Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Hydrological Measurements and Analysis
2.4. Statistical Treatment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fernandes, P.; Davies, G.; Ascoli, D.; Fernández Filgueira, C.; Moreira, F.; Rigolot, E.; Stoof, C.; Vega, J.; Molina Terrén, D. Fire ecology—Cape fynbos biome. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef] [Green Version]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire Effects on Belowground Sustainability: A Review and Synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Moya, D.; Alfaro-Sánchez, R.; González-Romero, J.; De las Heras, J. Changes in Soil Water Repellency after Prescribed Burnings in Three Different Mediterranean Forest Ecosystems. Sci. Total Environ. 2018, 644, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, X.; Badía, D.; Pereira, P. Prescribed fires (editorial). Sci. Total Environ. 2018, 637–638, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Alfaro-Sánchez, R.; Zema, D.A.; Moya, D.; de Las Heras, J. Short-Term Effects of Prescribed Burning in Mediterranean Pine Plantations on Surface Runoff, Soil Erosion and Water Quality of Runoff. Sci. Total Environ. 2019, 674, 615–622. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Zema, D.A.; González-Romero, J.; Moya, D.; De las Heras, J. Changes in Soil Hydraulic Conductivity after Prescribed Fires in Mediterranean Pine Forests. J. Environ. Manag. 2019, 232, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Neary, D.G.; Leonard, J.M. Restoring fire to forests: Contrasting the effects on soils of prescribed fire and wildfire. In Soils and Landscape Restoration; Elsevier: Amsterdam, The Netherlands, 2021; pp. 333–355. [Google Scholar]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface Runoff and Erosion after Prescribed Burning and the Effect of Different Fire Regimes in Forests and Shrublands: A Review. Int. J. Wildland Fire 2012, 21, 857–872. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X. Prescribed Fire Management. Curr. Opin. Environ. Sci. Health 2021, 21, 100250. [Google Scholar] [CrossRef]
- Cawson, J.G.; Nyman, P.; Smith, H.G.; Lane, P.N.; Sheridan, G.J. How Soil Temperatures during Prescribed Burning Affect Soil Water Repellency, Infiltration and Erosion. Geoderma 2016, 278, 12–22. [Google Scholar] [CrossRef]
- González-Pelayo, O.; Gimeno-García, E.; Ferreira, C.S.S.; Ferreira, A.J.D.; Keizer, J.J.; Andreu, V.; Rubio, J.L. Water Repellency of Air-Dried and Sieved Samples from Limestone Soils in Central Portugal Collected before and after Prescribed Fire. Plant Soil 2015, 394, 199–214. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-Fire Soil Management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- González-Pelayo, O.; Andreu, V.; Gimeno-García, E.; Campo, J.; Rubio, J.L. Rainfall Influence on Plot-Scale Runoff and Soil Loss from Repeated Burning in a Mediterranean-Shrub Ecosystem, Valencia, Spain. Geomorphology 2010, 118, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Vega, J.A.; Fernández, C.; Fonturbel, T. Throughfall, Runoff and Soil Erosion after Prescribed Burning in Gorse Shrubland in -Galicia (NW Spain). Land Degrad. Dev. 2005, 16, 37–51. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Effects of Fire Severity and Burn Patchiness on Hillslope-Scale Surface Runoff, Erosion and Hydrologic Connectivity in a Prescribed Burn. For. Ecol. Manag. 2013, 310, 219–233. [Google Scholar] [CrossRef]
- Coelho, C.d.A.; Ferreira, A.J.D.; Boulet, A.-K.; Keizer, J.J. Overland Flow Generation Processes, Erosion Yields and Solute Loss Following Different Intensity Fires. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 233–240. [Google Scholar] [CrossRef]
- de Dios Benavides-Solorio, J.; MacDonald, L.H. Measurement and Prediction of Post-Fire Erosion at the Hillslope Scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.H.; Bradstock, R.A.; Dragovich, D.; Henderson, M.K.; Penman, T.D.; Ostendorf, B.; Morris, R.H.; Bradstock, R.A.; Dragovich, D.; Henderson, M.K.; et al. Environmental Assessment of Erosion Following Prescribed Burning in the Mount Lofty Ranges, Australia. Int. J. Wildland Fire 2013, 23, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Zema, D.A. Post-Fire Management Impacts on Soil Hydrology. Curr. Opin. Environ. Sci. Health 2021, 100252. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire Effects on Infiltration Rates after Prescribed Fire in Northern Rocky Mountain Forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Bento, C.P.; Ferreira, C.S.; Ferreira, A.J.; Stoof, C.R.; Urbanek, E.; Walsh, R.P. Impacts of Prescribed Fire on Soil Loss and Soil Quality: An Assessment Based on an Experimentally-Burned Catchment in Central Portugal. Catena 2015, 128, 278–293. [Google Scholar] [CrossRef]
- Fortugno, D.; Boix-Fayos, C.; Bombino, G.; Denisi, P.; Quinonero Rubio, J.M.; Tamburino, V.; Zema, D.A. Adjustments in Channel Morphology Due to Land-use Changes and Check Dam Installation in Mountain Torrents of Calabria (Southern Italy). Earth Surf. Process. Landf. 2017, 42, 2469–2483. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-Term Changes in Infiltration between Straw Mulched and Non-Mulched Soils after Wildfire in Mediterranean Forest Ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Doerr, S.H. Soil Wettability, Runoff and Erodibility of Major Dry-Mediterranean Land Use Types on Calcareous Soils. Hydrol. Process. An. Int. J. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- Huffman, E.L.; MacDonald, L.H.; Stednick, J.D. Strength and Persistence of Fire-induced Soil Hydrophobicity under Ponderosa and Lodgepole Pine, Colorado Front Range. Hydrol. Process. 2001, 15, 2877–2892. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Blake, W.H.; Chafer, C.J.; Humphreys, G.S.; Wallbrink, P.J. Effects of Differing Wildfire Severities on Soil Wettability and Implications for Hydrological Response. J. Hydrol. 2006, 319, 295–311. [Google Scholar] [CrossRef]
- Wittenberg, L.; Malkinson, D. Spatio-Temporal Perspectives of Forest Fires Regimes in a Maturing Mediterranean Mixed Pine Landscape. Eur. J. For. Res. 2009, 128, 297–304. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. The Effect of Ash and Needle Cover on Surface Runoff and Erosion in the Immediate Post-Fire Period. Catena 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Onda, Y.; Dietrich, W.E.; Booker, F. Evolution of Overland Flow after a Severe Forest Fire, Point Reyes, California. Catena 2008, 72, 13–20. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Maroulis, J.; Argaman, E.; Voogt, A.; Wittenberg, L. Effects of Controlled Fire on Hydrology and Erosion under Simulated Rainfall. Cuad. De Investig. Geográfica 2014, 40, 269–294. [Google Scholar] [CrossRef] [Green Version]
- Zema, D.A.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Influence of Forest Stand Age on Soil Water Repellency and Hydraulic Conductivity in the Mediterranean Environment. Sci. Total Environ. 2021, 753, 142006. [Google Scholar] [CrossRef] [PubMed]
- Zema, D.A.; Stan, J.T.V.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Effects of Stand Composition and Soil Properties on Water Repellency and Hydraulic Conductivity in Mediterranean Forests. Ecohydrology 2021, 14, e2276. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E. Efficiency of Post-Fire Hillslope Management Strategies: Gaps of Knowledge. Curr. Opin. Environ. Sci. Health 2021, 100247. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching Practices for Reducing Soil Water Erosion: A Review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Brown, R.E.; Bone, E.D.; Brooks, E.S. Evaluating Post-wildfire Logging-slash Cover Treatment to Reduce Hillslope Erosion after Salvage Logging Using Ground Measurements and Remote Sensing. Hydrol. Process. 2020, 34, 4431–4445. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A.; Úbeda, X.; Martin, D. Fire and Soils: Key Concepts and Recent Advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- Bombino, G.; Zema, D.A.; Denisi, P.; Lucas-Borja, M.E.; Labate, A.; Zimbone, S.M. Assessment of Riparian Vegetation Characteristics in Mediterranean Headwaters Regulated by Check Dams Using Multivariate Statistical Techniques. Sci. Total Environ. 2019, 657, 597–607. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 259–263. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernández, C.; Fonturbel, T.; Gonzalez-Prieto, S.; Jiménez, E. Testing the Effects of Straw Mulching and Herb Seeding on Soil Erosion after Fire in a Gorse Shrubland. Geoderma 2014, 223, 79–87. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C. European Small Portable Rainfall Simulators: A Comparison of Rainfall Characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Hlavčová, K.; Danáčová, M.; Kohnová, S.; Szolgay, J.; Valent, P.; Výleta, R. Estimating the Effectiveness of Crop Management on Reducing Flood Risk and Sediment Transport on Hilly Agricultural Land–A Myjava Case Study, Slovakia. Catena 2019, 172, 678–690. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Woudt, B.D. van’t Particle Coatings Affecting the Wettability of Soils. J. Geophys. Res. 1959, 64, 263–267. [Google Scholar] [CrossRef]
- Letey, J. Measurement of Contact Angle, Water Drop Penetration Time and Critical Surface Tension. In Water-Repellent Soils; DeBano, L.F., Letey, J., Eds.; University of California: Oakland, CA, USA, 1969; pp. 43–47. [Google Scholar]
- Bisdom, E.B.A.; Dekker, L.W.; Schoute, J.F.T. Water Repellency of Sieve Fractions from Sandy Soils and Relationships with Organic Material and Soil Structure. Geoderma 1993, 56, 105–118. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. How Water Moves in a Water Repellent Sandy Soil: 1. Potential and Actual Water Repellency. Water Resour. Res. 1994, 30, 2507–2517. [Google Scholar] [CrossRef]
- Alagna, V.; Iovino, M.; Bagarello, V.C. 5. Impact of Reforestations with Exotic and Native Species on Water Repellency of Forest Soils. In Proceedings of the 11th International AIIA Conference, Bari, Italy, 5–8 July 2017. [Google Scholar]
- De Jonge, L.W.; Jacobsen, O.H.; Moldrup, P. Soil Water Repellency: Effects of Water Content, Temperature, and Particle Size. Soil Sci. Soc. Am. J. 1999, 63, 437–442. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Balfour, V.; Woods, S.W. Does Wildfire Ash Block Soil Pores? A Micromorphological Analysis of Burned Soils. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 10–14 December 2007; p. H43F-1695. [Google Scholar]
- Granged, A.J.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-Term Effects of Experimental Fire for a Soil under Eucalyptus Forest (SE Australia). Geoderma 2011, 167, 125–134. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Moffet, C.A.; Spaeth, K.E.; Williams, C.J.; Hardegree, S.P.; Clark, P.E. Soil Water Repellency and Infiltration in Coarse-Textured Soils of Burned and Unburned Sagebrush Ecosystems. Catena 2008, 74, 98–108. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Fonturbel, T.; Jiménez, E.; Pérez, J.R. Immediate Effects of Prescribed Burning, Chopping and Clearing on Runoff, Infiltration and Erosion in a Shrubland Area in Galicia (NW Spain). Land Degrad. Dev. 2008, 19, 502–515. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R. Soil Water Repellency: Its Causes, Characteristics and Hydro-Geomorphological Significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Doerr, S.H.; Ferreira, A.J.D.; Walsh, R.P.D.; Shakesby, R.A.; Leighton-Boyce, G.; Coelho, C.O.A. Soil Water Repellency as a Potential Parameter in Rainfall-runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrol. Process. 2003, 17, 363–377. [Google Scholar] [CrossRef]
- Morales, H.A.; Návar, J.; Domínguez, P.A. The Effect of Prescribed Burning on Surface Runoff in a Pine Forest Stand of Chihuahua, Mexico. For. Ecol. Manag. 2000, 137, 199–207. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Fernández, C.; Vega, J.A.; Keizer, J.J. Does Soil Burn Severity Affect the Post-Fire Runoff and Interrill Erosion Response? A Review Based on Meta-Analysis of Field Rainfall Simulation Data. J. Hydrol. 2015, 523, 452–464. [Google Scholar] [CrossRef]
- Hooke, J. Coarse Sediment Connectivity in River Channel Systems: A Conceptual Framework and Methodology. Geomorphology 2003, 56, 79–94. [Google Scholar] [CrossRef]
Species | Time after Fire (Days) | Soil Condition | ||
---|---|---|---|---|
Unburned | Burned | Burned and Mulched | ||
Runoff (mm) | ||||
Chestnut | 1 | 0.44 ± 0.07 a | 0.60 ± 0.11 a | 0.29 ± 0.17 a |
365 | 0.40 ± 0.24 a | 0.56 ± 0.05 a | 0.49 ± 0.12 a | |
Pine | 1 | 0.33 ± 1.00 a | 0.35 ± 0.03 a | 0.36 ± 0.01 a |
365 | 0.41 ± 0.26 a | 0.64 ± 0.57 a | 0.65 ± 0.19 a | |
Oak | 1 | 0.54 ± 0.40 ab | 1.21 ± 0.00 c | 1.06 ± 0.30 a |
365 | 0.63 ± 0.06 ab | 0.65 ± 0.02 bc | 0.61 ± 0.05 bc | |
Peak flow (mm h−1) | ||||
Chestnut | 1 | 11.46 ± 0.85 a | 12.06 ± 0.01 a | 6.03 ± 5.12 b |
365 | 11.66 ± 5.70 a | 12.86 ± 2.41 a | 12.46 ± 3.04 a | |
Pine | 1 | 9.55 ± 0.28 a | 8.44 ± 1.84 a | 10.85 ± 10.23 a |
365 | 8.44 ± 1.65 a | 15.68 ± 19.61 b | 16.28 ± 1.21 b | |
Oak | 1 | 24.52 ± 5.57 a | 27.34 ± 5.12 a | 20.10 ± 3.48 a |
365 | 13.67 ± 4.18 b | 17.49 ± 0.70 b | 13.22 ± 3.04 b | |
Time to peak (s) | ||||
Chestnut | 1 | 120 ± 60 a | 60 ± 30 a | 150 ± 30 b |
365 | 90 ± 7.67 a | 60 ± 30 a | 90 ± 0 a | |
Pine | 1 | 120 ± 30 a | 150 ± 30 b | 120 ± 60 a |
365 | 120 ± 30 a | 60 ± 60 c | 90 ± 0 a | |
Oak | 1 | 90 ± 0 a | 90 ± 0 a | 115 ± 30 a |
365 | 120 ± 15 b | 60 ± 15 c | 120 ± 30 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrà, B.G.; Bombino, G.; Denisi, P.; Plaza-Àlvarez, P.A.; Lucas-Borja, M.E.; Zema, D.A. Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology 2021, 8, 95. https://doi.org/10.3390/hydrology8030095
Carrà BG, Bombino G, Denisi P, Plaza-Àlvarez PA, Lucas-Borja ME, Zema DA. Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology. 2021; 8(3):95. https://doi.org/10.3390/hydrology8030095
Chicago/Turabian StyleCarrà, Bruno Gianmarco, Giuseppe Bombino, Pietro Denisi, Pedro Antonio Plaza-Àlvarez, Manuel Esteban Lucas-Borja, and Demetrio Antonio Zema. 2021. "Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests" Hydrology 8, no. 3: 95. https://doi.org/10.3390/hydrology8030095
APA StyleCarrà, B. G., Bombino, G., Denisi, P., Plaza-Àlvarez, P. A., Lucas-Borja, M. E., & Zema, D. A. (2021). Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology, 8(3), 95. https://doi.org/10.3390/hydrology8030095