Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concepts and Features of Desertification Hazard
2.1.1. Causes, Factors, and Stages of Desertification
2.1.2. Stages of the Desertification Process
2.1.3. Methodologies and Simulation
2.1.4. Mitigation of Desertification
2.2. Physical Desertification: Drought
2.2.1. Drought Concepts and Types
2.2.2. Drought Quantification and Features
2.3. Desertification Classification Methodology
2.3.1. Study Area and Database
2.3.2. Drought Severity Assessment
2.3.3. Soil Degradation Assessment
2.3.4. Assessment of Groundwater Levels
2.3.5. Water Chemical Analysis
2.3.6. Classification of Desertification Risk
3. Results and Discussion
3.1. Drought Severity
3.2. Soil Degradation
3.3. Groundwater Levels
3.4. Water Chemicals
3.5. Spatial Analysis and Classification of Desertification Risk
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, D.L.; Lewis, L.A. Land Degradation: Creation and Destruction, 2nd ed.; Rowman and Littlefield: Lanham, MD, USA; Boulder, CO, USA; New York, NY, USA; Toronto, ON, Canada; Oxford, UK, 2007. [Google Scholar]
- Dalezios, N.R.; Eslamian, S. Environmental Impacts of Drought to Desertification Classification. In Handbook of Drought and Water Scarcity, 1st ed.; Eslamian, S., Eslamian, F., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2017; Volume 2, pp. 45–63. [Google Scholar]
- Archer, S.; Stokes, C. Stress, disturbance and change in rangeland ecosystems. In Rangeland Desertification; Arnalds, O., Archer, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 19, pp. 17–38. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The world’s drylands. In Carbon Sequestration in Dryland Soils; World Soil Resources Report No. 102; FAO: Rome, Italy, 2004; pp. 7–17. [Google Scholar]
- United Nations. Managing fragile ecosystems: Combating desertification and drought. In Proceedings of the United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3–14 June 1992. [Google Scholar]
- Sivakumar, M.V.K.; Wilhite, D.A.; Svoboda, M.D.; Hayes, M.; Motha, R. Drought and Meteorological Droughts. In Global Assessment Report: GAR 2011 on Disaster Risk Reduction; UNISDR: Lincoln, NE, USA, 2010; pp. 1–26. [Google Scholar]
- Xiaoping, Y. Desertification and land degradation in arid and semi-arid regions. In Geomorphological Hazards and Disaster Prevention; Alcántara-Ayala, I., Goudie, A., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 189–198. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Blanta, A.; Spyropoulos, N.V. Assessment of remotely sensed drought features in vulnerable agriculture. Nat. Hazards Earth Syst. Sci. 2012, 12, 3139–3150. [Google Scholar] [CrossRef] [Green Version]
- Dalezios, N.R.; Blanta, A.; Spyropoulos, N.V.; Tarquis, A.M. Risk Identification of Agricultural Drought for Sustainable Agroecosystems. Nat. Hazards Earth Syst. Sci. 2014, 14, 2435–2448. [Google Scholar] [CrossRef] [Green Version]
- Mylopoulos, N.; Sidiropoulos, P. A stochastic optimization framework for the restoration of an over-exploited aquifer. Hydrol. Sci. J. 2016, 61, 1691–1706. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, P.; Mylopoulos, N.; Loukas, A. Stochastic Simulation and Management of an Over-Exploited Aquifer Using an Integrated Modeling System. Water Resour. Manag. 2015, 29, 929–943. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Tziatzios, G.; Vasiliades, L.; Mylopoulos, N.; Loukas, A. Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploited Aquifer. Water 2019, 11, 1201. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, C.; Kirkby, M.J.; Geeson, N. Medalus Project: Mediterranean Desertification and Land Use. Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas; Publication of European Union: Brussels, Belgium, 1999; pp. 1–94. [Google Scholar]
- Karamesouti, M.; Panagos, P.; Kosmas, C. Model-based spatio-temporal analysis of land desertification risk in Greece. Catena 2018, 167, 266–275. [Google Scholar] [CrossRef]
- Dalezios, N.R. Environmental Hazards Methodologies for Risk Assessment and Management, 1st ed.; IWA: London, UK, 2017; pp. 1–534. [Google Scholar]
- Sheikh, B.A.; Soomro, G.H. Desertification: Causes, consequences and remedies. Pak. J. Agric. 2006, 22, 44–51. [Google Scholar]
- Dalezios, N.R.; Loukas, A.; Vasiliades, L.; Liakopoulos, E. Severity-Duration-Frequency Analysis of Droughts and Wet Periods in Greece. Hydrol. Sci. J. 2000, 45, 751–770. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Dynamic causal patterns of desertification. Bioscience 2004, 54, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Heim, R.R., Jr. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Hayes, M.J.; Kinutson, C.; Smith, K.H. Planning for drought: Moving from crisis to risk management. J. Am. Water Resour. Assoc. 2000, 36, 697–710. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Angelakis, A.N.; Eslamian, S. Water Scarcity Management: Part 1: Methodological Framework. Int. J. Glob. Environ. Issues 2018, 17, 1–40. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Dercas, N.; Eslamian, S. Water Scarcity Management: Part 2: Satellite-based Composite Drought Analysis. Int. J. Glob. Environ. Issues 2018, 17, 267–295. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L.B. The Current and Potential Operational Uses of Remote Sensing to Aid Decisions on Drought Exceptional Circumstances in Australia: A Review. Agric. Syst. 1998, 57, 399–468. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 39, 202–216. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M.; Anderson, C.M.; Bosch, D.D. Evaluation of drought indices via remotely sensed data with hydrological variables. J. Hydrol. 2013, 476, 265–273. [Google Scholar] [CrossRef]
- Steinemann, A.; Hayes, M.A.; Cavalcanti, L. Drought Indicators and Triggers. In Drought and Water Crises: Science Technology and Management Issues; Wilhite, D.A., Ed.; Taylor and Francis: Abingdon, UK, 2005; Volume 4, pp. 71–90. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Darkoh, M.B.K. Population, environment and sustainable development: Desertification in Africa. Desertif. Control Bull. 1994, 25, 20–26. [Google Scholar]
- Climate Hazard Group Releases New Version of CHIRPS. Available online: https://geog.ucsb.edu/climate-hazard-group-releases-new-version-of-chirps/ (accessed on 2 July 2018).
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Lin, X.; Xiong, C.; Chen, N. Modeling the Relationship of Precipitation and Water Level Using Grid Precipitation Products with a Neural Network Model. Remote Sens. 2020, 12, 1096. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, A.B.; Tangang, F.; Juneng, L.; Mou Leong Tan, M.L.; Chung, J.X. Evaluation of Gridded Precipitation Datasets in Malaysia. Remote Sens. 2020, 12, 613. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO). Standardized Precipitation Index. User Guide; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Qin, Y.; Yang, D.; Lei, H.; Xu, K.; Xu, X. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960–2010. J. Hydrol. 2015, 525, 55–67. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- World Meteorological Organization. Agricultural Drought Indices—Proceedings of an Expert meeting. In Proceedings of the WMO/UNISDR Expert Group Meeting on Agricultural Drought Indices, Murcia, Spain, 2–4 June 2010. [Google Scholar]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Ferro, V.; Schütt, B.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Harbaugh, A.W.; McDonald, M.G. User’s Documentation for MODFLOW-2000, an Update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model; United States Government Printing Office: Washington, DC, USA, 2000.
- Johnson, A.I. Specific Yield—Compilation of Specific Yields for Various Materials; U.S. Government Printing Office: Washington, DC, USA, 1967; pp. 13–15. [CrossRef]
- Loukas, A.; Mylopoulos, N.; Vasiliades, L. A Modelling System for the Evaluation of Water Resources Management Scenarios in Thessaly, Greece. Water Resour. Manag. 2007, 21, 1673–1702. [Google Scholar] [CrossRef]
- Loukas, A.; Mylopoulos, N.; Kokkinos, K.; Sidiropoulos, P.; Vasiliades, L.; Liakopoulos, A. The effect of spatial discretization in integrated modeling of surface and groundwater hydrology through OpenMI. In Proceedings of the International Interdisciplinary Conference on Predictions for Hydrology, Ecology and Water Resources Management: Using Data and Models to Benefit Society, Prague, Czech Republic, 15–18 September 2008. [Google Scholar]
- Ministry of Interior; Ministry of Finance and Development; Ministry of Environment and Energy. Official Journal of the Government 3282/B’/19-09-2017: Water Quality of Human Consumption in Compliance with the Provisions of Directive 98/83/EC of the Council of Europe of 3rd November 1998 as Amended by Directive (EU) 2015/1787 (L260, 7.10.2015); Greek Government: Athens, Greece, 2017; pp. 39381–39396.
- Emadodin, I.; Reinsch, T.; Taube, F. Drought and Desertification in Iran. Hydrology 2019, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed. Nat. Hazards 2019, 99, 715–733. [Google Scholar] [CrossRef]
- Martinez-Valderrama, J.; Guirado, E.; Maestre, F.T. Unraveling Misunderstandings about Desertification: The Paradoxical Case of the Tabernas-Sorbas Basin in Southeast Spain. Land 2020, 9, 269. [Google Scholar] [CrossRef]
Aridity Index: P/PET | Rainfall (mm) | Classification |
---|---|---|
PET > P | Desert climate | |
<0.03 | <200 | Hyperarid |
0.03–0.2 | <200 (winter) | Arid |
<400 (summer) | ||
0.2–0.5 | 200–500 (winter) | Semiarid |
400–600 (summer) | ||
0.5–0.65 | 500–700 (winter) | Dry subhumid |
500–700 (summer) | ||
>0.65 | No desertification |
Classification | Growing Season (days) | Typical Crops |
---|---|---|
Hyperarid | 0 | No crop, no paster |
Arid | 1–59 | No crops, marginal pasture |
Semiarid | 60–119 | Bulrush millet, sorghum, sesame |
Dry subhumid | 120–179 | Maize, beans, groundnut, peas, barley, wheat |
Standardized Precipitation Index Value | Moisture Level |
---|---|
+2.0 and greater | Extremely wet |
+1.5 to 1.99 | Very wet |
+1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal–mild dry |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2.0 and less | Extremely dry |
Parameter | Reference Period | No of Scatter Data | Methodology | Classes |
---|---|---|---|---|
Drought | November 2011 | - | SPI | 1. 0.99 ≤ SPI > −0.99 2. −1.5 < SPI ≤ 1 3. −2.0 < SPI ≤ −1.5 4. SPI ≤ −2.0 |
Soil Degradation Assessment (t ha−1 yr−1) | 2012 | - | European Soil Data Centre database | 1. 0 t ha−1 yr−1 < SE < 20 2. 20 ≤ SE < 40 3. 40 ≤ SE < 60 4. SE ≥ 60 |
Groundwater depletion (m) | April 2013 | - | Simulation with Modflow code | 1. 0 ≤ Depletion < 30 2. 30 ≤ Depletion < 60 3. 60 ≤ Depletion < 90 4. Depletion ≥ 90 |
pH | April 2013 | 27 | Simple kriging | 1. 5 ≤ pH < 6 2. 6 ≤ pH < 7.5 3. 7.5 ≤ pH < 8.5 4. pH ≥ 8.5 |
Conductivity (μs/cm) | April 2013 | 31 | Simple kriging | 1. 0 < Cond. < 300 2. 300 ≤ Cond. < 640 3. 640 ≤ Cond. < 840 4. Cond. ≥ 840 |
Natrium (mg/L) | April 2013 | 27 | Simple kriging | 1. 0 < Na < 20 2. 20 ≤ Na < 150 3. 150 ≤ Na < 200 4. Na ≥ 200 |
Magnesium (mg/L) | April 2013 | 28 | Simple kriging | 1. 0 < Mg < 30 2. 30 ≤ Mg < 40 3. 40 ≤ Mg < 50 4. Mg ≥ 50 |
Calcium (mg/L) | April 2013 | 28 | Simple kriging | 1. 0 < Ca< 40 2. 40 ≤ Ca < 100 3. 100 ≤ Ca < 1000 4. Ca ≥ 1000 |
Kalium (mg/L) | April 2013 | 26 | Simple kriging | 1. 0 < K < 5 2. 5 ≤ K < 10 3. 10 ≤ K < 12 4. K ≥ 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Alpanakis, N.; Sakellariou, S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology 2021, 8, 47. https://doi.org/10.3390/hydrology8010047
Sidiropoulos P, Dalezios NR, Loukas A, Mylopoulos N, Spiliotopoulos M, Faraslis IN, Alpanakis N, Sakellariou S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology. 2021; 8(1):47. https://doi.org/10.3390/hydrology8010047
Chicago/Turabian StyleSidiropoulos, Pantelis, Nicolas R. Dalezios, Athanasios Loukas, Nikitas Mylopoulos, Marios Spiliotopoulos, Ioannis N. Faraslis, Nikos Alpanakis, and Stavros Sakellariou. 2021. "Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment" Hydrology 8, no. 1: 47. https://doi.org/10.3390/hydrology8010047
APA StyleSidiropoulos, P., Dalezios, N. R., Loukas, A., Mylopoulos, N., Spiliotopoulos, M., Faraslis, I. N., Alpanakis, N., & Sakellariou, S. (2021). Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology, 8(1), 47. https://doi.org/10.3390/hydrology8010047