
3. Metal Ion-Doped HA-Based Materials
3.1. Synthesis Methods of Metal Ion-Doped HA-Based Materials
3.2. Properties and Applications of Metal Ion-Doped HA-Based Materials for Bone Defect Restoration
3.2.1. Ag+-Doped HA-Based Materials
3.2.2. Zn2+-Doped HA-Based Materials
3.2.3. Mg2+-Doped HA-Based Materials
3.2.4. Sr2+-Doped HA-Based Materials
3.2.5. Other Metal Ion-Doped HA-Based Materials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, K.M.; Lundvig, D.M.; Middelkoop, E.; Wagener, F.A.; Von den Hoff, J.W. Mechanical cues in orofacial tissue engineering and regenerative medicine. Wound Repair. Regen. 2015, 23, 302–311. [Google Scholar] [CrossRef]
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef]
- Chen, Z.X.; Lei, Q.; He, R.L.; Zhang, Z.F.; Chowdhury, A.J. Review on antibacterial biocomposites of structural laminated veneer lumber. Saudi J. Biol. Sci. 2016, 23, S142–S147. [Google Scholar] [CrossRef]
- Brunello, G.; Panda, S.; Schiavon, L.; Sivolella, S.; Biasetto, L.; Del Fabbro, M. The impact of bioceramic scaffolds on bone regeneration in preclinical in vivo studies: A systematic review. Materials 2020, 13, 1500. [Google Scholar] [CrossRef]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef]
- Abou Neel, E.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralization-remineralization dynamics in teeth and bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Niu, X.; Cao, P.; Zhang, Y.; Liu, Y.; Yang, H.; Qiao, A. Multifarious roles of metal elements in bone mineralization. Appl. Mater. Today 2023, 32, 101810. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, D.; Zhang, C.; Wang, G. The Roles of Exosomes upon Metallic Ions Stimulation in Bone Regeneration. J. Funct. Biomater. 2022, 13, 126. [Google Scholar] [CrossRef]
- Huang, B.; Vyas, C.; Byun, J.J.; El-Newehy, M.; Huang, Z.; Bartolo, P. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110374. [Google Scholar] [CrossRef]
- Liu, C.; Wu, J.; Gan, D.; Li, Z.; Shen, J.; Tang, P.; Luo, S.; Li, P.; Lu, X.; Zheng, W. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 1814–1825. [Google Scholar] [CrossRef]
- Krishnamurithy, G.; Mohan, S.; Yahya, N.A.; Mansor, A.; Murali, M.R.; Raghavendran, H.R.B.; Choudhary, R.; Sasikumar, S.; Kamarul, T. The physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells. PLoS ONE 2019, 14, e0214212. [Google Scholar] [CrossRef]
- Jose, G.; Shalumon, K.T.; Liao, H.T.; Kuo, C.Y.; Chen, J.P. Preparation and characterization of surface heat sintered nanohydroxyapatite and nanowhitlockite embedded poly (lactic-co-glycolic acid) microsphere bone graft scaffolds: In vitro and in vivo studies. Int. J. Mol. Sci. 2020, 21, 528. [Google Scholar] [CrossRef]
- Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 2018, 9, 2041731418776819. [Google Scholar] [CrossRef] [PubMed]
- Domingos, M.; Gloria, A.; Coelho, J.; Bartolo, P.; Ciurana, J. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc. Inst. Mech. Eng. H 2017, 231, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Samavedi, S.; Whittington, A.R.; Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013, 9, 8037–8045. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gao, P.; Zhang, H.; Guo, Z.; Zheng, Y.; Han, Y. Osteoimmunomodulation, osseointegration, and in vivo mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer. Biomater. Sci. 2018, 6, 3202–3218. [Google Scholar] [CrossRef] [PubMed]
- Tampieri, A.; Ruffini, A.; Ballardini, A.; Montesi, M.; Panseri, S.; Salamanna, F.; Fini, M.; Sprio, S. Heterogeneous chemistry in the 3-D state: An original approach to generate bioactive, mechanically-competent bone scaffolds. Biomater. Sci. 2018, 7, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Ou, Q.; Miao, Y.; Yang, F.; Lin, X.; Zhang, L.M.; Wang, Y. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater. Sci. 2019, 7, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Dayashankar, C.P.; Deepika, P.C.; Siddaramaiah, B. Clinical and radiographic evaluation of citric acid-based nano hydroxyapatite composite graft in the regeneration of intrabony defects—A randomized controlled trial. Contemp. Clin. Dent. 2017, 8, 380–386. [Google Scholar] [CrossRef]
- Shi, C.; Gao, J.; Wang, M.; Fu, J.; Wang, D.; Zhu, Y. Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 497–505. [Google Scholar] [CrossRef]
- Liao, Y.; Li, H.; Shu, R.; Chen, H.; Zhao, L.; Song, Z.; Zhou, W. Mesoporous hydroxyapatite/chitosan loaded with recombinant-human amelogenin could enhance antibacterial effect and promote periodontal regeneration. Front. Cell Infect. Microbiol. 2020, 10, 180. [Google Scholar] [CrossRef]
- Paterson, T.E.; Shi, R.; Tian, J.; Harrison, C.J.; De Sousa Mendes, M.; Hatton, P.V.; Li, Z.; Ortega, I. Electrospun scaffolds containing silver-doped hydroxyapatite with antimicrobial properties for applications in orthopedic and dental bone surgery. J. Funct. Biomater. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Oberbek, P.; Bolek, T.; Chlanda, A.; Hirano, S.; Kusnieruk, S.; Rogowska-Tylman, J.; Nechyporenko, G.; Zinchenko, V.; Swieszkowski, W.; Puzyn, T. Characterization and influence of hydroxyapatite nanopowders on living cells. Beilstein J. Nanotechnol. 2018, 9, 3079–3094. [Google Scholar] [CrossRef] [PubMed]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Ginebra, M.P.; Espanol, M.; Maazouz, Y.; Bergez, V.; Pastorino, D. Bioceramics and bone healing. EFORT Open Rev. 2018, 3, 173–183. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, Z.; Huang, J. Substituted hydroxyapatite: A recent development. Mater. Tech. 2020, 35, 785–796. [Google Scholar] [CrossRef]
- Arcos, D.; Vallet-Regi, M. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 2020, 8, 1781–1800. [Google Scholar] [CrossRef]
- Thian, E.S.; Konishi, T.; Kawanobe, Y.; Lim, P.N.; Choong, C.; Ho, B.; Aizawa, M. Zinc-substituted hydroxyapatite: A biomaterial with enhanced bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 2013, 24, 437–445. [Google Scholar] [CrossRef]
- Tsai, S.W.; Yu, W.X.; Hwang, P.A.; Hsu, Y.W.; Hsu, F.Y. Fabrication and characteristics of PCL membranes containing strontium-substituted hydroxyapatite nanofibers for guided bone regeneration. Polymers 2019, 11, 1761. [Google Scholar] [CrossRef]
- Pon-On, W.; Charoenphandhu, N.; Teerapornpuntakit, J.; Thongbunchoo, J.; Krishnamra, N.; Tang, I.M. Physicochemical and biochemical properties of iron-loaded silicon substituted hydroxyapatite (FeSiHAp). Mater. Chem. Phys. 2013, 141, 850–860. [Google Scholar] [CrossRef]
- Lim, P.N.; Teo, E.Y.; Ho, B.; Tay, B.Y.; Thian, E.S. Effect of silver content on the antibacterial and bioactive properties of silver-substituted hydroxyapatite. J. Biomed. Mater. Res. A 2013, 101, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Cuozzo, R.C.; Sartoretto, S.C.; Resende, R.F.B.; Alves, A.; Mavropoulos, E.; Prado da Silva, M.H.; Calasans-Maia, M.D. Biological evaluation of zinc-containing calcium alginate-hydroxyapatite composite microspheres for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2610–2620. [Google Scholar] [CrossRef] [PubMed]
- Sahmani, S.; Saber-Samandari, S.; Khandan, A.; Aghdam, M.M. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation. J. Mech. Behav. Biomed. Mater. 2019, 95, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.W.; Yu, W.X.; Hwang, P.A.; Huang, S.S.; Lin, H.M.; Hsu, Y.W.; Hsu, F.Y. Fabrication and characterization of strontium-substituted hydroxyapatite-CaO-CaCO3 nanofibers with a mesoporous structure as drug delivery carriers. Pharmaceutics 2018, 10, 179. [Google Scholar] [CrossRef]
- Frasnelli, M.; Cristofaro, F.; Sglavo, V.M.; Dire, S.; Callone, E.; Ceccato, R.; Bruni, G.; Cornaglia, A.I.; Visai, L. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.; Bowen, C.; Rautray, T. Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite-barium strontium titanate composites with controlled strontium substitution. J. Biomed. Mater. Res. A 2021, 109, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Bulina, N.V.; Chaikina, M.V.; Prosanov, I.Y. Mechanochemical synthesis of Sr-substituted hydroxyapatite. Inorg. Mater. 2018, 54, 820–825. [Google Scholar] [CrossRef]
- Morais, D.S.; Coelho, J.; Ferraz, M.P.; Gomes, P.S.; Fernandes, M.H.; Hussain, N.S.; Santos, J.D.; Lopes, M.A. Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. J. Mater. Chem. B 2014, 2, 5872–5881. [Google Scholar] [CrossRef]
- Morais, D.S.; Fernandes, S.; Gomes, P.S.; Fernandes, M.H.; Sampaio, P.; Ferraz, M.P.; Santos, J.D.; Lopes, M.A.; Sooraj Hussain, N. Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomed. Mater. 2015, 10, 055008. [Google Scholar] [CrossRef]
- Yelten-Yilmaz, A.; Yilmaz, S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram. Int. 2018, 44, 9703–9710. [Google Scholar] [CrossRef]
- Huang, G.; Lu, C.-H.; Yang, H.-H. Magnetic nanomaterials for magnetic bioanalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–109. [Google Scholar]
- Topuz, M.; Dikici, B.; Gavgali, M. Titanium-based composite scaffolds reinforced with hydroxyapatite-zirconia: Production, mechanical and in-vitro characterization. J. Mech. Behav. Biomed. Mater. 2021, 118, 104480. [Google Scholar] [CrossRef] [PubMed]
- Szutkowska, M.; Podsiadlo, M.; Sadowski, T.; Figiel, P.; Boniecki, M.; Pietras, D.; Polczyk, T. A novel approach by spark plasma sintering to the improvement of mechanical properties of titanium carbonitride-reinforced alumina ceramics. Molecules 2021, 26, 1344. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, A.; Shikha, D. Design of a new Ag/Mg/Zn alloyed doped hydroxyapatite hybrid biomaterial. Mater. Chem. Phys. 2024, 311, 128533. [Google Scholar] [CrossRef]
- Erdem, U.; Turkoz, M.B. Silver release of Ag (I) doped hydroxyapatite: In vitro study. Microsc. Res. Tech. 2019, 82, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Randall, C.P.; Gupta, A.; Jackson, N.; Busse, D.; O’Neill, A.J. Silver resistance in Gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 2015, 70, 1037–1046. [Google Scholar] [CrossRef]
- Vasiliadis, A.V.; Poutoglidou, F.; Chatziravdeli, V.; Metaxiotis, D.; Beletsiotis, A. Acute periprosthetic hip joint infection caused by multidrug-resistant Acinetobacter baumannii: Is debridement, antibiotics, irrigation, and implant retention a viable treatment option? Cureus 2021, 13, e13090. [Google Scholar] [CrossRef]
- Choe, H.; Tatro, J.M.; Hausman, B.S.; Hujer, K.M.; Marshall, S.H.; Akkus, O.; Rather, P.N.; Lee, Z.; Bonomo, R.A.; Greenfield, E.M. Staphylococcus aureus and Acinetobacter baumannii inhibit osseointegration of orthopedic implants. Infect. Immun. 2022, 90, e0066921. [Google Scholar] [CrossRef]
- Ivankovic, T.; Turk, H.; Hrenovic, J.; Schauperl, Z.; Ivankovic, M.; Ressler, A. Antibacterial activity of silver doped hydroxyapatite toward multidrug-resistant clinical isolates of Acinetobacter baumannii. J. Hazard. Mater. 2023, 458, 131867. [Google Scholar] [CrossRef]
- Kumari, D.; Garg, S.; Bhawrani, P. Zinc homeostasis in immunity and its association with preterm births. Scand. J. Immunol. 2022, 95, e13142. [Google Scholar] [CrossRef]
- Rudolf, E.; Cervinka, M. Responses of human gingival and periodontal fibroblasts to a low-zinc environment. Altern. Lab. Anim. 2010, 38, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Kwun, I.-S.; Cho, Y.-E.; Lomeda, R.-A.R.; Shin, H.-I.; Choi, J.-Y.; Kang, Y.-H.; Beattie, J.H. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010, 46, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Choi, Y.; Yoon, D.S.; Lee, K.M.; Kim, D.; Lee, J.W. Zinc promotes osteoblast differentiation in human mesenchymal stem cells via activation of the cAMP-PKA-CREB signaling pathway. Stem Cells Dev. 2018, 27, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Goto, M.; Uchiyama, S.; Nakagawa, T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: Enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol. Cell Biochem. 2008, 312, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Yusa, K.; Yamamoto, O.; Takano, H.; Fukuda, M.; Iino, M. Zinc-modified titanium surface enhances osteoblast differentiation of dental pulp stem cells in vitro. Sci. Rep. 2016, 6, 29462. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Park, B.; Yoon, D.S.; Kwon, S.H.; Shin, D.M.; Lee, J.W.; Lee, H.G.; Shim, J.H.; Park, J.H.; Lee, J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun. Signal 2013, 11, 74. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Weitzmann, M.N. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kappaB activation. Mol. Cell Biochem. 2011, 355, 179–186. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Feng, Q.; Chen, T.; Hao, Z.; Zhang, S.; Cai, L.; Guo, X.; Li, J. Zn–Sr-sintered true bone ceramics enhance bone repair and regeneration. Biomater. Sci. 2023, 11, 3486–3501. [Google Scholar] [CrossRef]
- Hassan, M.; Sulaiman, M.; Yuvaraju, P.D.; Galiwango, E.; Rehman, I.U.; Al-Marzouqi, A.H.; Khaleel, A.; Mohsin, S. Biomimetic PLGA/strontium-zinc nano hydroxyapatite composite scaffolds for bone regeneration. J. Funct. Biomater. 2022, 13, 13. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; Zhang, X.; Ma, J. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration. J. Biomed. Mater. Res. A 2019, 107, 2512–2521. [Google Scholar] [CrossRef]
- Wei, L.; Du, Z.; Zhang, C.; Zhou, Y.; Zhu, F.; Chen, Y.; Zhao, H.; Zhang, F.; Dang, P.; Wang, Y.; et al. Mg-CS/HA Microscaffolds display excellent biodegradability and controlled release of Si and Mg bioactive ions to synergistically promote vascularized bone regeneration. Adv. Mater. Interfaces 2023, 10, 2300224. [Google Scholar] [CrossRef]
- Gavinho, S.R.; Pádua, A.S.; Holz, L.I.V.; Sá-Nogueira, I.; Silva, J.C.; Borges, J.P.; Valente, M.A.; Graça, M.P.F. Bioactive glasses containing strontium or magnesium ions to enhance the biological response in bone regeneration. Nanomaterials 2023, 13, 2717. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Chen, H.; Zhao, R.; Deng, X.; Chen, G.; Yang, X.; Xiao, Z.; Aurora, A.; Iulia, B.A.; Zhang, K.; et al. Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg-Ca-Zn-Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioact. Mater. 2022, 18, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Cui, Z.; Li, Z.; Zhu, S.; Liang, Y.; Liu, Y.; Li, X.; He, X.; Yu, X.; Wang, R.; et al. Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 467–477. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wang, S.; Jia, F.; Bian, A.; Wang, K.; Xie, L.; Yan, K.; Qiao, H.; Lin, H.; et al. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112387. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, A.; Jiang, S.; Liaqat, U.; Lin, K.; Sun, W.; Yuan, C. Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic. Mater. Des. 2023, 234, 112313. [Google Scholar] [CrossRef]
- Ehret, C.; Aid, R.; Dos Santos, B.P.; Rey, S.; Letourneur, D.; Amedee Vilamitjana, J.; de Mones, E. Bone regeneration in small and large segmental bone defect models after radiotherapy using injectable polymer-based biodegradable materials containing strontium-doped hydroxyapatite particles. Int. J. Mol. Sci. 2023, 24, 5429. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Li, T.; Liu, Z.; Sun, X.; Wang, W.; Chen, L.; He, C. Enhanced tissue infiltration and bone regeneration through spatiotemporal delivery of bioactive factors from polyelectrolytes modified biomimetic scaffold. Mater. Today Bio 2023, 20, 100681. [Google Scholar] [CrossRef]
- Cheng, D.; Ding, R.; Jin, X.; Lu, Y.; Bao, W.; Zhao, Y.; Chen, S.; Shen, C.; Yang, Q.; Wang, Y. Strontium ion-functionalized nano-hydroxyapatite/chitosan composite microspheres promote osteogenesis and angiogenesis for bone regeneration. ACS Appl. Mater. Interfaces 2023, 15, 19951–19965. [Google Scholar] [CrossRef]
- Cui, W.; Yang, L.; Ullah, I.; Yu, K.; Zhao, Z.; Gao, X.; Liu, T.; Liu, M.; Li, P.; Wang, J.; et al. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr2+/Fe3+ co-doped hydroxyapatite accelerate angiogenesis/osteogenesis for bone regeneration. Biomed. Mater. 2022, 17, 025008. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Zhang, X.; Gao, P.; Xia, X.; Xiao, S.; Wen, J.; Guo, T.; Yang, W.; Li, J. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(epsilon-caprolactone) scaffolds promote vascularized bone regeneration. J. Mater. Chem. B 2023, 11, 1115–1130. [Google Scholar] [CrossRef]
- Dawei, Z.; Jinchao, Z.; Yao, C.; Mengsu, Y.; Xinsheng, Y. Effects of lanthanum and gadolinium on proliferation and differentiation of primary osteoblasts. Prog. Nat. Sci. 2007, 17, 618–623. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, L.; Huang, J.; Zhang, T.L.; Wang, K. Lanthanum enhances in vitro osteoblast differentiation via pertussis toxin-sensitive gi protein and ERK signaling pathway. J. Cell Biochem. 2008, 105, 1307–1315. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Hao, X.; Zhang, Q.; Yang, K.; Li, L.; Ma, L.; Wang, S.; Li, X. Recent Progress in Therapeutic and Diagnostic Applications of Lanthanides. Mini-Rev. Med. Chem. 2011, 11, 678–694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Zhang, Q.; Hao, X.; Wang, S. Effects of gadolinium on proliferation, differentiation and calcification of primary mouse osteoblasts in vitro. J. Rare Earth 2012, 30, 831–834. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Li, Y.; Sun, J.; Wang, P.; Di, K.; Chen, H.; Zhao, Y. Effect of yttrium ion on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro. J. Rare Earth 2010, 28, 466–470. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Li, Y.; Sun, J.; Wang, P.; Di, K.; Zhao, Y. Effect of cerium ion on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro. J. Rare Earth 2010, 28, 138–142. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Wen, S. Multigrid technique incorporated algorithm for CMP lubrication equations. Prog. Nat. Sci. 2004, 14, 369–372. [Google Scholar] [CrossRef]
- Fricker, S.P. The therapeutic application of lanthanides. Chem. Soc. Rev. 2006, 35, 524–533. [Google Scholar] [CrossRef]
- Cobrado, L.; Azevedo, M.M.; Silva-Dias, A.; Ramos, J.P.; Pina-Vaz, C.; Rodrigues, A.G. Cerium, chitosan and hamamelitannin as novel biofilm inhibitors? J. Antimicrob. Chemother. 2012, 67, 1159–1162. [Google Scholar] [CrossRef]
- Sari, Y.W.; Tsalsabila, A.; Saputra, A.; Nuzulia, N.A.; Herbani, Y. Hydroxyapatite nucleation and growth modulated by amino acid-capped gold nanoparticles: An in vitro study. Ceram. Int. 2023, 49, 17166–17173. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, W.; Rajendran, N.K.; Su, F.; Rajan, M. Investigations of gold nanoparticles-mediated carbon nanotube reinforced hydroxyapatite composite for bone regenerations. J. Saudi Chem. Soc. 2021, 25, 101261. [Google Scholar] [CrossRef]
- Leu Alexa, R.; Cucuruz, A.; Ghitulica, C.D.; Voicu, G.; Stamat Balahura, L.R.; Dinescu, S.; Vlasceanu, G.M.; Stavarache, C.; Ianchis, R.; Iovu, H.; et al. 3D printable composite biomaterials based on GelMA and hydroxyapatite powders doped with cerium Ions for bone tissue regeneration. Int. J. Mol. Sci. 2022, 23, 1841. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Keller, E.; Beltrán, A.M.; Zheng, K.; Boccaccini, A.R. Cerium doped dendritic mesoporous bioactive glass nanoparticles with bioactivity and drug delivery capability. J. Non-Cryst. Solid. 2023, 620, 122578. [Google Scholar] [CrossRef]
- Muthusamy, S.; Mahendiran, B.; Nithiya, P.; Selvakumar, R.; Krishnakumar, G.S. Functionalization of biologically inspired scaffold through selenium and gallium ion doping to promote bone regeneration. J. Drug Deliv. Sci. Technol. 2023, 79, 104011. [Google Scholar] [CrossRef]
- Muthusamy, S.; Mahendiran, B.; Sampath, S.; Jaisankar, S.N.; Anandasadagopan, S.K.; Krishnakumar, G.S. Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: Physiochemical, microstructural and biological characterization. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 126, 112149. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, H.; Zhang, Y.; Liu, Y.; Liu, S.; Liu, X.; Luo, E. Metal ions: The unfading stars of bone regeneration—From bone metabolism regulation to biomaterial applications. Biomater. Sci. 2023, 11, 7268–7295. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, B.; Szałaj, U.; Chodara, A.; Mizeracki, J.; Łojkowski, M.; Myszka, D.; Łojkowski, W. Mechanism for sonocoating a polymer surface with nano-hydroxyapatite. Mater. Lett. 2019, 249, 155–159. [Google Scholar] [CrossRef]
- Higuchi, J.; Klimek, K.; Wojnarowicz, J.; Opalinska, A.; Chodara, A.; Szalaj, U.; Dabrowska, S.; Fudala, D.; Ginalska, G. Electrospun membrane surface modification by sonocoating with HA and ZnO:Ag nanoparticles-characterization and evaluation of osteoblasts and bacterial cell behavior in vitro. Cells 2022, 11, 1582. [Google Scholar] [CrossRef]
- Yang, H.; Gao, H.; Wang, Y. Hollow hydroxyapatite microsphere: A promising carrier for bone tissue engineering. J. Microencapsul. 2016, 33, 421–426. [Google Scholar] [CrossRef]
- Thorpe, A.A.; Creasey, S.; Sammon, C.; Le Maitre, C.L. Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells. Eur. Cell Mater. 2016, 32, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.; Shi, Z.Z.; Gao, X.X.; Li, H.Y.; Zhao, F.Y.; Wang, J.Q.; Wang, L.N. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater. 2021, 119, 485–498. [Google Scholar] [CrossRef]
- Pusnik Cresnar, K.; Aulova, A.; Bikiaris, D.N.; Lambropoulou, D.; Kuzmic, K.; Fras Zemljic, L. Incorporation of metal-based nanoadditives into the PLA matrix: Effect of surface properties on antibacterial activity and mechanical performance of PLA nanoadditive films. Molecules 2021, 26, 4161. [Google Scholar] [CrossRef]
- Gordon, O.; Vig Slenters, T.; Brunetto, P.S.; Villaruz, A.E.; Sturdevant, D.E.; Otto, M.; Landmann, R.; Fromm, K.M. Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 2010, 54, 4208–4218. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 2018, 8, 10.1128. [Google Scholar] [CrossRef]
- Salesa, B.; Assis, M.; Andres, J.; Serrano-Aroca, A. Carbon nanofibers versus silver nanoparticles: Time-dependent cytotoxicity, proliferation, and gene expression. Biomedicines 2021, 9, 1155. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, Y.; Wang, C.; Li, H.C.; Wang, T.; Liao, C.Y.; Cui, L.; Zhou, Q.F.; Yan, B.; Jiang, G.B. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 2010, 4, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 11. [Google Scholar] [CrossRef]
- Park, J.; Lim, D.H.; Lim, H.J.; Kwon, T.; Choi, J.S.; Jeong, S.; Choi, I.H.; Cheon, J. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem. Commun. 2011, 47, 4382–4384. [Google Scholar] [CrossRef]
- Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. Vitr. 2017, 38, 179–192. [Google Scholar] [CrossRef]
- Braydich-Stolle, L.K.; Lucas, B.; Schrand, A.; Murdock, R.C.; Lee, T.; Schlager, J.J.; Hussain, S.M.; Hofmann, M.C. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol. Sci. 2010, 116, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.; Hussain, S.M.; Schrand, A.M.; Braydich-Stolle, L.K.; Hess, K.L.; Jones, R.L.; Schlager, J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B 2008, 112, 13608–13619. [Google Scholar] [CrossRef] [PubMed]
- Lapaj, L.; Wozniak, W.; Markuszewski, J. Osseointegration of hydroxyapatite coatings doped with silver nanoparticles: Scanning electron microscopy studies on a rabbit model. Folia Morphol. 2019, 78, 107–113. [Google Scholar] [CrossRef]
- Lin, W.; Zhou, Z.; Chen, Z.; Xu, K.; Wu, C.; Duan, X.; Dong, L.; Chen, Z.; Weng, W.; Cheng, K. Accelerated bone regeneration on the metal surface through controllable surface potential. ACS Appl. Mater. Interfaces 2023, 15, 46493–46503. [Google Scholar] [CrossRef]
Metal Ion-Doped HA-Based Materials | Raw Materials | Synthesis Method | Experimental Conditions | Physical Features | Mechanical Properties | Chemical Properties | Biological Properties | Reference |
---|---|---|---|---|---|---|---|---|
Ultra-trace Ag+-doped HA | Ca(NO3)2·4H2O, (NH4)2HPO4, and AgNO3 | Wet precipitation | Melting at pH 9.0 and room temperature, (Ag + Ca)/P molar ratio at 1.67, and Ag doping concentration between 0.27 ppm and 2.2 ppm | Clear and homogeneous surface morphology | / | Good Ag+ release ability: 46 ppb (Ag doping concentration of 2.2 ppm) and 11 ppb (Ag doping concentration of 0.27 ppm) after 48 h | Good protein absorption: 16.7 μg/mg (0.27 ppm) bovine serum albumin (BSA) at pH 7.4, over 15 μg/mg (2.2 ppm) BSA at pH 7.4; great antibacterial rate: 82% (0.27 ppm) and 90% (2.2 ppm) after culturing for 24 h; no cytotoxicity | [21] |
Scaffold containing Ag+-doped HA | Ca(OH)2 and AgNO3 | Wet precipitation | Stirring at 400 rpm for 1 h at 90 °C and Ag doping content at 5 mol.% | / | / | Low degradation rate; cumulative element release: near 1.0 mg/L at the 30th day | Great antibacterial effect: reducing to unviable count after 48 h for Escherichia coli (E. coli) and 96 h for Staphylococcus aureus (S. aureus); low cytotoxicity and good bioactivity; great bone restoration activity: alkaline phosphatase (ALP) content of over 0.10 per ng DNA | [23] |
Ag+-doped HA | Ca(OH)2, H3PO4, and AgNO3 | Wet precipitation | Stirring at pH above 10.5 at room temperature, sterilizing by autoclaving or heating at 1150 °C in air for 2 h, and Ag doping content of 0.5 wt.% | / | / | Low degradation rate and ion release: less than 0.5 ppm of Ag+ ions after immersion for 14 d and less than 1% of added Ag totally | Good antibacterial effect: almost no viable S. aureus colony survival from the starting population of 107 CFU/mL; little cytotoxicity and great bioactivity | [32] |
Zn2+-doped HA | Ca(OH)2, H3PO4, and Zn(NO3)2·6H2O | Wet precipitation | Stirring for 18 h with pH above 10.5, autoclaving at 124 °C for 2 h, and Zn doping content of 1.6 wt.% | / | / | / | Great bioactivity and bio-protein expression; effective antibacterial ability: almost no viable S. aureus colony survival from the starting population of 4 × 106 CFU/mL | [29] |
Zinc-containing calcium alginate-HA | (NH4)2HPO4, Ca(NO3)2·4H2O, and Zn(NO3)2 ·6H2O | Wet precipitation | Stirring for 3 h at pH 9 and 90 °C and Zn doping content of 0.5 wt.% | / | / | / | Good bio-compatibility: almost 100% cell viability after 24 h; great healing guidance: formation of almost 20% new bone after 6 months | [33] |
HA-MgO scaffold | Natural HA, MgO nanoparticles, NaCl, and GN polymer | Sintering | Pressing at 120–160 MPa for 2 min and sintering at 1100–1150 °C with the addition of MgO of 10 wt.% or 15 wt.% | Uniform and dense architecture; rough surface; high density: near 2 g/cm3; high porosity: over 80% | Good elastic modulus: about 100 MPa; high hardness: about 60 N; good compressive strength: over 1.2 MPa | Excellent wettability; low degradation rate: less than 0.4%; using the same quantity of ions (1.5 mM) as that in human plasma | Good antibacterial behavior: nearly 60%; good biocompatibility | [34] |
Polycaprolactone (PCL) membranes containing Sr2+-doped HA nanofibers (SrHANF) | TEP, pluronic P123, PVP, PCL, Ca(NO3)2·4H2O, Sr(NO3)2, and cetyltrimethylammonium bromide (CTAB) | Sintering | Operation with steady flowrate of 1.27 mL/h and electrical field of 1.3 kV/cm, calcining at 800 °C under a nitrogen atmosphere, Sr/(Sr + Ca) at 30 mol%, and (Sr + Ca)/P molar ratio at 1.67 | / | / | / | Good osteogenic guidance and gene expression: MTT assay over 2.5 and ALP/MTT over 0.3 after incubating for 7 d | [30] |
Sr2+-doped HA-CaO-CaCO3 nanofibers | Ca(NO3)2·4H2O, Sr(NO3)2, CTAB, pluronic P123, poly(vinyl pyrrolidone) (PVP) tetracycline hydrochloride (TC), and triethyl phosphite (TEP) | Sintering | Pressing under 120–160 MPa for 2 min, sintering at 1100–1150 °C, operation with steady flowrate (1.27 mL/h) and electrical field (1.3 kV/cm), calcining at 800 °C under a nitrogen atmosphere, Sr/(Sr + Ca) at 30 mol% and (Sr + Ca)/P molar ratio at 1.67 | Big pore diameter: average pore diameter of 25.9 nm | / | Low degradation rate: 2.6% after immersion for 1d | High loading efficiency and slow release of drug: the amount of TC loaded at 97.21 ± 0.75% (w/w) and the release rate of TC at approximately 2.36% per day steadily | [35] |
Sr2+-doped HA nanoparticles | Ca(NO3)2·4H2O, Sr(NO3)2, (NH4)2HPO4, and NH4OH | Wet precipitation | Stirring at 90 °C and pH 10.0 and Sr/(Sr + Ca) molar ratio at 1 | Nanometer particles | / | / | Good biocompatibility and no apoptotic effect, great osteogenic bioactivity and guidance: an increment in MTT assay from 25% to 37% after 7 d | [36] |
Polarized Sr2+-doped HA-barium strontium titanate (BST) | Sr2+-doped HA, BST, urea, and sodium polyacrylate | Sintering | Pressing under 100 MPa, sintering in air at 1250 °C for 2 h, polarizing at field intensity of 0.8 to 1.4 kV/mm for 30 min at 480 °C, and Sr doping content of 10 wt.% | / | Lower compressive strength (relative to pure HA): 23.4 MPa | / | Great osteogenic activity and gene expression: OD value between 2.5 and 3.0 after culturing for 14 d, relative expression of ALP at nearly 10 after culturing for 14 d | [37] |
Sr2+-doped HA | CaHPO4, Sr(OH)2, and CaO | Mechanochemical synthesis | Milling of CaHPO4, Sr(OH)2, and CaO with the powder-to-ball weight ratio of 1/20 at a rotation speed of 1200 rpm for 30 min | / | / | / | Good cell adhesion and growth | [38] |
Sm3+-doped glass-reinforced HA | CaHPO4, P2O5, Na2CO3, CaF2, and Sm2O3 | Sintering | Sintering at 1300 °C under 80 MPa at a ramp rate of 4 °C/min for 1 h, Sm2O3/(Sm2O3 + P2O5) at 1 mol% and 2 mol%, CaO at 15 mol%, and CaF2 at 10 mol% | High density | High bending strength | / | Good bioactivity and osteogenic gene expression, and good antibacterial effect | [39] |
Ce3+-doped glass-reinforced HA | Ca(OH)2, H3PO4, CaHPO4, P2O5, Na2CO3, CaF2, and Ce(NO3)3 | Sintering | Sintering under 200 MPa at 1300 °C for 1 h (HA), sintering under 80 MPa at 1300 °C for 1 h using a heating rate of 2 °C/min (GR-HA), CaF2 at 10 mol%, Na2CO3 at 10 mol%, CaO at 15 mol%, P2O5 at 60 mol%, and CeO2 at 5 mol% | High surface roughness: Ra value of 6.37 ± 0.74 μm; low porosity (relative to pure HA): 10.96 ± 1.42% (Archimedes method) and 34.27 ± 0.34% (geometric method) | Low bending strength | Good hydrophilic ability: contact angle of 45.4 ± 1.6° | Great bioactivity and antibacterial effect (G+ bacteria) | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, S.; Peng, Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering 2023, 10, 1367. https://doi.org/10.3390/bioengineering10121367
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering. 2023; 10(12):1367. https://doi.org/10.3390/bioengineering10121367
Chicago/Turabian StyleWang, Xuan, Shan Huang, and Qian Peng. 2023. "Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration" Bioengineering 10, no. 12: 1367. https://doi.org/10.3390/bioengineering10121367
APA StyleWang, X., Huang, S., & Peng, Q. (2023). Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering, 10(12), 1367. https://doi.org/10.3390/bioengineering10121367