Validation of Soil Survey Estimates of Saturated Hydraulic Conductivity in Major Soils of Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Project Area
2.2. Experimental Techniques
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lane, L.J.; Nearing, M.A. (Eds.) USDA-Water Erosion Prediction Project: Hillslope Profile Model Documentation; NSERL Report No. 2; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1989. [Google Scholar]
- Hillel, D. Environmental Soil Physics; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Sharma, V. Fundamentals of Soil and Water Conservation Engineering; Academic Publications: Rohini, India, 2019. [Google Scholar]
- Soil Survey Staff. National Engineering Handbook, 2nd ed.; USDA-NRCS: Washington, DC, USA, 1991. [Google Scholar]
- Soil Survey Staff. National Handbook for Conservation Practices; 450-NHCP; USDA-NRCS: Washington, DC, USA, 2019. [Google Scholar]
- Mitchell, D. Fundamentals of Soil Behavior; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Das, B.M.; Sobhan, K. Principles of Geotechnical Engineering; Cengage: Stamford, CT, USA, 2014. [Google Scholar]
- Warrick, A.W.; Nielsen, D.R. Spatial variability of soil physical properties in the field. In Applications of Soil Physics; Hilell, D., Ed.; Academic Press: Toronto, ON, Canada, 1980; pp. 319–344. [Google Scholar]
- Warrick, A.W. Spatial variability. In Environmental Soil Physics; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Gupta, N.; Rudra, R.P.; Parkin, G. Analysis of spatial variability of hydraulic conductivity at field scale. Can. Biosyst. Eng. 2006, 48, 1.55–1.62. [Google Scholar]
- Snyder, V.A.; Rivadeneira, J.; Lugo, H.M. Temporal changes in soil structure and hydraulic properties in the plow layer of an Oxisol (Orthic Ferralsol) following tillage. Adv. Geoecol. 2000, 32, 314–324. [Google Scholar]
- Rienzner, M.; Gandolfi, C. Investigation of spatial and temporal variabilityof saturated soil hydraulic conductivity at the field scale. Soil Tillage Res. 2014, 135, 28–40. [Google Scholar] [CrossRef]
- O’Neil, A.M. Some characteristics significant in evaluating permeability. Soil Sci. 1949, 67, 403–409. [Google Scholar] [CrossRef]
- O’Neil, A.M. A key for evaluating soil permeability by means of certain field clues. Soil Sci. Soc. Am. Proc. 1952, 16, 312–315. [Google Scholar]
- McKeague, J.A.; Wang, C.; Topp, G.C. Estimating Saturated Hydraulic conductivity from soil morphology. Soil Sci. Soc. Am. J. 1982, 46, 1239–1244. [Google Scholar] [CrossRef]
- Bouma, J. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 1989, 9, 177–213. [Google Scholar]
- Sobieraj, J.A.; Elsenbeer, H.; Vertessy, R.A. Pedotransfer functions for estimating saturated hydraulic conductivity: Implications for modeling storm flow generation. J. Hydrol. 2001, 251, 202–220. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Rawls, W.J. (Eds.) Development of pedotransfer functions in soil hydrology. In Developments in Soil Science 30; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Abdelbaki, A.M.; Youssef, M.; Naquib, E.; Kiwan, M.; El-giddawi, E. Evaluation of Pedotransfer Functions for Predicting Unsaturated Hydraulic Condictivity for U.S. Soils. In Proceedings of the ASABE Annual Meetings, Reno, NV, USA, 21–24 June 2009. [Google Scholar]
- Gootman, K.S.; Kellner, E.; Hubbart, J.A. A comparison and validation of saturated hydraulic conductivity models. Water 2020, 12, 2040. [Google Scholar] [CrossRef]
- Gupta, S.; Hengl, T.; Lehmann, P.; Bonetti, S.; Or, D. SoilKsatDB: Global soil saturated hydraulic conductivity measurements for geoscience applications. Earth Syst. Sci. Data 2020. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service, U.S. Department of Agriculture. National Soil Survey Handbook, Title 430-VI. 3 June. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242 (accessed on 3 June 2020).
- Pachepsky, Y.; Park, Y. Saturated hydraulic conductivity of U.S. soils grouped according to textural class and bulk density. Soil Sci. Soc. Am. J. 2015, 79. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends from Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E.; Youngs, E.G. Ring or cylinder infiltrometers (vadose zone). In Methods of Soil Analysis. Part 4. Physical Methods; Dane, J., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E. Constant head well permeameter (vadose zone). In Methods of Soil Analysis. Part 4. Physical Methods; Dane, J., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar]
- Rayne, T.W.; Bradbury, K.; Mickelson, D. Variability of Hydraulic Conductivity in Uniform Sandy Till, Dane County, Wisconsin; Wisconsin Geological and Natural History Survey, Information Circular 74: Madison, WI, USA, 1996. [Google Scholar]
- Kargas, G.; Londra, P.A.; Sotirakoglou, K. Saturated hydraulic conductivity measurements in a loam soil covered by native vegetation: Spatial and temporal variability in the upper soil layer. Geosciences 2021, 11, 105. [Google Scholar] [CrossRef]
- Lugo-López, M.A.; Juárez, J.; Bonnet, J. Relative infiltration rates of Puerto Rican soils. J. Agric. Univ. P. R. 1968, 52, 233–240. [Google Scholar]
Saturated Hydraulic Conductivity Range (µm/s) | Range of Log Ksat Values | Description of Saturated Hydraulic Conductivity Class |
---|---|---|
<0.01 | <−2 | Very low |
0.01–0.1 | −1 to −2 | Low |
0.1–1.0 | 0 to −1 | Moderately low |
1.0–10 | 0 to 1 | Moderately high |
10–100 | 1 to 2 | High |
>100 | >2 | Very high |
Soil Series | Classification according to USDA Soil Taxonomy and Approximate WRB Reference Soil Group |
---|---|
Aceitunas | Fine, kaolinitic, isohyperthermic Typic Paleudults WRB reference soil group: Alisols |
Bahía | Mixed, kaolinitic, isohyperthermic Typic Paleargids WRB reference soil group: Planosols |
Bayamón | Very-fine, kaolinitic, isohyperthermic Typic Hapludox WRB reference soil group Ferrasols |
Coto | Very-fine, kaolinitic, isohyperthermic Typic Eutrustox WRB reference soil group Ferrasols |
Descalabrado | Clayey, mixed, superactive, isohyperthermic, shallow Typic Haplustolls WRB reference soil group: Kastonozem |
Fraternidad | Fine, smectitic, isohyperthermicTypic Haplusterts WRB reference soil group: Vertisols |
Humatas | Very-fine, parasesquic, isohyperthermic Typic Haplohumults WRB reference soil group: Alisols |
Nipe | Very-fine, ferruginous, isohyperthermic Anionic Acrudox WRB reference soil group: Ferrasols |
Pandura | Coarse-loamy, mixed, active, isohyperthermic, shallow Dystric Eutrudepts WRB reference soil group Cambisols |
Toa | Fine, mixed, active, isohyperthermic Fluvaquentic Hapludolls WRB reference soil group Phaeozems |
Soil Series | Pedon ID | Latitude | Longitude |
---|---|---|---|
Aceitunas | S09PR005-001 | 18°26′04″ N | 67°07′06.8″ W |
Bahía | S81PR007-001 | 17°58′12.0″ N | 67°11′43.0″ W |
Bayamón | S63PR143-001 | 18°25′48″ N | 66°18′15″ W |
Coto | S82PR071-001 | 18°27′53″ N | 67°03′19″ W |
Descalabrado | S61PR121-002 | 18°02′39″ N | 66°59′00″ W |
Fraternidad | S61PR079-001 | 18°00′58.0″ N | 67°04′26.0″ W |
Humatas | S94PR097-001 | 18°12′40″ N | 67°08′00″ W |
Nipe | S57PR097-001 | 18°11′11.0″ N | 67°06′35.0″ W |
Pandura | S09PR129-001 | 18°07′17.2″ N | 65°57′35.8″ W |
Toa | S63PR067-001 | 18°07′32.0″ N | 67°06′36.0″ W |
Texture–Structure Category | λ * (cm) |
---|---|
Compacted, structureless, clayey, or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. | 100 |
Most structured and medium textured materials; include structured clayey and loamy soils, as well as unstructured medium sands. This category is generally the most appropriate for agricultural soils. | 25 |
Soils that are both fine textured and massive; include unstructured clayey and silty soils, as well as structureless sandy materials. | 8 |
Coarse and gravelly sands; may also include some highly structured soils with large numerous cracks and biopores. | 3 |
Soil Horizon | Group 1 | N2 | Rated Ksat Class (μm/s) | |||||
---|---|---|---|---|---|---|---|---|
Bahia Bt | a | 9 | 10–100 | 591.56 | 1.46 | 404.58 | 864.97 | 2.14 |
Bahia Ap | ab | 9 | 10–100 | 117.95 | 1.51 | 77.62 | 176.2 | 2.27 |
Coto Bo | bc | 16 | 1–10 | 36.73 | 1.94 | 18.97 | 71.12 | 3.75 |
Toa Ap | c | 12 | 1–10 | 27.35 | 4.27 | 6.41 | 116.68 | 18.2 |
Pandura Bw | c | 12 | 10–100 | 21.09 | 1.86 | 11.35 | 39.17 | 3.45 |
Aceituna Ap | c | 16 | 1–10 | 20.18 | 2.48 | 8.13 | 50.12 | 6.16 |
Humatas Ap | c | 16 | 0.1–1 | 19.86 | 2.67 | 7.45 | 52.97 | 7.11 |
Bayamon Bo | c | 16 | 1–10 | 17.41 | 2.83 | 6.15 | 49.32 | 8.02 |
Nipe Ap | c | 16 | 1–10 | 17.17 | 2.75 | 6.24 | 47.1 | 7.64 |
Nipe Bo | cd | 16 | 1–10 | 11.67 | 3.13 | 3.73 | 36.48 | 9.78 |
Humatas Bt | cd | 16 | 0.1–1 | 10.96 | 3.52 | 3.11 | 38.64 | 12.42 |
Aceituna Bt | d | 16 | 1–10 | 3.74 | 1.49 | 2.51 | 5.58 | 2.22 |
Descalabrado Ap | e | 16 | 0.1–1 | 0.64 | 4.81 | 0.13 | 3.07 | 23.62 |
Fraternidad Ap | e | 16 | 0.1–1 | 0.57 | 4.86 | 0.12 | 2.77 | 23.08 |
Soil Series | Expected | Higher Ksat by | Lower Ksat by | ||
---|---|---|---|---|---|
Ksat Category | One Category | Two Categories | One Category | Two Categories | |
Aceituna Ap | 0.25 | 0.75 | - | - | - |
Aceituna Bt | 1.00 | - | - | - | - |
Bahia Ap | 0.22 | 0.78 | - | - | - |
Bahia Bt | 0.89 | 0.11 | - | - | - |
Bayamon Bo | 0.25 | 0.75 | - | - | - |
Coto Bo | 0.82 | 0.06 | 0.06 | 0.06 | - |
Descalabrado Ap | 0.50 | 0.50 | - | - | - |
Fraternidad Ap | 0.50 | 0.38 | 0.13 | - | - |
HumatasAp | 0.06 | 0.25 | 0.69 | - | - |
HumatasBt | 0.00 | 0.44 | 0.56 | - | - |
Nipe Ap | 0.38 | 0.56 | - | 0.06 | - |
Nipe Bo | 0.38 | 0.62 | - | - | - |
Pandura Bw | 0.92 | 0.08 | - | - | - |
Toa Ap | 0.33 | 0.50 | 0.17 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juliá, F.E.; Snyder, V.A.; Vázquez, M.A. Validation of Soil Survey Estimates of Saturated Hydraulic Conductivity in Major Soils of Puerto Rico. Hydrology 2021, 8, 94. https://doi.org/10.3390/hydrology8030094
Juliá FE, Snyder VA, Vázquez MA. Validation of Soil Survey Estimates of Saturated Hydraulic Conductivity in Major Soils of Puerto Rico. Hydrology. 2021; 8(3):94. https://doi.org/10.3390/hydrology8030094
Chicago/Turabian StyleJuliá, Fernando E., Victor A. Snyder, and Miguel A. Vázquez. 2021. "Validation of Soil Survey Estimates of Saturated Hydraulic Conductivity in Major Soils of Puerto Rico" Hydrology 8, no. 3: 94. https://doi.org/10.3390/hydrology8030094
APA StyleJuliá, F. E., Snyder, V. A., & Vázquez, M. A. (2021). Validation of Soil Survey Estimates of Saturated Hydraulic Conductivity in Major Soils of Puerto Rico. Hydrology, 8(3), 94. https://doi.org/10.3390/hydrology8030094