Interobserver Agreement in Automatic Segmentation Annotation of Prostate Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dataset Description and MR Image Acquisition
2.3. Manual Segmentation
2.4. Automatic Computer-Aided Segmentation
2.5. Data Analysis and Statistical Methods
Evaluation of the Segmentation Model
2.6. Consistency Evaluation of the Radiomics Features
3. Results
3.1. Evaluation of the Automatic Segmentation Model
3.2. Evaluation of the Consistency of Image Segmentation by the Radiologists
3.3. Evaluation of the Segmentation Model
3.4. Consistency Evaluation of the Radiomics Features
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Cao, R.; Mohammadian Bajgiran, A.; Afshari Mirak, S.; Shakeri, S.; Zhong, X.; Enzmann, D.; Raman, S.; Sung, K. Joint prostate cancer detection and gleason score prediction in mp-MRI via FocalNet. IEEE Trans. Med. Imaging 2019, 38, 2496–2506. [Google Scholar] [CrossRef]
- Hectors, S.J.; Cherny, M.; Yadav, K.; Beksaç, A.T.; Thulasidass, H.; Lewis, S.; Davicioni, E.; Wang, P.; Tewari, A.K.; Taouli, B. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness. J. Urol. 2019, 202, 498–505. [Google Scholar] [CrossRef]
- Deniffel, D.; Salinas, E.; Ientilucci, M.; Evans, A.J.; Fleshner, N.; Ghai, S.; Hamilton, R.; Roberts, A.; Toi, A.; van der Kwast, T.; et al. Does the visibility of grade group 1 prostate cancer on baseline multiparametric magnetic resonance imaging impact clinical outcomes? J. Urol. 2020, 204, 1187–1194. [Google Scholar] [CrossRef]
- Vente, C.; Vos, P.; Hosseinzadeh, M.; Pluim, J.; Veta, M. Deep learning regression for prostate cancer detection and grading in bi-parametric MRI. IEEE Trans. Biomed. Eng. 2021, 68, 374–383. [Google Scholar] [CrossRef]
- Penzkofer, T.; Padhani, A.R.; Turkbey, B.; Haider, M.A.; Huisman, H.; Walz, J.; Salomon, G.; Schoots, I.G.; Richenberg, J.; Villeirs, G.; et al. ESUR/ESUI position paper: Developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging. Eur. Radiol. 2021, 31, 9567–9578. [Google Scholar] [CrossRef]
- Schelb, P.; Wang, X.; Radtke, J.P.; Wiesenfarth, M.; Kickingereder, P.; Stenzinger, A.; Hohenfellner, M.; Schlemmer, H.P.; Maier-Hein, K.H.; Bonekamp, D. Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment. Eur. Radiol. 2021, 31, 302–313. [Google Scholar] [CrossRef]
- Rouvière, O.; Moldovan, P.C.; Vlachomitrou, A.; Gouttard, S.; Riche, B.; Groth, A.; Rabotnikov, M.; Ruffion, A.; Colombel, M.; Crouzet, S.; et al. Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: Clinical evaluation. Eur. Radiol. 2022, 32, 3248–3259. [Google Scholar] [CrossRef]
- Becker, A.S.; Chaitanya, K.; Schawkat, K.; Muehlematter, U.J.; Hötker, A.M.; Konukoglu, E.; Donati, O.F. Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study. Eur. J. Radiol. 2019, 121, 108716. [Google Scholar] [CrossRef]
- Montagne, S.; Hamzaoui, D.; Allera, A.; Ezziane, M.; Luzurier, A.; Quint, R.; Kalai, M.; Ayache, N.; Delingette, H.; Renard-Penna, R. Challenge of prostate MRI segmentation on T2-weighted images: Inter-observer variability and impact of prostate morphology. Insights Imaging 2021, 12, 71. [Google Scholar] [CrossRef]
- Belue, M.J.; Harmon, S.A.; Patel, K.; Daryanani, A.; Yilmaz, E.C.; Pinto, P.A.; Wood, B.J.; Citrin, D.E.; Choyke, P.L.; Turkbey, B. Development of a 3D CNN-based AI model for automated segmentation of the prostatic urethra. Acad. Radiol. 2022, 29, 1404–1412. [Google Scholar] [CrossRef]
- Fiset, S.; Welch, M.L.; Weiss, J.; Pintilie, M.; Conway, J.L.; Milosevic, M.; Fyles, A.; Traverso, A.; Jaffray, D.; Metser, U.; et al. Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother. Oncol. 2019, 135, 107–114. [Google Scholar] [CrossRef]
- Diaz-Pinto, A.; Alle, S.; Nath, V.; Tang, Y.; Ihsani, A.; Asad, M.; Pérez-García, F.; Mehta, P.; Li, W.; Flores, M.; et al. MONAI label: A framework for AI-assisted interactive labeling of 3D medical images. arXiv 2022. [Google Scholar] [CrossRef]
- Shapey, J.; Kujawa, A.; Dorent, R.; Wang, G.; Dimitriadis, A.; Grishchuk, D.; Paddick, I.; Kitchen, N.; Bradford, R.; Saeed, S.R.; et al. Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Sci. Data 2021, 8, 286. [Google Scholar] [CrossRef]
- Benchoufi, M.; Matzner-Lober, E.; Molinari, N.; Jannot, A.S.; Soyer, P. Interobserver agreement issues in radiology. Diagn. Interv. Imaging 2020, 101, 639–641. [Google Scholar] [CrossRef]
- Gierada, D.S.; Rydzak, C.E.; Zei, M.; Rhea, L. Improved interobserver agreement on lung-RADS classification of solid nodules using semiautomated CT volumetry. Radiology 2020, 297, 675–684. [Google Scholar] [CrossRef]
- Kim, R.Y.; Oke, J.L.; Pickup, L.C.; Munden, R.F.; Dotson, T.L.; Bellinger, C.R.; Cohen, A.; Simoff, M.J.; Massion, P.P.; Filippini, C.; et al. Artificial intelligence tool for assessment of indeterminate pulmonary nodules detected with CT. Radiology 2022, 304, 683–691. [Google Scholar] [CrossRef]
- Fournel, J.; Bartoli, A.; Bendahan, D.; Guye, M.; Bernard, M.; Rauseo, E.; Khanji, M.Y.; Petersen, S.E.; Jacquier, A.; Ghattas, B. Medical image segmentation automatic quality control: A multi-dimensional approach. Med. Image Anal. 2021, 74, 102213. [Google Scholar] [CrossRef]
- Jensen, L.J.; Kim, D.; Elgeti, T.; Steffen, I.G.; Hamm, B.; Nagel, S.N. Stability of radiomic features across different region of interest sizes-a CT and MR phantom study. Tomography 2021, 7, 238–252. [Google Scholar] [CrossRef]
- Hertel, A.; Tharmaseelan, H.; Rotkopf, L.T.; Nörenberg, D.; Riffel, P.; Nikolaou, K.; Weiss, J.; Bamberg, F.; Schoenberg, S.O.; Froelich, M.F.; et al. Phantom-based radiomics feature test-retest stability analysis on photon-counting detector CT. Eur. Radiol. 2023, 33, 4905–4914. [Google Scholar] [CrossRef]
- Ferro, M.; de Cobelli, O.; Musi, G.; Del Giudice, F.; Carrieri, G.; Busetto, G.M.; Falagario, U.G.; Sciarra, A.; Maggi, M.; Crocetto, F.; et al. Radiomics in prostate cancer: An up-to-date review. Ther. Adv. Urol. 2022, 14. [Google Scholar] [CrossRef]
- Thulasi Seetha, S.; Garanzini, E.; Tenconi, C.; Marenghi, C.; Avuzzi, B.; Catanzaro, M.; Stagni, S.; Villa, S.; Chiorda, B.N.; Badenchini, F.; et al. Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation. J. Pers. Med. 2023, 13, 1172. [Google Scholar] [CrossRef]
- Wan, Q.; Wang, Y.Z.; Li, X.C.; Xia, X.Y.; Wang, P.; Peng, Y.; Liang, C.H. The stability and repeatability of radiomics features based on lung diffusion-weighted imaging. Zhonghua Yi Xue Za Zhi 2022, 102, 190–195. [Google Scholar]
- Xu, H.; Lv, W.; Zhang, H.; Ma, J.; Zhao, P.; Lu, L. Evaluation and optimization of radiomics features stability to respiratory motion in 18 F-FDG 3D PET imaging. Med. Phys. 2021, 48, 5165–5178. [Google Scholar] [CrossRef]
- Jimenez-Del-Toro, O.; Aberle, C.; Bach, M.; Schaer, R.; Obmann, M.M.; Flouris, K.; Konukoglu, E.; Stieltjes, B.; Müller, H.; Depeursinge, A. The Discriminative Power and Stability of Radiomics Features With Computed Tomography Variations: Task-Based Analysis in an Anthropomorphic 3D-Printed CT Phantom. Investig. Radiol. 2021, 56, 820–825. [Google Scholar] [CrossRef]
- Tharmaseelan, H.; Rotkopf, L.T.; Ayx, I.; Hertel, A.; Nörenberg, D.; Schoenberg, S.O.; Froelich, M.F. Evaluation of radiomics feature stability in abdominal monoenergetic photon counting CT reconstructions. Sci. Rep. 2022, 12, 19594. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Cao, P.; Wong, E.M.F.; Ho, G.; Lam, T.P.W.; Han, L.; Lee, E.Y.P. CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features. Quant. Imaging Med. Surg. 2023, 13, 5218–5229. [Google Scholar] [CrossRef]
- Scalco, E.; Rizzo, G.; Mastropietro, A. The stability of oncologic MRI radiomic features and the potential role of deep learning: A review. Phys. Med. Biol. 2022, 67, 09TR03. [Google Scholar] [CrossRef]
- Abunahel, B.M.; Pontre, B.; Ko, J.; Petrov, M.S. Towards developing a robust radiomics signature in diffuse diseases of the pancreas: Accuracy and stability of features derived from T1-weighted magnetic resonance imaging. J. Med. Imaging Radiat. Sci. 2022, 53, 420–428. [Google Scholar] [CrossRef]
- Ramli, Z.; Karim, M.K.A.; Effendy, N.; Abd Rahman, M.A.; Kechik, M.M.A.; Ibahim, M.J.; Haniff, N.S.M. Stability and Reproducibility of Radiomic Features Based on Various Segmentation Techniques on Cervical Cancer DWI-MRI. Diagnostics 2022, 12, 3125. [Google Scholar] [CrossRef]
- Gitto, S.; Bologna, M.; Corino, V.D.A.; Emili, I.; Albano, D.; Messina, C.; Armiraglio, E.; Parafioriti, A.; Luzzati, A.; Mainardi, L.; et al. Diffusion-weighted MRI radiomics of spine bone tumors: Feature stability and machine learning-based classification performance. Radiol. Med. 2022, 127, 518–525. [Google Scholar] [CrossRef]
Characteristics | Dataset A (n = 228) | Dataset B (n = 99) |
---|---|---|
Age (years) | 69.0 [65.0–74.0] | 70.0 [64.0–75.0] |
Grade 1 | 51 (22.37%) | 12 (12.12%) |
Grade 2 | 49 (21.49%) | 26 (26.26%) |
Grade 3 | 48 (21.05%) | 17 (17.17%) |
Grade 4 | 30 (13.16%) | 27 (27.27%) |
Grade 5 | 50 (21.93%) | 17 (17.17%) |
Model | Auto Segmentation Model (MONAI_Label Based) | nnUnet |
---|---|---|
Training set (n = 183) | ||
Average Dice (95% CI) | 0.918 (0.908, 0.928) | 0.947 (0.944, 0.950) |
Median Dice [Interquartile Ranges] | 0.950 [0.911, 0.967] | 0.963 [0.936, 0.977] |
Verification set (n = 45) | ||
Average Dice (95% CI) | 0.839 (0.833, 0.844) | 0.862 (0.839–0.866) |
Median Dice [Interquartile Ranges] | 0.854 [0.844, 0.859] | 0.884 [0.807, 0.930] |
Testing set (n = 99) | ||
Average Dice (95% CI) | 0.831 (0.816, 0.845) | 0.838 (0.8279–0.8487) |
Median Dice [Interquartile Ranges] | 0.850 [0.568, 0.940] | 0.848 [0.667, 0.911] |
Training time (h) | 11 | 125 |
Dataset | All Cases in Dataset B (n = 99) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dice Coefficient in All the Cases in Dataset B | Dice Coefficient in Grades 1 and 2 in Dataset B (n = 38) | Dice Coefficient in Grades 3, 4, and 5 in Dataset B (n = 61) | ICC for Image Segmentation by the Radiologists | ||||||||||
Radiologist (Time) | Average [CI] | Median (Min, Max) | p-Value | Average [CI] | Median (Min, Max) | p-Value | Average [CI] | Median (Min, Max) | p-Value | Average [CI] | Median (Min, Max) | p-Value | |
Senior radiologists (8 years’ experience) | C (3.67 h) | 0.821 [0.808, 0.834] | 0.824 (0.61, 0.93) | 0.008 ** | 0.820 [0.800, 0.842] | 0.829 (0.612, 0.918) | 0.177 | 0.822 [0.805, 0.839] | 0.821 (0.643, 0.930) | 0.040 * | 0.873 [0.08, 1.0] | 0.930 (0.864, 0.881) | <0.01 ** |
C_AI (1.98 h) | 0.836 [0.822, 0.849] | 0.850 (0.64, 0.94) | 0.835 [0.810, 0.861] | 0.866 (0.642, 0.943) | 0.835 [0.820, 0.851] | 0.841 (0.646, 0.930) | 0.888 [0.10, 1.01] | 0.940 (0.880, 0.897) | |||||
D (3.5 h) | 0.828 [0.815, 0.841] | 0.838 (0.64, 0.95) | 0.049 * | 0.829 [0.806, 0.852] | 0.829 (0.645, 0.948) | 0.416 | 0.827 [0.812, 0.843] | 0.839 (0.686, 0.928) | 0.096 | 0.866 [0.17, 1.0] | 0.920 (0.858, 0.875) | <0.01 ** | |
D_AI (1.56 h) | 0.840 [0.828, 0.851] | 0.851 (0.69, 0.93) | 0.858 [0.817, 0.858] | 0.837 (0.687, 0.912) | 0.840 [0.826, 0.854] | 0.840 (0.695, 0.931) | 0.883 [0.11, 1.0] | 0.940 (0.875, 0.891) | |||||
Junior radiologists (2 years’ experience) | E (4.5 h) | 0.800 [0.785, 0.814] | 0.808 (0.44–0.91) | 0.005 ** | 0.830 [0.792, 0.834] | 0.813 (0.647–0.899) | 0.283 | 0.791 [0.772, 0.811] | 0.796 (0.440–0.909) | 0.009 ** | 0.821 [0.06, 0.99] | 0.880 (0.811, 0.831) | <0.01 ** |
E_AI (2.3 h) | 0.818 [0.805, 0.830] | 0.834 (0.58, 0.94) | 0.831 [0.794, 0.835] | 0.814 (0.575, 0.895) | 0.820 [0.804, 0.836] | 0.835 (0.630, 0.935) | 0.872 [0.14, 1.0] | 0.930 (0.863, 0.880) | |||||
F (5 h) | 0.814 [0.800, 0.827] | 0.815 (0.64, 0.94) | 0.019 * | 0.805 [0.792, 0.837] | 0.814 (0.674, 0.941) | 0.925 | 0.813 [0.796, 0.831] | 0.818 (0.645, 0.930) | 0.058 | 0.848 [0.13, 0.99] | 0.910 (0.839, 0.858) | <0.01 ** | |
F_AI (2.9 h) | 0.828 [0.816, 0.841] | 0.837 (0.65, 0.93) | 0.844 [0.807, 0.849] | 0.828 (0.683, 0.929) | 0.829 [0.812, 0.845] | 0.836 (0.646, 0.926) | 0.869 [0.12, 1.0] | 0.920 (0.860, 0.878) |
Comparison | p-Value |
---|---|
C vs. D | 0.642 |
C vs. F | 0.759 |
C vs. E | 0.001 ** |
C vs. C_AI | 0.008 * |
C vs. D_AI | 0.001 ** |
C vs. F_AI | 0.152 |
C vs. E_AI | 0.861 |
D vs. F | 0.119 |
D vs. E | 0.001 ** |
D vs. C_AI | 0.087 |
D vs. D_AI | 0.049 * |
D vs. F_AI | 0.293 |
D vs. E_AI | 0.618 |
E vs. F | 0.088 |
E vs. C_AI | 0.001 ** |
E vs. D_AI | 0.001 ** |
E vs. E_AI | 0.001 ** |
E vs. F_AI | 0.001 ** |
F vs. C_AI | 0.001 ** |
F vs. D_AI | 0.001 ** |
F vs. E_AI | 0.348 |
F vs. F_AI | 0.009 * |
C_AI vs. D_AI | 0.567 |
C_AI vs. F_AI | 0.009 * |
C_AI vs. E_AI | 0.001 ** |
D_AI vs. F_AI | 0.007 * |
D_AI vs. E_AI | 0.001 ** |
F_AI vs. E_AI | 0.132 |
Feature Category (n) | Senior Radiologists | Junior Radiologists | ||||||
---|---|---|---|---|---|---|---|---|
D | D_AI | C | C_AI | F | F_AI | E | E_AI | |
First_order (18) | ||||||||
ICC ≥ 0.9 | 10 (55.6) | 13 (72.2) | 9 (50.0) | 14 (77.8) | 12 (66.7) | 13 (72.2) | 7 (38.9) | 14 (77.8) |
0.75 < ICC < 0.9 | 5 (27.8) | 2 (11.1) | 6 (33.3) | 1 (5.6) | 3 (16.7) | 2 (11.1) | 8 (44.4) | 1 (5.6) |
ICC ≤ 0.75 | 3 (16.7) | 3 (16.7) | 3 (16.7) | 3 (16.7) | 3 (16.7) | 3 (16.7) | 3 (16.7) | 3 (16.7) |
Shape_based (14) | ||||||||
ICC ≥ 0.9 | 0 (0.0) | 2 (14.3) | 0 (0.0) | 2 (14.3) | 2 (14.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
0.75 < ICC < 0.9 | 9 (64.3) | 7 (50.0) | 8 (57.1) | 6 (42.9) | 7 (50.0) | 8 (57.1) | 9 (64.3) | 8 (57.1) |
ICC ≤ 0.75 | 5 (35.7) | 5 (35.7) | 6 (42.9) | 6 (42.9) | 5 (35.7) | 6 (42.9) | 5 (35.7) | 6 (42.9) |
Texture (68) | ||||||||
ICC ≥ 0.9 | 37 (54.4) | 46 (67.6) | 43 (63.2) | 48 (70.6) | 27 (39.7) | 38 (55.9) | 19 (27.9) | 36 (52.9) |
0.75 < ICC < 0.9 | 22 (32.4) | 15 (22.1) | 17 (25.0) | 13 (19.1) | 29 (42.6) | 22 (32.4) | 33 (48.5) | 24 (35.3) |
ICC ≤ 0.75 | 9 (13.2) | 7 (10.3) | 8 (11.8) | 7 (10.3) | 12 (17.6) | 8 (11.8) | 16 (23.5) | 8 (11.8) |
LoG (344) | ||||||||
ICC ≥ 0.9 | 186 (54.1) | 212 (61.6) | 197 (57.3) | 222 (64.5) | 181 (52.6) | 202 (58.7) | 145 (42.2) | 218 (63.4) |
0.75 < ICC < 0.9 | 95 (27.6) | 82 (23.8) | 78 (22.7) | 75 (21.8) | 85 (24.7) | 86 (25.0) | 111 (32.3) | 79 (23.0) |
ICC ≤ 0.75 | 63 (18.3) | 50 (14.5) | 63 (18.3) | 47 (13.7) | 78 (22.7) | 56 (16.3) | 88 (25.6) | 47 (13.7) |
Wavelet (688) | ||||||||
ICC ≥ 0.9 | 417 (60.6) | 465 (67.6) | 437 (63.5) | 454 (66.0) | 395 (57.4) | 412 (59.9) | 295 (42.9) | 400 (58.1) |
0.75 < ICC < 0.9 | 173 (25.1) | 130 (18.9) | 160 (23.3) | 136 (19.8) | 189 (27.5) | 159 (23.1) | 259 (37.6) | 178 (25.9) |
ICC ≤ 0.75 | 98 (14.2) | 93 (13.5) | 91 (13.2) | 98 (14.2) | 104 (15.1) | 117 (17.0) | 134 (19.5) | 110 (16.0) |
All_features (1132) | ||||||||
ICC ≥ 0.9 | 650 (57.4) | 738 (65.2) | 686 (60.6) | 740 (65.4) | 617 (54.5) | 665 (58.7) | 466 (41.2) | 668 (59.0) |
0.75 < ICC < 0.9 | 304 (26.9) | 236 (20.8) | 275 (24.3) | 231 (20.4) | 313 (27.7) | 277 (24.5) | 420 (37.1) | 290 (25.6) |
ICC ≤ 0.75 | 178 (15.7) | 158 (14.0) | 171 (15.1) | 161 (14.2) | 202 (17.8) | 190 (16.8) | 246 (21.7) | 174 (15.4) |
Radiologist | Single Measure ICC (C,1) | Mean of k Measurements ICC (C,K) | |
---|---|---|---|
C | D | 0.505 (0.342~0.638) | 0.671 (0.510~0.779) |
C | E | 0.379 (0.197~0.535) | 0.549 (0.329~0.697) |
C | F | 0.493 (0.329~0.629) | 0.661 (0.495~0.772) |
C | C_AI | 0.505 (0.343~0.638) | 0.671 (0.510~0.779) |
C | D_AI | 0.542 (0.273~0.733) | 0.703 (0.429~0.846) |
C | E_AI | 0.560 (0.409~0.682) | 0.718 (0.580~0.811) |
C | F_AI | 0.486 (0.320~0.623) | 0.654 (0.485~0.768) |
D | E | 0.435 (0.260~0.581) | 0.606 (0.413~0.735) |
D | F | 0.299 (0.108~0.468) | 0.460 (0.196~0.637) |
D | C_AI | 0.502 (0.220~0.706) | 0.668 (0.361~0.827) |
D | D_AI | 0.483(0.324~0.625) | 0.652(0.490~0.770) |
D | E_AI | 0.475 (0.307~0.614) | 0.644 (0.469~0.761) |
D | F_AI | 0.425 (0.249~0.574) | 0.597 (0.399~0.729) |
E | F | 0.396 (0.217~0.550) | 0.568 (0.356~0.710) |
E | C_AI | 0.338 (0.199~0.536) | 0.505 (0.332~0.698) |
E | D_AI | 0.318 (0.199~0.536) | 0.483 (0.332~0.694) |
E | E_AI | 0.306 (0.126~0.481) | 0.468 (0.225~0.650) |
E | F_AI | 0.578 (0.321~0.756) | 0.733 (0.486~0.861) |
F | C_AI | 0.413 (0.258~0.579) | 0.585 (0.410~0.733) |
F | D_AI | 0.431 (0.294~0.605) | 0.602 (0.455~0.754) |
F | E_AI | 0.370 (0.061~0.614) | 0.540 (0.115~0.761) |
F | F_AI | 0.483 (0.328~0.628) | 0.651 (0.493~0.771) |
C_AI | D_AI | 0.861 (0.799~0.904) | 0.925 (0.888~0.950) |
C_AI | E_AI | 0.731 (0.623~0.811) | 0.844 (0.768~0.895) |
C_AI | F_AI | 0.751 (0.651~0.826) | 0.858 (0.788~0.905) |
D_AI | F_AI | 0.757 (0.658~0.830) | 0.862 (0.794~0.907) |
D_AI | E_AI | 0.608 (0.467~0.718) | 0.756 (0.637~0.836) |
F_AI | E_AI | 0.699 (0.583~0.787) | 0.823 (0.736~0.881) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Ma, Z.; Li, H.; Gao, F.; Gao, P.; Yang, N.; Li, D.; Li, M.; Geng, D. Interobserver Agreement in Automatic Segmentation Annotation of Prostate Magnetic Resonance Imaging. Bioengineering 2023, 10, 1340. https://doi.org/10.3390/bioengineering10121340
Jin L, Ma Z, Li H, Gao F, Gao P, Yang N, Li D, Li M, Geng D. Interobserver Agreement in Automatic Segmentation Annotation of Prostate Magnetic Resonance Imaging. Bioengineering. 2023; 10(12):1340. https://doi.org/10.3390/bioengineering10121340
Chicago/Turabian StyleJin, Liang, Zhuangxuan Ma, Haiqing Li, Feng Gao, Pan Gao, Nan Yang, Dechun Li, Ming Li, and Daoying Geng. 2023. "Interobserver Agreement in Automatic Segmentation Annotation of Prostate Magnetic Resonance Imaging" Bioengineering 10, no. 12: 1340. https://doi.org/10.3390/bioengineering10121340
APA StyleJin, L., Ma, Z., Li, H., Gao, F., Gao, P., Yang, N., Li, D., Li, M., & Geng, D. (2023). Interobserver Agreement in Automatic Segmentation Annotation of Prostate Magnetic Resonance Imaging. Bioengineering, 10(12), 1340. https://doi.org/10.3390/bioengineering10121340