On-Site Pilot-Scale Microalgae Cultivation Using Industrial Wastewater for Bioenergy Production: A Case Study towards Circular Bioeconomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Characterization and Aquatic Toxicity Assessment
2.2. Open Raceway Ponds and Operating Conditions
2.3. Sample Analysis
2.4. Extraction and Quantitative Analysis of Algal Oil
2.5. Anaerobic Digestion (AD) Configuration and Biogas Analysis
3. Results and Discussion
3.1. Wastewater Analysis
3.2. Culture Conditions and Areal Biomass Productivity
3.2.1. Seeding the Reactors: Developing a Resilient Consortium
3.2.2. Exploratory Run (ER): Operating Conditions and Performance
3.2.3. Optimized Run (OR): Improving Operating Conditions
3.3. Biomass Harvested from ER and OR
3.4. Oil Content Obtained from ER and OR
3.5. Biochemical Methane Potential (BMP) from ER and OR
3.6. TEA-LCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woertz, I.; Feffer, A.; Lundquist, T.; Nelson, Y. Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock. J. Environ. Eng. 2009, 135, 1115–1122. [Google Scholar] [CrossRef]
- Trivedi, J.; Aila, M.; Bangwal, D.P.; Kaul, S.; Garg, M.O. Algae based biorefinery-How to make sense? Renew. Sustain. Energy Rev. 2015, 47, 295–307. [Google Scholar] [CrossRef]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. 2022, 23, 1–28. [Google Scholar] [CrossRef]
- Greene, C.H.; Huntley, M.E.; Archibald, I.; Gerber, L.N.; Sills, D.L.; Granados, J.; Tester, J.W.; Beal, C.M.; Walsh, M.J.; Bidigare, R.R.; et al. Marine microalgae: Climate, energy, and food security from the sea. Oceanography 2016, 29, 10–15. [Google Scholar] [CrossRef]
- Mishra, S.; Roy, M.; Mohanty, K. Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives. Bioresour. Technol. 2019, 292, 122008. [Google Scholar] [CrossRef] [PubMed]
- Lage, S.; Gojkovic, Z.; Funk, C.; Gentili, F.G. Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy. Energies 2018, 11, 664. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci. Total Environ. 2022, 806, 150585. [Google Scholar] [CrossRef]
- Ali, S.S.; Mastropetros, S.G.; Schagerl, M.; Sakarika, M.; Elsamahy, T.; El-Sheekh, M.; Sun, J.; Kornaros, M. Recent advances in wastewater microalgae-based biofuels production: A state-of-the-art review. Energy Rep. 2022, 8, 13253–13280. [Google Scholar] [CrossRef]
- Wu, M.; McBride, S.; Ha, M. Viability of Reclaiming Municipal Wastewater for Potential Microalgae-Based Biofuel Production in the U.S. Water 2023, 15, 3123. [Google Scholar] [CrossRef]
- Burlew, J. Algal Culture from Laboratory to Pilot Plant. AIBS Bull. 1953, 3, 11. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; Acien-Fernandez, F.G.; Molina-Grima, E. Microalgae research worldwide. Algal Res. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Prinsen, P.; Raheem, A.; Luque, R.; Zhao, M. Sustainability analysis of microalgae production systems—A review on resource with unexploited high-value reserves. Environ. Sci. Technol. 2018, 52, 14031–14049. [Google Scholar] [CrossRef] [PubMed]
- Marousek, J.; Marouskova, A.; Gavurova, B.; Tucek, D.; Strunecký, O. Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresour. Technol. 2023, 374, 128802. [Google Scholar] [CrossRef]
- Torres, A.; Padrino, S.; Brito, A.; Diaz, L. Biogas production from anaerobic digestion of solid microalgae residues generated on different processes of microalgae-to-biofuel production. Biomass Convers. Biorefnery 2021, 13, 4659–4672. [Google Scholar] [CrossRef]
- Dong, L.; Zhenhong, Y.; Yongming, S. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour. Technol. 2010, 101, 2722–2728. [Google Scholar] [CrossRef] [PubMed]
- Klimiuk, E.; Pokoj, T.; Budzynski, W.; Dubis, B. Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour. Technol. 2010, 101, 9527–9535. [Google Scholar] [CrossRef]
- Ward, A.J.; Lewis, D.M.; Green, F.B. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, J.; Zhao, Q.; Laurens, L.; Jarvis, E.; Chen, S.; Frear, C. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour. Technol. 2014, 161, 423–430. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Venkatesh, G. Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021. Circ. Econ. Sustain. 2021, 2, 231–279. [Google Scholar] [CrossRef]
- Mahmud, R.; Moni, S.M.; High, K.; Carbajales-Dale, M. Integration of techno-economic analysis and life cycle assessment for sustainable process design—A review. J. Clean. Prod. 2021, 317, 128247. [Google Scholar] [CrossRef]
- Abraham, J.; Lin, Y.; RoyChowdhury, A.; Christodoulatos, C.; Arienti, P.; Smolinski, B.; Braida, W. Algae toxicological assessment and valorization of energetic-laden wastewater streams using Scenedesmus obliquus. J. Clean. Prod. 2018, 202, 838–845. [Google Scholar] [CrossRef]
- Abraham, J.; Abimbola, T.; RoyChowdhury, A.; Su, T.; Christodoulatos, C.; Kouysospyros, A.; Smolinski, B.; Lawal, A.; Braida, W. On-site freshwater microalgae culture using untreated industrial energetic-laden wastewater at pilot scale. Prot. Restor. Environ. 2020, 15, 521–530. [Google Scholar]
- U.S. Environmental Protection Agency. Method 8330B: Nitroaromatics, Nitramines, and Nitrates Esters by High Performance Liquid Chromatography (HPLC); U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- APHA-AWWA-WEF 2005; Standard Methods for the Examination of Water and Wastewater, 21th ed. New York, Total Solids Suspended, Method 2540 D, 2-55 a 2-565 59. American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Environment Federation: Washington, DC, USA, 2005.
- Knoshaug, E.; Laurens, L.; Kinchin, C.; Davi, R. Use of Cultivation Data from the Algae Testbed Public Private Partnership as Utilized in NREL’s Algae State of Technology Assessments; Technical Report NREL/TP-5100-67289; National Renewable Energy Laboratory: Golden, CO, USA, 2018.
- RoyChowdhury, A.; Abraham, J.; Abimbola, T.; Lin, Y.; Christodoulatos, C.; Lawal, A.; Koutsospyros, A.; Braida, W. Assessing oil content of microalgae grown in industrial energetic-laden wastewater. Environ. Process 2019, 6, 969–983. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Hayman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Biomass and Total Dissolved Solids in Liquid Process Samples; National Renewable Energy Laboratory (NREL) Technical Report, NREL/TP-510-42621; National Renewable Energy Laboratory: Golden, CO, USA, 2018.
- Abimbola, T.; Christodoulatos, C.; Lawal, A. Performance and optimization studies of oil extraction from Nannochloropsis spp. and Scenedesmus obliquus. J. Clean. Prod. 2021, 311, 127295. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Fernández, E.; Galván, A.; Quesada, A. Nitrogen assimilation and its regulation. In The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas; Govindjee, Ed.; Advances in Photsynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2004; Volume 7, pp. 637–659. [Google Scholar]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef]
- Hena, S.; Fatimah, S.; Tabassum, S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour. Ind. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Song, A.; Huang, Y.; Liao, Q.; Xia, A.; Zhu, X.; Zhu, X. Domesticating Chlorella vulgaris with gradually increased the concentration of digested piggery wastewater to bio-remove ammonia nitrogen. Algal Res. 2021, 60, 102526. [Google Scholar] [CrossRef]
- Lammers, P.J.; Huesemann, M.; Boeing, W.; Anderson, D.B.; Arnold, R.G.; Bai, X.; Bhole, M.; Brhanavan, Y.; Brown, L.; Brown, J.; et al. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res. 2017, 22, 166–186. [Google Scholar] [CrossRef]
- Lürling, M. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann. Limnol. Int. J. Lim. 2009, 39, 85–101. [Google Scholar] [CrossRef]
- Singh, S.P.; Priyanka, S. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Eustance, E.; Gardner, R.D.; Moll, K.M.; Menicucci, J.; Gerlach, R.; Peyton, B.M. Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea. J. Appl. Phycol. 2013, 25, 1663–1677. [Google Scholar] [CrossRef]
- Abraham, J.; Prigiobbe, V.; Abimbola, T.; Christodoulatos, C. Integrating biological and chemical CO2 sequestration using green microalgae for bioproducts generation. Front. Clim. 2022, 4, 949411. [Google Scholar] [CrossRef]
- McGowen, J.; Knoshaug, E.P.; Lauren, L.M.L.; Dempster, T.A.; Pienkos, P.T.; Wolfrum, E.; Harmon, V.L. The Algae Testbed Public-Private Partnership (ATP3) framework; establishment of a national network of testbed sites to support sustainable algae production. Algal Res. 2017, 25, 168–177. [Google Scholar] [CrossRef]
- Morillas-España, A.; Lafarga, T.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Rodríguez-Miranda, E.; Gómez-Serrano, C.; González-López, C.V. Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: Assessment of biomass productivity and nutrient recovery capacity. Algal Res. 2021, 60, 102500. [Google Scholar] [CrossRef]
- Gardner, R.; Peters, P.; Peyton, B.; Cooksey, K. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J. Appl. Phycol. 2011, 26, 1005–1016. [Google Scholar] [CrossRef]
- Kamalanathan, M.; Pierangelini, M.; Shearman, L.A.; Gleadow, R.; Beardall, J. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J. Appl. Phycol. 2016, 28, 1509–1520. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Moheimani, N.R. Algae for Biofuels and Energy; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Ishika, T.; Nwoba, E.G.; Kwambai, C.; Moheimani, N.R. How harvesting frequency influence the biomass and lipid productivities of Nannochloropsis sp. Algal Res. 2021, 53, 102074. [Google Scholar] [CrossRef]
- Vargas, M.A.; Rodriguez, H.; Moreno, J.; Olivares, J.; Del Campo, A.; Rivas, J.; Guerrero, M.G. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. J. Phycol. 1998, 34, 812–817. [Google Scholar] [CrossRef]
- Praveenkumar, R.; Johncy, K.; MubarakAli, D.; Vijayan, D.; Thajuddin, N.; Gunasekaran, M. Demonstration of Increased Lipid Accumulation Potential of Stigeoclonium sp., Kütz. BUM11007 under Nitrogen Starved Regime: A New Source of Lipids for Biodiesel Production. J. Biobased Mater. Bioenergy 2012, 6, 209–213. [Google Scholar] [CrossRef]
- Mai, A.; Terracciano, A.; Abraham, J.; RoyChowdhury, A.; Koutsospyros, A.; Su, T.; Braida, W.; Christodoulatos, C.; Smolinski, B. PREXV: Generation of biofuel from anaerobic digestion of S. obliquus grown in energetic-laden industrial wastewater: Understanding microalga strains, co-digestants, and digestate toxicity. Environ. Prog. Sustain. Energy 2022, 41, e13801. [Google Scholar] [CrossRef]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C.W. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef] [PubMed]
- Woertz, I.C.; Benemann, J.R.; Du, N.; Unnasch, S.; Mendola, D.; Mitchell, B.G.; Lundquist, T.J. Life Cycle GHG Emissions from Microalgal Biodiesel—A CA-GREET Model. Environ. Sci Technol. 2014, 48, 6060–6068. [Google Scholar] [CrossRef]
- Davis, R.; Markham, J.; Kinchin, C.; Grundl, N.; Tan, E.C.; Humbird, D. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion; Technical Report NREL/TP-5100-64772; National Renewable Energy Laboratory: Golden, CO, USA, 2016. [CrossRef]
- U.S. Energy Information Administration. Available online: https://www.eia.gov/dnav/ng/hist/n3035tn3m.htm (accessed on 10 July 2023).
Run | N from AN Solution (mg N/L) | Nitrate Supplement (mg N/L) | Sparge CO2 | Na2CO3 Addition | Harvest Period | Harvest Included | Volume Recycled (L) |
---|---|---|---|---|---|---|---|
ER—low N | 14–30 | 70 | Yes | No | 1 or 2 weeks | 1H to 8H | 0 |
ER—high N | 40–100 | 70–100 | No | Yes | 1 or 2 weeks | 9H to 13H | 0 |
OR—low N | 70–80 | 0 | Yes | No | <1 week (3–5 days) | 1H to 7H | 400 |
Wastewater Name | TC mg C/L | TOC mg C/L | TN mg N/L | NO3-N mg N/L | NH3-N mg N/L | Amines—N mg N/L | pH |
---|---|---|---|---|---|---|---|
IWWPI | 114 | 49.6 | 8.65 | 1.56 | 7.1 | - | 6.76 |
(77–178) | (15–83) | (4–11) | (0.2–4) | (3.7–11.2) | (6–7) | ||
AN | 35,975 | 29,900 | 141,705 | 72,096 | 38,888 | 30,721 | 6.05 |
Serial Dilutions AN | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TN, mg N/L | 50 | 101 | 126 | 202 | 252 | 303 | 403 | 504 | 756 | 1008 | 1523 | 2017 | |
NH4-N, mg N/L | 16 | 31 | 39 | 62 | 78 | 93 | 124 | 156 | 233 | 311 | 467 | 622 | |
NO3−-N, mg N/L | 23 | 45 | 56 | 90 | 113 | 135 | 181 | 226 | 339 | 452 | 677 | 903 | |
Amines—N, mg N/L | 12 | 25 | 31 | 49 | 61 | 74 | 98 | 123 | 184 | 246 | 369 | 492 | |
µ, d−1 | 0.75 | 0.73 | 0.70 | 0.73 | 0.69 | 0.71 | 0.68 | 0.68 | 0.68 | 0.62 | 0 | 0 | |
Inh, % | 0 | 0.83 | 3.45 | 0.82 | 4.55 | 2.51 | 6.78 | 6.92 | 5.28 | 14.27 | 100 | 100 |
Total Period | Spring | Summer | Fall | |
---|---|---|---|---|
Average temperature | 26.8 ± 0.3 | 26.0 ± 0.3 | 28.8 ± 0.2 | 23.6 ± 0.2 |
Max day temperature | 50.0 ± 0.4 | 39 ± 3 | 50.0 ± 0.4 | 44 ± 3 |
Min night temperature | 12.4 ± 0.4 | 15.3 ± 0.4 | 19.9 ± 0.4 | 12.4 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abraham, J.; Abimbola, T.; Braida, W.J.; Terracciano, A.; Su, T.-L.; Christodoulatos, C.; Koutsospyros, A.; RoyChowdhury, A.; Smolinski, B.; Lawal, A. On-Site Pilot-Scale Microalgae Cultivation Using Industrial Wastewater for Bioenergy Production: A Case Study towards Circular Bioeconomy. Bioengineering 2023, 10, 1339. https://doi.org/10.3390/bioengineering10121339
Abraham J, Abimbola T, Braida WJ, Terracciano A, Su T-L, Christodoulatos C, Koutsospyros A, RoyChowdhury A, Smolinski B, Lawal A. On-Site Pilot-Scale Microalgae Cultivation Using Industrial Wastewater for Bioenergy Production: A Case Study towards Circular Bioeconomy. Bioengineering. 2023; 10(12):1339. https://doi.org/10.3390/bioengineering10121339
Chicago/Turabian StyleAbraham, Juliana, Tobi Abimbola, Washington J. Braida, Amalia Terracciano, Tsan-Liang Su, Christos Christodoulatos, Agamemnon Koutsospyros, Abhishek RoyChowdhury, Benjamin Smolinski, and Adeniyi Lawal. 2023. "On-Site Pilot-Scale Microalgae Cultivation Using Industrial Wastewater for Bioenergy Production: A Case Study towards Circular Bioeconomy" Bioengineering 10, no. 12: 1339. https://doi.org/10.3390/bioengineering10121339
APA StyleAbraham, J., Abimbola, T., Braida, W. J., Terracciano, A., Su, T. -L., Christodoulatos, C., Koutsospyros, A., RoyChowdhury, A., Smolinski, B., & Lawal, A. (2023). On-Site Pilot-Scale Microalgae Cultivation Using Industrial Wastewater for Bioenergy Production: A Case Study towards Circular Bioeconomy. Bioengineering, 10(12), 1339. https://doi.org/10.3390/bioengineering10121339