An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain
Abstract
:1. Introduction
2. Flood Zoning Practices
2.1. Floodplain Vulnerability
- The vulnerability indicators method uses the available data to have a logical location of vulnerability.
- The vulnerability curve method outlines the association between flood risk and risk components to help to analyse through analytical loss or fragility curves.
- The disaster loss data method is created on data collection from real events, hazards.
- Modelling methods use computer models to evaluate the depth, elevation, and velocity of a flood using the frequency, magnitude, and shape of the hydrograph.
2.2. Flood Management Scheme Design System
- floodplain support system;
- floodplain management system.
2.3. Flood Mapping Practices
2.4. Study Area
3. Risk-Based Approach
3.1. Hazard Assessment
3.2. Vulnerability Assessment
3.3. Economic Rent (ER)
3.4. Risk Assessment
3.5. Assumptions
4. Methodology
4.1. Development of GIS Layers
4.2. Flood Modelling
4.3. Cropping Practices
4.4. Settlement Zoning
5. Results and Discussions
6. Conclusions and Recommendations
- Frequent flooding zone.
- Medium flooding zone.
- Rare flooding zone.
Author Contributions
Funding
Conflicts of Interest
References
- Doocy, S.; Daniels, A.; Murray, S.; Kirsch, T.D. The Human Impact of Floods: A Historical Review of Events 1980-2009 and Systematic Literature Review. Plos Curr. 2013. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.C.; Thorne, C.R. Drivers of future urban flood risk. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2020, 378. [Google Scholar] [CrossRef] [Green Version]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M. Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 15375–15387. [Google Scholar] [CrossRef]
- US Census International Database. Blue Marble Citizen, Pakistan Population. 2018. Available online: https://www.bluemarblecitizen.com/world-population/Pakistan (accessed on 28 February 2021).
- OCHA. Pakistan: Population Density (as of 26 August 2013)—Pakistan | ReliefWeb. 2013. Available online: https://reliefweb.int/map/pakistan/pakistan-population-density-26-august-2013 (accessed on 28 February 2021).
- De Graaf, R.; Van De Giesen, N.; Van De Ven, F. Alternative water management options to reduce vulnerability for climate change in the Netherlands. Nat. Hazards 2007, 407–422. [Google Scholar] [CrossRef]
- Shah, A.A.; Gong, Z.; Ali, M.; Jamshed, A.; Naqvi, S.A.A.; Naz, S. Measuring education sector resilience in the face of flood disasters in Pakistan: An index-based approach. Environ. Sci. Pollut. Res. 2020, 27, 44106–44122. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.A.U.R.; Van De Giesen, N. Floods and flood management in Pakistan. Phys. Chem. Earthparts A/B/C 2012, 47–48, 11–20. [Google Scholar] [CrossRef]
- Sassi, M.; Nicotina, L.; Pall, P.; Stone, D.; Hilberts, A.; Wehner, M.; Jewson, S. Impact of climate change on European winter and summer flood losses. Adv. Water Resour. 2019, 129, 165–177. [Google Scholar] [CrossRef] [Green Version]
- De Moel, H.; Van Alphen, J.; Aerts, J.C.J.H. Flood maps in Europe—methods, availability and use. Nat. Hazards Earth Syst. Sci. 2009, 9, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Tsang, M.; Scott, D.M. An integrated approach to modeling the impact of floods on emergency services: A case study of Calgary, Alberta. J. Transp. Geogr. 2020, 86, 102774. [Google Scholar] [CrossRef]
- EEA Annual Report 2003—European Environmen. Available online: https://www.eea.europa.eu/publications/corporate_document_2004_2 (accessed on 2 October 2020).
- Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Oikonomou, C.; Haralambous, H.; Papagiannaki, K. Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece). Water 2020, 12, 2426. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Thieken, A.; Schmidtke, R. Estimation uncertainty of direct monetary flood damage to buildings. Nat. Hazards Earth Syst. Sci. 2004, 4, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Herath, S.; Musiake, K. Direct flood damage modeling towards urban flood risk management. Joint Work- shop on Urban Safety Engineering. 2001, pp. 123–135. Available online: https://www.researchgate.net/profile/Srikantha_Herath/publication/237805907_Direct_flood_damage_modeling_towards_urban_flood_risk_management/links/53d5c6b60cf228d363ea10e5/Direct-flood-damage-modeling-towards-urban-flood-risk-management.pdf (accessed on 2 October 2020).
- Tariq, M.; Hoes, O.; Van De Giesen, N. Development of a risk-based framework to integrate flood insurance. J. Flood Risk Manag. 2013, 7, 291–307. [Google Scholar] [CrossRef]
- De Bruijn, K.M.; van Beek, E. Resilience and Flood Risk Management: A Systems Approach Applied to Lowland Rivers. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2005. [Google Scholar]
- angtze River Flood Control and Management Project Literature Review for a Socio-Economic Impacts Assessment Procedure for Qianliang Hu Detention Basin, Yangtze River Flood Control and Management Project. 2003. Available online: https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Values%2C%20Technology%20and%20Innovation/People/Full%20Professors/Pieter%20van%20Gelder/Citations/citatie119.pdf (accessed on 8 October 2020).
- McGrath, H.; El Ezz, A.A.; Nastev, M. Probabilistic depth–damage curves for assessment of flood-induced building losses. Nat. Hazards 2019, 97, s11069-s019. [Google Scholar] [CrossRef]
- Carrera, L.; Standardi, G.; Bosello, F.; Mysiak, J. Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling. Environ. Model. Softw. 2015, 63, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Geddes, R.R.; Ma, T. Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China. Sustain. J. Rec. 2020, 12, 8980. [Google Scholar] [CrossRef]
- Koks, E.E.; Bočkarjova, M.; De Moel, H.; Aerts, J.C.J.H. Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis. Risk Anal. 2014, 35, 882–900. [Google Scholar] [CrossRef] [Green Version]
- Tanoue, M.; Taguchi, R.; Nakata, S.; Watanabe, S.; Fujimori, S.; Hirabayashi, Y. Estimation of Direct and Indirect Economic Losses Caused by a Flood with Long-Lasting Inundation: Application to the 2011 Thailand Flood. Water Resource. Res. 2020, 56. [Google Scholar] [CrossRef]
- Thieken, A.H.; Piroth, K.; Schwarz, J.; Schwarze, R. Methods for the evaluation of direct and indirect flood losses. In Proceedings of the 4th International Symposium on Flood Defence (ISDF), Toronto, ON, Canada, 5–8 May 2008. [Google Scholar]
- Arlikatti, S.; Maghelal, P.; Agnimitra, N.; Chatterjee, V. Should I stay or should I go? Mitigation strategies for flash flooding in India. Int. J. Disaster Risk Reduct. 2018, 27, 48–56. [Google Scholar] [CrossRef]
- Dilley, M.; Chen, R.S.; Deichmann, U.; Lerner-Lam, A.L.; Arnold, M. Natural Disaster Hotspots; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Shi, P.; Yang, X.; Xu, W.; Wang, J. Mapping Global Mortality and Affected Population Risks for Multiple Natural Hazards. Int. J. Disaster Risk Sci. 2016, 7, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Porse, E. Risk-based zoning for urbanizing floodplains. Water Sci. Technol. 2014, 70, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Mushar, S.H.M.; Ahmad, S.S.S.; Kasmin, F.; Kasmuri, E. Flood Damage Assessment: A Preliminary Studies. Environ. Res. Eng. Manag. 2019, 75, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Domańska, D.; Wojtylak, M. Application of fuzzy time series models for forecasting pollution concentrations. Expert Syst. Appl. 2012, 39, 7673–7679. [Google Scholar] [CrossRef]
- Bowes, B.D.; Tavakoli, A.; Wang, C.; Heydarian, A.; Behl, M.; Beling, P.A.; Goodall, J.L. Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning. J. Hydroinform. 2020. [Google Scholar] [CrossRef]
- Sanders, B.F.; Grant, S.B. Re-envisioning stormwater infrastructure for ultrahazardous flooding. Wiley Interdiscip. Rev. Water 2020, 7. [Google Scholar] [CrossRef]
- Pottier, N.; Penning-Rowsell, E.; Tunstall, S.; Hubert, G. Land use and flood protection: Contrasting approaches and outcomes in France and in England and Wales. Appl. Geogr. 2005, 25, 1–27. Available online: http://www.sciencedirect.com/science/article/pii/S0143622804000402 (accessed on 8 October 2020). [CrossRef]
- Completion Report PAK: Second Flood Protection Sector Project;Asian Development bank. 2007. Available online: https://www.adb.org/sites/default/files/project-document/65951/28165-pak-pcr.pdf (accessed on 2 October 2020).
- Pourghasemi, H.R.; Razavi-Termeh, S.V.; Kariminejad, N.; Hong, H.; Chen, W. An assessment of metaheuristic approaches for flood assessment. J. Hydrol. 2020, 582, 124536. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood risk and its reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- Abebe, Y.A.; Ghorbani, A.; Nikolic, I.; Vojinovic, Z.; Sanchez, A. Flood risk management in Sint Maarten—A coupled agent-based and flood modelling method. J. Environ. Manag. 2019, 248, 109317. [Google Scholar] [CrossRef]
- Wasson, R.; Saikia, A.; Bansal, P.; Joon, C.C. Flood Mitigation, Climate Change Adaptation and Technological Lock-In in Assam. Ecol. Econ. Soc. Insee J. 2020, 3, 83–104. [Google Scholar] [CrossRef]
- Poussin, J.; Bubeck, P.; Aerts, J.C.J.H.; Ward, P.J. Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: Case study for the Meuse. Nat. Hazards Earth Syst. Sci. 2012, 12, 3455–3471. [Google Scholar] [CrossRef]
- Nasiri, H.; Yusof, M.J.M.; Ali, T.A.M. An overview to flood vulnerability assessment methods. Sustain. Water Resour. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Gain, A.K.; Giupponi, C.; Renaud, F.G. Climate Change Adaptation and Vulnerability Assessment of Water Resources Systems in Developing Countries: A Generalized Framework and a Feasibility Study in Bangladesh. Water 2012, 4, 345–366. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Zhang, R.; Huo, Z.; Mao, F.; E, Y.; Zheng, W. An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method. Nat. Hazards 2012, 64, 1575–1586. [Google Scholar] [CrossRef]
- Füssel, H.-M. Development and Climate Change Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Guo, S.; Zhang, H.; Chen, H.; Peng, D.; Liu, P.; Pang, B. A reservoir flood forecasting and control system for China / Un système chinois de prévision et de contrôle de crue en barrage. Hydrol. Sci. J. 2004, 49, 959–972. [Google Scholar] [CrossRef]
- Purvis, M.J.; Bates, P.D.; Hayes, C.M. A probabilistic methodology to estimate future coastal flood risk due to sea level rise. Coast. Eng. 2008, 55, 1062–1073. [Google Scholar] [CrossRef]
- Gouldby, B.; Méndez, F.; Guanche, Y.; Rueda, A.; Mínguez, R. A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis. Coast. Eng. 2014, 88, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Anees, M.T.; Bakar, A.F.B.A.; Lim, H.S.; Abdullah, K.; Nordin, M.N.M.; Norulaini, N.; Ishak, M.I.S.; Kadir, M.O.A. Flood vulnerability, risk, and susceptibility assessment: Flood risk management. In Decision Support Methods for Assessing Flood Risk and Vulnerability; IGI Global: Hershey, PA, USA, 2019; pp. 1–27. [Google Scholar]
- Vousdoukas, M.I.; Voukouvalas, E.; Mentaschi, L.; Dottori, F.; Giardino, A.; Bouziotas, D.; Bianchi, A.; Salamon, P.; Feyen, L. Developments in large-scale coastal flood hazard mapping. Nat. Hazards Earth Syst. Sci. 2016, 16, 1841–1853. [Google Scholar] [CrossRef] [Green Version]
- Dottori, F.; Martina, M.; Figueiredo, R. A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. J. Flood Risk Manag. 2018, 11, S632–S645. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Farooq, R.; Van De Giesen, N. A Critical Review of Flood Risk Management and the Selection of Suitable Measures. Appl. Sci. 2020, 10, 8752. [Google Scholar] [CrossRef]
- Demir, V.; Kisi, O. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey. Adv. Meteorol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Sl, G.Y.G. Flood Hazard Assessment and Mapping of Flood Inundation Area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS Model. J. Civ. Environ. Eng. 2015, 5. [Google Scholar] [CrossRef]
- Kaoje, I.U.; Ishiaku, I. Urban flood vulnerability mapping of lagos, nigeria. Matter Int. J. Sci. Technol. 2017, 3, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Lugeri, N.; Kundzewicz, Z.W.; Genovese, E.; Hochrainer, S.; Radziejewski, M. River flood risk and adaptation in Europe—assessment of the present status. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 621–639. [Google Scholar] [CrossRef]
- Biswas, S.; Mahajan, P.; Sharma, A.; Singh Baghel, D.; Nmims, I. Methodologies for Flood Hazard Mapping-A Review; NMIMS, MPSTME, SVNIT: Surat, India, 2018. [Google Scholar]
- Gebrehiwot, A.; Hashemi-Beni, L. A METHOD TO GENERATE FLOOD MAPS IN 3D USING DEM AND DEEP LEARNING. Isprs—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIV-M-2-2, 25–28. [Google Scholar] [CrossRef]
- Bove, G.; Becker, A.; Sweeney, B.; Vousdoukas, M.; Kulp, S. A method for regional estimation of climate change exposure of coastal infrastructure: Case of USVI and the influence of digital elevation models on assessments. Sci. Total. Environ. 2020, 710, 136162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Z.; Liu, X.; Wu, D.; Ding, Y.; Li, G.; Wu, Y. Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 503–529. [Google Scholar] [CrossRef]
- Li, C.; Cheng, X.; Li, N.; Du, X.; Yu, Q.; Kan, G. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas. Int. J. Environ. Res. Public Heal. 2016, 13, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. Earth Environ. 2009, 33, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote. Sens. 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S. A neural network approach to flood mapping using satellite imagery. Comput. Inform. 2010, 29, 1013–1024. [Google Scholar]
- Coltin, B.; McMichael, S.; Smith, T.; Fong, T. Automatic boosted flood mapping from satellite data. Int. J. Remote. Sens. 2016, 37, 993–1015. [Google Scholar] [CrossRef] [Green Version]
- Ovando, A.; Martinez, J.; Tomasella, J.; Rodriguez, D.; Von Randow, C. Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 27–40. [Google Scholar] [CrossRef]
- Brown, K.M.; Hambidge, C.H.; Brownett, J.M. Progress in operational flood mapping using satellite synthetic aperture radar (SAR) and airborne light detection and ranging (LiDAR) data. Prog. Phys. Geogr. Earth Environ. 2016, 40, 196–214. [Google Scholar] [CrossRef]
- Elkhrachy, I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote. Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K.; Mishra, N.; Shukla, A.K.; Yadav, A.; Rao, G.S.; Bhanumurthy, V. Satellite data planning for flood mapping activities based on high rainfall events generated using TRMM, GEFS and disaster news. Ann. Gis 2017, 23, 131–140. [Google Scholar] [CrossRef]
- Peng, B.; Meng, Z.; Huang, Q.; Wang, C. Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery. Remote. Sens. 2019, 11, 2492. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Hussain, E.; Kim, K.; Biehl, L. Flood mapping with satellite images and its web service. Photogramm. Eng. Remote Sens. 2010, 76, 102–104. [Google Scholar]
- Martinis, S.; Plank, S.; Ćwik, K. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sens. 2018, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Hegger, D.L.T.; Driessen, P.P.J.; Dieperink, C.; Wiering, M.; Raadgever, G.T.T.; Van Rijswick, H.F.M.W. Assessing Stability and Dynamics in Flood Risk Governance. Water Resour. Manag. 2014, 28, 4127–4142. [Google Scholar] [CrossRef]
- Evans, E.; Hall, J.; Penning-Rowsell, E.; Sayers, P.; Thorne, C.; Watkinson, A. Future flood risk management in the UK. Proc. Inst. Civ. Eng.-Water Manag. 2006, 159, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Fleischhauer, M.; Greiving, S.; Flex, F.; Scheibel, M.; Stickler, T.; Sereinig, N.; Koboltschnig, G.; Malvati, P.; Vitale, V.; Grifoni, P.; et al. Improving the active involvement of stakeholders and the public in flood risk management—Tools of an involvement strategy and case study results from Austria, Germany and Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 2785–2798. [Google Scholar] [CrossRef]
- Albano, R.; Sole, A.; Sdao, F.; Giosa, L.; Cantisani, A.; Pascale, S. A Systemic Approach to Evaluate the Flood Vulnerability for an Urban Study Case in Southern Italy. J. Water Resour. Prot. 2014, 6, 351–362. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Li, N.; Shi, P. Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data. Risk Anal. 2017, 38, 17–30. [Google Scholar] [CrossRef]
- Veleda, S.; Martínez-Graña, A.; Santos-Francés, F.; Roman, J.S.-S.; Criado, M. Analysis of the Hazard, Vulnerability, and Exposure to the Risk of Flooding (Alba de Yeltes, Salamanca, Spain). Appl. Sci. 2017, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- UNDHA. Internationally Agreed Glossary of Basic Terms Related to Disaster Management; United Nations Department of Humanitarian Affairs: Geneva, Switzerland, 1992. [Google Scholar]
- ADPC, UNDP, Integrated Flood Risk Management in Asia 2005. Available online: http://repo.floodalliance.net/jspui/44111/1380 (accessed on 10 October 2020).
- Tariq, M.A.U.R. Risk-based flood zoning employing expected annual damages: The Chenab River case study. Stoch. Environ. Res. Risk Assess. 2013, 27, 1957–1966. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Merz, B.; Merz, B.; Thieken, A.; Thieken, A.; Gocht, M.; Gocht, M. Flood risk mapping at the local scale: Concepts and challenges. In Flood Risk Management in Europe; Begum, S., Stive, M.J.F., Hall, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 231–251. [Google Scholar]
- Smith, D.I. Flood damage estimation—A review of urban stage-damage curves and loss functions. Water Sa 1994, 20, 231–236. [Google Scholar]
- Middelmann-Fernandes, M.H. Flood damage estimation beyond stage-damage functions: An Australian example. J. Flood Risk Manag. 2010, 3, 88–96. [Google Scholar] [CrossRef]
- Yi, C.-S.; Lee, J.-H.; Shim, M.-P. GIS-based distributed technique for assessing economic loss from flood damage: Pre-feasibility study for the Anyang Stream Basin in Korea. Nat. Hazards 2010, 55, 251–272. [Google Scholar] [CrossRef]
- Douben, K.-J. Characteristics of river floods and flooding: A global overview, 1985–2003. Irrig. Drain. 2006, 55, 9–21. [Google Scholar] [CrossRef]
- Kron, W.; International Water Resources Association. Flood Risk = Hazard • Values • Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Gu, S.; Sha, Z.; Van Gelder, P. A New Weighted Function Moments Method to Estimate Parameters of P-III Distribution with Historical Floods; Hohai University Press: Nanjing, China, 1999. [Google Scholar]
- Zhang, J.; Zhou, C.; Xu, K.; Watanabe, M. Flood disaster monitoring and evaluation in China. Glob. Environ. Chang. Part B: Environ. Hazards 2002, 4, 33–43. [Google Scholar] [CrossRef]
- Federal Flood Commission. Strengthening Flood Forecasting, Management and Warning System; Federal Flood Commission: Islamabad, Pakistan, 2008. [Google Scholar]
- Weisz, R.N.; Day, J.C. A regional planning approach to the floodplain management problem. Ann. Reg. Sci. 1975, 9, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Fondja Wandji, Y.D.; Bhattacharyya, S.C. Evaluation of economic rent from hydroelectric power developments: Evidence from Cameroon. J. Energy Dev. 2017, 42, 239–270. Available online: https://www.jstor.org/stable/26539429?casa_token=7SzfwFcA8zkAAAAA%3Atf9TcKrn2RmfZ1OJWdXu6KrE3-8gAYgweczRlm3zHchgJY-ARH6Rk73TKWuAJ7-js0kk3Q1t-7uiXTkISHy5auSXjQvEcUamqTdZkgcuSyrm6a5Ai4M&seq=1#metadata_info_tab_contents (accessed on 8 October 2020).
- USACE. Engineering and Design: Risk-Based Analysis for Flood Damage Reduction Studies; U.S. Army Corps of Engineers: Washington, DC, USA, 1996. [Google Scholar]
- Yoe, C. Framework for Estimating National Economic Development Benefits and Other Beneficial Effects of Flood Warning and Preparedness Systems; U.S. Army Corps of Engineers: Washington, DC, USA, 1994; Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a281145.pdf (accessed on 12 October 2020).
- Levy, J.K.; Hall, J. Advances in flood risk management under uncertainty. Stoch. Environ. Res. Risk Assess. 2005, 19, 375–377. [Google Scholar] [CrossRef]
- Ahmad, I. Design Flood. PC Based Hydraulic Design Packages. p. A Flood Hydrograph PC Based Package. 1994. Available online: https://global.hauraton.com/en/hydraulic-design-software/ (accessed on 12 October 2020).
- Kron, W. Flood Risk = Hazard × Exposure × Vulnerability. J. Lake Sci. 2003, 15, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, D.; Afzal, M. Flood hazards, human displacement and food insecurity in rural riverine areas of Punjab, Pakistan: Policy implications. Environ. Sci. Pollut. Res. 2020, 28, 10125–10139. [Google Scholar] [CrossRef]
- Government of Pakistan Ministry of Planning Development & Special Initiatives Pakistan Bureau of Statistics Islamabad. Household Integrated Economic Survey (HIES) 2018-19 | Pakistan Bureau of Statistics. Available online: https://www.pbs.gov.pk/content/household-integrated-economic-survey-hies-2018-19 (accessed on 14 February 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, M.A.U.R.; Rajabi, Z.; Muttil, N. An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain. Hydrology 2021, 8, 53. https://doi.org/10.3390/hydrology8010053
Tariq MAUR, Rajabi Z, Muttil N. An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain. Hydrology. 2021; 8(1):53. https://doi.org/10.3390/hydrology8010053
Chicago/Turabian StyleTariq, Muhammad Atiq Ur Rehman, Zohreh Rajabi, and Nitin Muttil. 2021. "An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain" Hydrology 8, no. 1: 53. https://doi.org/10.3390/hydrology8010053
APA StyleTariq, M. A. U. R., Rajabi, Z., & Muttil, N. (2021). An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain. Hydrology, 8(1), 53. https://doi.org/10.3390/hydrology8010053