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Abstract: Modeling the relationship between precipitation and water level is of great significance
in the prevention of flood disaster. In recent years, the use of machine learning algorithms for
precipitation–water level prediction has attracted wide attention in flood forecasting and other
fields; however, a clear method to model the relationship of precipitation and water level using grid
precipitation products with a neural network model is lacking. The issues of the method include how
to select a neural network model, as well as how to influence the modeling results with different types
and resolutions of remote sensing data. The purpose of this paper is to provide some findings for the
issues. We used the back-propagation (BP) neural network and a nonlinear autoregressive exogenous
model (NARX) time series network to model the relationship between precipitation and water level,
respectively. The water level of Pingshan hydrographic station at a catchment area in the Jinsha River
Basin was simulated by the two network models using three different grid precipitation products.
The results showed that when the ground station data are missing, the grid precipitation product
is a good alternative to construct the precipitation–water level relationship. In addition, using the
NARX network as a model fitting network using extra inputs was better than using the BP neural
network; the Nash efficiency coefficients of the former were all higher than 97%, while the latter were
all lower than 94%. Furthermore, the input of grid products with different spatial resolutions has
little significant effect on the modeling results of the model.

Keywords: relationship of precipitation–water level; rainfall-runoff relation; grid precipitation
products; neural network model; Jinsha River

1. Introduction

Modeling the relationship between precipitation (When the word “precipitation” is used, it refers
to “liquid precipitation” in this paper) and water level is an important issue in hydrology and also an
important issue for flood disaster prevention and mitigation [1]. Generally, two common methods—a
physical model-driven method and data-driven method—are adopted to model the relationship
between precipitation and water level.

The physical model-driven method is based on the physical process of the water cycle to simulate
the relationship between precipitation and water level; examples include the Variable Infiltration
Capacity (VIC) Macroscale Hydrologic Model [2], the Soil and Water Assessment Tool (SWAT) model [3],
and the Xinanjiang model [4]. The physical model-driven method has a clear physical principle,
but due to the complex processes of a water cycle, it is often hard to model the exact model expression
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and obtain the complex physical parameters, which sometimes results in relatively low accuracy for
modeling the relationship [5–7].

The data-driven method models the relationship from big data by using machine learning
algorithms [8]. Sometimes, the data-driven method has higher accuracy compared to the physical
model-driven method [9,10]. Using the precipitation data from observation stations and machine
learning algorithms to model the relationship has been done in many studies [1,11–13]. Because of
this, the data-driven method has achieved good results in the field of meteorology and hydrology.
Shilpa et al. [14] used the support vector machine (SVM) to reduce the error rate of rainfall prediction,
but the SVM algorithm is generally applicable to the binary classification process, and there are
some difficulties in the complex nonlinear continuous function fitting process. Sahoo et al. used the
backpropagation neural network (BPNN) and the adaptive neuro-fuzzy inference systems (ANFIS)
model to observe and simulate runoff in Basantpur to forecast floods [15]. The simulation accuracy
of both models is more than 90%, but the simulation effect of the ANFIS model is better. In this
study, the in-situ data is used for input, and the impact of different model structure and different
model parameters on simulation results is mainly discussed, but neglects the influence of different
input parameters on the prediction results. Sandeep et al. used ground station observation data of
precipitation, maximum temperature, and minimum temperature as the input to predict runoff by
establishing radial basis fewer network, recurrent neural network (RNN), and BPNN models [16].
The final results show that the RNN has the best prediction performance. At the same time, they
used a SVM and the BPNN in another article to estimate the runoff of Agalpur Watered. The results
show that both models can estimate the runoff better, but the effect of SVM is better when considering
the lag input variables. These two papers mainly discuss the influence of different models and
training parameters on the simulation results. The input data is ground station data rather than
grid precipitation products [17]. Carlo proposed a data-driven method based on the random forest
algorithm to predict water level as an index to predict floods. This paper took historical site data
as the features of random forest construction, which showed that the time delay effect affected the
rainfall–water level prediction [18]. Generally speaking, the model constructed by using the random
forest algorithm is relatively simple. Due to the need to lose many features of the “tree”, there may be
a problem of under-fitting. Therefore, it is common to use a neural network algorithm to simulate
the complex precipitation–water level relationship. Chen et al. used an improved genetic algorithm
coupling a back propagation neural network (IGA-BPNN) model for water level prediction, and they
used the ground station data of the Hanjiang River as the input of the model [1]. Ramli Adnan et al.
introduced the extended Kalman filter at the output of the BPNN to show the improvement of the
prediction of the actual flood level [19], and he also used the data of upstream and downstream stations
of the river as the input. Although many people use site data modeling, there are many areas with
sparse or even no site records, which makes it hard to apply the data-driven method. Grid precipitation
products, such as the tropical rainfall measuring mission (TRMM), climate hazards group infrared
precipitation with station data (CHIRPS), and the global land data assimilation system (GLDAS),
which have global coverage, acceptable spatial–temporal resolution, and decades of records, would be
important data sources [20]. Therefore, it is of great significance to use grid precipitation products to
establish a precipitation–water level model.

To model the relationship of precipitation and water level using grid precipitation products with
the data-driven method, three basic issues need to be studied:

• What machine learning algorithm should be selected? The back-propagation (BP) neural network
model is a commonly chosen model. The input of the BP model is the data at a time point. As is
known, the change of water level caused by precipitation is not an instant process and it always
has a time delay. Therefore, a neural network model considering the time delay effect, such as the
nonlinear autoregressive exogenous model (NARX), may achieve better results than the BP neural
network model [21,22].



Remote Sens. 2020, 12, 1096 3 of 18

• What is the effect of different grid precipitation products for modeling the relationship? There are
several types of grid precipitation products. Many studies have discussed the accuracy of
precipitation products and their applicability in different regions and used them as data sources
for data-driven methods [21,23], but the effect on using different data sources for modeling the
relationship of precipitation and water level has not been discussed [24–26].

• What is the effect of different spatial resolution data from the same precipitation products in
modeling the relationship?

These issues are rarely clearly studied. This paper will study the three issues by comparing the
modeling accuracy between the BP model and the NARX model, exploring the effects of different types
of grid precipitation products, as well as showing the effects of different spatial resolutions of the same
grid precipitation product.

The main contributions of this paper are the following: 1) by comparing the precipitation–water
level simulation results of the BP neural network and NARX time series network, this paper proves
that the NARX time series network is better than the BP neural network for modelling the relationship
of precipitation and water level in the short-term, as the time lag effect should be considered in the
precipitation–water level model and 2) we explore the influence of using different kinds and different
spatial-resolution remote sensing precipitation products on modeling the relationship of precipitation
and water level. The contributions should guide the modeling of the relationship of precipitation and
water level using grid precipitation products with a neural network model.

2. Materials and Methods

2.1. Study Area and Data Used

The Jinsha River Basin was taken as the research area. The Jinsha River (24.46◦E–35.76◦E,
90.535◦N–104.936◦N, as shown in Figure 1) is located in the upper reaches of the Yangtze River,
accounting for 77% of the total length of the upper reaches. The Yangtze River is one of the largest
and most important rivers in China. The origin of the Jinsha River is in the main peak of Tanggula
Mountain in Qinghai Province. The Jinsha River flows through Qinghai, Tibet, Sichuan, and Yunnan
provinces in Western China. The main stream of the Jinsha River has a total length of 2308 kilometers
and a drainage area of about 340,000 square kilometers. The topography of the Jinsha River Basin is
complex, the elevation fluctuation is obvious [27], the maximum height difference is 3300 m, the annual
average precipitation of the Jinsha River Basin is about 710 mm, the annual average precipitation of
downstream is about 900–1300 mm, and the annual average precipitation of middle and upstream is
about 600–800 mm. The precipitation decreases gradually from southeast to northwest of the basin.
Due to the wide area of the Jinsha River Basin, there are obvious differences between precipitation
distribution and climate change. The complex geographical conditions also cause uneven distribution
of meteorological and hydrological stations in the basin, which leads to the lack of observation. Figure 1
shows the selected Pingshan station in the lower reaches of the Jinsha River, the hydrological situation
of the Jinsha River, the topography of the Jinsha River Basin, and the sparse meteorological observation
stations in the Jinsha River Basin.
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Figure 1. The Jinsha River Basin.

The gauge station selected for the study was the Pingshan hydrological station, which is the
core-control hydrological station in the lower reaches of the Jinsha River Basin. The data set of
2006–2009 was selected because there was a dam on the site which had not been completed yet.
Considering that the data set of this part of time may not be affected by the upstream dam, the data
were from Yangtze River Hydrological Bureau. The span of the data was from 2006 to 2009, the time
granularity of the data was 1 day, and the content of the data was the average daily water level.
The grid precipitation products used in this paper are CHIRPS, GLDAS-2, and TRMM-V7. All the data
are listed as Table 1.

Table 1. Data list of this paper. Climate hazards group infrared precipitation with station data (CHIRPS);
global land data assimilation system (GLDAS); tropical rainfall measuring mission (TRMM).

Data Name Data Type Temporal/Spatial
Resolution Time Range

Pingshan Water Level Hydrological station data 1 day/-

2006/01/01~2009/12/30
CHIRPS Grid data 1 day/0.05◦ × 0.05◦

GLDAS-2 Grid data 1 day/0.25◦ × 0.25◦

TRMM-V7 Grid data 1 day/0.25◦ × 0.25◦

In situ data Gauge-based data 1 day/-

Three different resolution grid precipitation products were used for this paper. One was
CHIRPS from http://chg.geog.ucsb.edu/data/chirps/ in a grid format with a spatial resolution of
0.05◦ × 0.05◦ and a temporal resolution of 1 day. The second one was the GLDAS-2 from https:
//ldas.gsfc.nasa.gov/gldas/ with 0.25◦ × 0.25◦ spatial and 1 day temporal resolutions. The last one was
TRMM-V7 from https://pmm.nasa.gov/data-access/downloads/TRMM with 0.25◦× 0.25◦ spatial and
1 day temporal resolutions.

The CHIRPS data formed a quasi-global precipitation dataset, which was from 1981 to 2014.
Spanning 50◦S–50◦N (and all longitudes) [28], CHIRPS is a fusion of satellite images and data from

http://chg.geog.ucsb.edu/data/chirps/
https://ldas.gsfc.nasa.gov/gldas/
https://ldas.gsfc.nasa.gov/gldas/
https://pmm.nasa.gov/data-access/downloads/TRMM
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rain-gauge stations, which is widely used for hydrology modeling, where there are sparse in situ rainfall
stations. Bai et al. (2018) compared CHIRPS data with 2480 rainfall stations in China. Although the
accuracy of CHIRPS data is not ideal when compared with a single rainfall station, it performs well at
the watershed scale [29].

The GLDAS data uses multiple land surface models to integrate satellite and ground-based
observational data [30]. GLDAS products include weather forcing data, land surface states data,
and flux data. The GLDAS-2 product uses the “Global Meteorological Forcing Dataset” from Princeton
University [31] to create more climatologically consistency than GLDAS-1. Wang et al. (2016)
evaluated the accuracy of GLDAS-1 and GLDAS-2 monthly data in major watersheds of China, and the
results showed that GLDAS-2 data had better spatial and temporal accuracy than GLDAS-1 data for
precipitation, temperature, and runoff [32].

The TRMM is a joint mission between NASA and the Japan Aerospace Exploration (JAXA) Agency
to study rainfall for weather and climate research, and the dataset of TRMM is intended to provide a
relative precise estimation of quasi-global precipitation [20]. TRMM-V6 and V7 data both show a good
agreement in the tropics, especially for moderate and heavy rain days. For heavy rain, the rainfall
estimates of V6 are higher than V7 in the whole year [33]. For the Jinsha River Basin in the upper
reaches of the Yangtze River, TRMM-V6 and TRMM-V7 can better reflect the annual change trend of
precipitation in the study basin, among which the estimated results of TRMM-V7 are closer to the
measured precipitation results, the estimated results of TRMM-V7 in 2007, 2008, and 2009 are very close
to the measured precipitation, and the overall results of V6 are about 100 mm lower. The estimated
result of TRMM-RTV7 is about 300 mm higher overall [24]. Thus, we chose the TRMM-V7 dataset for
this paper.

In order to ensure the consistency of data sampling, the study used weather forcing data of
GLDAS-2 as a grid input in combination with the grid precipitation product. Meanwhile, we used
the Daily Climate Data Set of China Ground International Exchange Station (V3.0) for the control
experiment. This dataset included daily data of air pressure, temperature, precipitation, evaporation,
relative humidity, wind direction, wind speed, sunshine hours, and 0 cm ground temperature elements
of 166 stations in China since January 1951 to the near present, which was provided by the National
Meteorological Information Center of China (http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_
CHN_MUL_DAY_V3.0.html).

2.2. Methodology

In order to solve the problems of data-driven modeling, such as model selection, input variable
selection, and the impact of different data sources, the method developed in this paper was divided
into four parts (I, II, III, IV), as shown below (Figure 2).

• (I) Selection of input parameters: This part determined the inputs of the used models.
Considering the physical model, the input variables of the neural network were selected by
referring to the physical process of the hydrological model in part I.

• (II) Train data preprocessing: This part prepared training data for the neural network models.
To improve the performance of the neural network model and avoid the over-fitting of models,
the unnecessary information and some noise were removed by the principal component analysis
(PCA) dimensionality reduction in order to speed up the convergence of the model in part II.

• (III) Precipitation–water level modeling: This part compared the modeling methods. As for model
fitting, we chose a BP neural network to build the relationship between precipitation and water
level; meanwhile, a NARX time series network was also chosen to build the relationship between
precipitation and water level in part III.

• (IV) Evaluation of precipitation–water level modeling: This part chose correlation coefficients (R),
percentage bias (PBias), root-mean-square error (RMSE), Nash–Sutcliffe efficiency (NSE), and mean
absolute error (MAE) as the criteria for the evaluation of precipitation–water level modeling.

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
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2.2.1. Selection of Input Parameters

Some existing studies use a data-driven method to construct the relationship of precipitation and
water level. The influence of precipitation on water level is usually only considered when building the
model, but the natural water cycle is a complex physical process. Soil moisture, vegetation transpiration,
surface confluence, and other parameters will also affect water level and runoff. Based on regression
analysis, Jun Du et al. proved that the effects of annual precipitation and forest cover on runoff change
were 69.8% and 17.3% [34]. Existing data-driven models cannot explain the physical phenomena
of water level change; therefore, the input parameters of the neural network model are screened by
referring to the existing hydrological model. In this study, we investigated existing hydrological
models and selected variables by referring to the inputs of hydrological models.

Many hydrological models include a surface module, snow module, meteorological driving
module, frozen soil module for calculating the effect of the freezing–thawing process on heat flux and
humidity, lake and wetland module for calculating the water–heat balance of lakes and wetlands,
carbon cycle module, and confluence algorithm for connecting the grids with river channels [35]. Due to
the difficulty of data acquisition and computational complexity, the modules generally considered
in estimating runoff yield and confluence using the hydrological model are the surface module,
meteorological driving module, and confluence module; that is, the digital elevation model (DEM)
grid data, meteorological data, soil data, and vegetation parameters data of the study area.

Hornik proved that the neural network algorithm is a universal approximator [36]. With only one
hidden layer containing enough neurons, the multi-layer feedforward neural network can approximate
any continuous function with arbitrary precision. According to the characteristics of the neural network
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algorithm, the input parameters with constant values can be removed because constants can be merged
in a function of any kind. The final input parameters of the model are the meteorological data, soil
data, and evapotranspiration parameters of the Jinsha River Basin.

2.2.2. Train Data Preprocessing

In order to solve the problem of the high dimensionality of input parameters caused by remote
sensing data input, principal component analysis (PCA) was adopted to reduce the dimensions of
input data in our study. The purpose of dimension reduction is to use low-dimensional data to retain
as much information as possible from the original high-dimensional data; that is, to project the original
high-dimensional spatial data to the target low-dimensional subspace through linear mapping to
achieve the effect of dimension reduction. PCA is computed as follows, using the covariance method.

1. Here is a sample set D:
D = {x1, x2, · · · , xm}, (1)

2. Decentralize all samples:

xi ← xi −
1
m

m∑
i=1

xi, (2)

3. Compute the covariance matrix of samples: XXT;
4. Eigenvalue decomposition of covariance matrix XXT;
5. Extract the d′ largest characteristic value eigenvalues:

w1, w2, · · · , wd′ , (3)

6. Output the projection matrix after dimension reduction:

W′ = {w1, w2, · · · , wd′ }, (4)

After the dimensionality reduction of input data, it was inevitable to discard some information
from the original data, but at the same time, we could remove some noise that deviated from the
sample center too much. For the neural network model to be used in the study, too many dimensions
of input samples could easily lead to the over-fitting of the model and bad generalization, thus leading
to poor prediction results of the model.

2.2.3. Precipitation–Water Level Modeling

In order to better simulate the delayed effect of the water level change process, modeling the
relationship between precipitation and water level needs to consider time variation. A nonlinear
autoregressive exogenous model (NARX) was selected in this paper. To show the effect of the time
series network model, this paper used the BP neural network model as a comparison.

Back Propagation Neural Network Model

Back propagation neural network (BPNN) is a feedforward neural network trained by the error
back propagation (BP) algorithm [37]. It is the most widely used network in the field of prediction
and modeling. The key to the BP neural network is that signals propagate forward and errors
propagate backward.

The BP algorithm is based on gradient descent strategy. The goal of the gradient descent algorithm
is to minimize the cumulative error on the training set; the gradient vector of the loss function is
obtained by the chain derivation rule and then the error value of the output layer node is obtained.
By using the error value of the output layer node as the reverse input, the connection weights and
thresholds of the neural network were updated. We looped the update process until the termination
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condition of network training (maximum training times, minimum error, maximum iteration times,
etc.) was reached.

Nonlinear Autoregressive Exogenous Model

The nonlinear autoregressive exogenous model (NARX), developed by Tsungnan Lin [38], is a
recurrent network that has exogenous inputs. That means that the output of the model depends both
on past values of the previous output and current and past values of independent variable series.

Compared with the BP neural network, the NARX network correlates the past observed (or
predicted values) with the current target values through a time delay variable (d), which can more
accurately model the observation variables associated with the time series. The function of the NARX
time series network model is expressed as follows, where y(t) is the output target value on the t
day, x(t) is the input variable value on day t, and d is the time delay days. The delay time is often
determined by multiple prediction experiments; here, we got the best prediction result by repeated
experiments, which are recorded in Section 3.2.1. If the delay time was too long or too short, the NARX
model was under-fitted or oscillate.

y(t) = f (x(t− 1), . . . , x(t− d), y(t− 1), . . . , y(t− d)) (5)

NARX can be inputted externally through observed data, i.e., parallel mode. It can also be inputted
through the target predicted value; i.e., the serial mode. The parallel mode had higher prediction
accuracy because it used the exact value of observed data. As the ground stations can obtain the
accurate daily water level, the parallel model was adopted in this study. Usually, the hydrological
process is a slow cumulative process, and water level changes are usually associated with past water
level, so the NARX time series network model can better explain the process of water level changes,
and more accurate results of water level changes can be obtained theoretically.

2.2.4. Evaluation of Precipitation–Water Level Modeling

The main criteria for evaluating the efficacy of prediction models are the correlation coefficients
(R), percentage bias (PBias), root-mean-square error (RMSE), Nash–Sutcliffe efficiency (NSE), and mean
absolute error (MAE), which is commonly used to assess the quality of hydrological models.
The validation coefficients are expressed as follows:

R =

∑n
i=1

[(
Oi −O

)(
Pi − P

)]
√[(∑n

i=1

(
Oi −O

)2
)(∑n

i=1

(
Pi − P

)2
)] , (6)

PBias =
∑n

i=1(Pi −Oi)∑n
i=1 Oi

× 100 (7)

RMSE =

√√
1
n

n∑
i=1

(Pi −Oi)
2 (8)

NSE =

1−
∑n

i=1(Oi − Pi)
2∑n

i=1

(
Oi −O

)2

× 100% (9)

MAE =
1
n

n∑
i=1

|Oi − Pi| (10)

where n is the number of predictions, Oi is the observed value of water level (i.e., the measured value),
Pi is the predicted value of water level output from the model, O is the average value of water level
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observation, and P is the average water level prediction value. Through comparative experiments,
the model accuracy of different inputs and different networks was evaluated.

3. Results and Discussion

In order to study the possible influencing factors in the precipitation–water level model, we carried
out several groups of comparative experiments. Considering the instantaneousness of water level
observation, we used an n-7 sliding window and divided the data into 1543 groups of 8 days (the
first 7 days of each group and the eighth day of training) as the prediction. The size of the sliding
window came from many attempts during parameter adjustment. Through the results of these groups
of comparative experiments, we can give some guidance as to the construction of the relationship of
precipitation–water level.

We divided the input of the neural network model into a precipitation part, which directly affected
the water level change, and an extra meteorological input (EMI) part, which had an indirect effect on the
water level change. The additional meteorological input data included soil moisture data, temperature
data, wind speed data, and evapotranspiration data. We used the precipitation observation data of in
situ station data, CHIRPS precipitation products, GLDAS-2 precipitation products, and TRMM-V7
precipitation products as inputs, and the meteorological inputs used the assimilation data in GLDAS-2.
At the same time, in order to verify the modeling results of surface precipitation modeling, we used
a full station input for a contrast experiment (the last group). To explore the influence of different
networks on the modeling results of the precipitation–water level model, each group of inputs used
different network models for water level simulation. Furthermore, we resampled the grid precipitation
products into different resolutions to explore the impact of different resolutions on the modeling results.
Table 2 shows the accuracy of all type of models mentioned above.

Table 2. Accuracy evaluation of precipitation–water level modeling using different type of models.
Extra meteorological input (EMI); spatial resolution (SR); back propagation neural network (BPNN);
nonlinear autoregressive exogenous model (NARX); percentage bias (Pbias); root mean square error
(RSME); Nash–Sutcliffe efficiency (NSE); mean average error (MAE); correlation coefficients (R).

Network Type BPNN NARX

Data Name SR R Pbias RSME NSE MAE R Pbias RSME NSE MAE

GLDAS-2+ EMI
0.25◦ 0.967 –0.00581 0.976 93.520 0.543 0.989 0.00126 0.561 97.858 0.336
0.5◦ 0.966 0.00249 1.006 93.109 0.560 0.987 −0.00013 0.625 97.339 0.358

TRMM-V7+ EMI
0.25◦ 0.959 0.00714 1.098 91.787 0.584 0.987 −0.00009 0.616 97.419 0.349
0.5◦ 0.961 0.00250 1.065 92.276 0.564 0.988 0.00118 0.584 97.677 0.342

CHIRPS+ EMI
0.05◦ 0.954 −0.00792 1.159 90.857 0.632 0.987 −0.00247 0.612 97.447 0.353
0.5◦ 0.965 0.00325 1.019 92.933 0.564 0.988 0.00007 0.605 97.505 0.342
0.25◦ 0.964 0.00405 1.033 92.727 0.566 0.986 0.00053 0.632 97.277 0.357

Station rainfall
data + EMI 0.963 0.00180 1.053 92.450 0.562 0.988 −0.00060 0.599 97.560 0.335

Use station rainfall
input only 0.948 –0.00382 1.243 89.482 0.697 0.987 0.00317 0.619 97.393 0.359

3.1. Comparison of Different Grid Precipitation Products with Respect to the Observed Data

In order to preliminarily verify the availability of grid precipitation products, this paper makes a
simple evaluation regarding the accuracy of grid precipitation products. Figure 3 shows the scatter
plots of the areal precipitation time series of CHIRPS, GLDAS-2, and TRMM-V7 against the rainfall
data of the in situ station from 2006 to 2009. The CHIRPS precipitation product had a correlation of
0.606 with the in situ station data (Figure 3a) and the GLDAS-2 precipitation product had a correlation
of 0.733 (Figure 3b), whereas the TRMM-V7 product had a correlation of 0.645 (Figure 3c).
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Table 3 shows the comparison of the accuracy of daily precipitation mean values of three grid
precipitation products (CHIRPS, GLDAS-2, TRMM-V7) and ground precipitation stations. It can be
seen from the table that GLDAS-2 data had the highest correlation, but the percentage bias of data was
also the largest. Generally, grid precipitation products tended to underestimate the extreme value of
rainfall, but the average value was relatively reliable.

Table 3. Accuracy evaluation of grid precipitation data.

Accuracy Criteria Rainfall Station CHIRPS GLDAS-2 TRMM-V7

R 1 0.606 0.7326 0.645
Pbias (%) 0 −3.40 −17.40 4.23

3.2. Performance of the BP Neural Network Model and NARX Network Model for Water Level Modeling

3.2.1. Parameter Optimization of Neural Network

Although multilayer feedforward neural networks can approximate arbitrary continuous functions,
it is usually impossible to tell the absolute number of hidden layers of networks and the number of
neurons in hidden layers, but there are some general parameter setting rules summarized by previous
studies. Generally speaking, due to the structure limitations of the training data and network model,
the simulation effect of the feedforward neural network model with two hidden layers is usually
better than that with only one hidden layer [39]. Here, we used different kinds and resolutions
of grid precipitation products, and the number of input nodes in each group of neural networks
was determined by the results of the principal components analysis (PCA) dimensionality reduction
processing. The node number of the first hidden layer was N1 =

√
Di + 1 + 1, where Di. is the

dimension of the independent input variable; the second one was N2 = N1 + 3. Moreover, the transfer
functions of the network were of Tansig types. The selection of parameters used in this paper was a
relatively optimal solution obtained by multiple parameter adjustment, and all the training parameters
used are shown in Table 4.
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Table 4. Model parameters used for the neural network models.

Parameter Type Parameters of Neural Networks

Study parameter
Learning rate = 0.01

momentum factor = 0.9
transfer function = 2

1+e−2n − 1

Structure parameter

Number of input nodes Di: determined by the spatial resolution of input
remote sensing data and the result of principal component analysis

Number of the first hidden layer of nodes: N1=
√

Di + 1 + 1
Number of the second hidden layer of nodes: N2 = N1 + 3

Number of hidden layers = 2
Number of output nodes = 1

In order to get better modelling results, we made some adjustments to the parameters of the neural
network. We optimized the network parameters by the method of artificially adjusting parameters and
we performed preliminary experiments to determine the network parameters and further adjusted
them in the actual experiment. Table 5 shows the result of the cross-correlation function between
rainfall gauge data and the water level of Pingshan station. We found that when the time delay was 6,
the correlation between the rainfall series and water level series reached a maximum of 0.7559. Based on
the results of cross-correlation function (CCF), we gradually adjusted the time delay parameter in
the NARX network model. After many experiments, we found that when the time lag was 5 days,
the performance of the NARX model reached the optimal value.

Table 5. Cross-correlation function (CCF) between rainfall data and water level.

Time Lag 1 2 3 4 5 6 7 8

CCF 0.6914 0.7057 0.7246 0.7396 0.7514 0.7559 0.7557 0.751

3.2.2. Modeling Results of BP Neural Network Model and NARX Network

The BP neural network is the most popular network in the field of prediction, but its performance
in precipitation–water level modeling is not as good as the NARX network, as shown in Figure 4.
Figure 4 shows the line plots of observed data and simulated water level using different neural network
models with the input of GLDAS-2+EMI: The red line is the modeling result of using the BPNN and
the blue line is the modeling result of using the NARX network. From the graph, we can see that the
result of water level modeling using the NARX model was closer to the observed value. Additionally,
as shown in Table 2, we found that the R2 value of the water level modeling using the BP neural network
model was 0.93 to 0.94 and the R2 value of modeling results using the NARX model was 0.97 to 0.98.
Although the four sets of experiments used different neural network model input variables, the results
of using the NARX model for water level modeling were better in each group of experiments.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 18 
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Table 6 shows the average value of modeling results using two different neural networks, and from
Table 6 we can get more precise results regarding the use of the BP neural network model and NARX
network model, from which we can obviously see that the NARX model performed better than the
BP model in the four performance evaluation criteria. Although the correlation coefficients of the
BP model and NARX model were more than 0.95, the average correlation coefficient of the NARX
prediction results was 2% higher than that of the BP model. However, the average percentage bias
of the NARX model was 0.00032%, while the BP neural network model was 0.00041%. As for RMSE,
the mean RMSE of the BP model was 1.072 m, but that of NARX was 0.606 m, and the Nash–Sutcliffe
efficiency of the two models was higher than 50%; thus, both kinds of neural network model were
reliable, but the NARX model was more reliable, as the NSE of it was over 97%.

Table 6. Average value of modeling results using the two different networks.

R PBias RSME NSE MAE

BPNN 0.961 0.00041 1.072 92.127 0.586
NARX 0.987 0.00032 0.606 97.497 0.348

All criteria for the performance evaluation show that the NARX model performed better than
the BPNN model in short-term water level modeling, which was consistent with our expectations,
but the percentage bias of the BP neural network was smaller on the whole. As the NARX model used
past rainfall input values and water level observations, considering the delayed effect of hydrological
processes, the fitting results of the NARX network could get closer to the complex hydrological
processes in the real world. Using NARX network for model construction can also better explain the
relationship between rainfall and water level, and it can be seen from Figure 4 that for the BPNN,
the NARX network produced less model oscillation and lower probability of extreme value.

3.3. Comparison of Modeling Results using Grid Products and Station Data

In order to verify the availability of grid products in precipitation–water level modeling,
we compared the modeling results of grid products with the modeling results of ground stations.
Table 7 shows the impact of different types of rainfall data input on water level modeling results:
The average correlation coefficients of grid data modeling and station data using the NARX network
were both 0.988,and, using GLDAS-2 0.25◦ with EMI as an input showed the best result, the RSME
of which was 0.561 m and the Nash efficiency coefficient was 97.858%, while the Nash efficiency
coefficient of using station data was 97.560%. Combined with Table 2, we found that the percentage
bias of station data was relatively small, which was −0.00060%.

Table 7. Modeling results using grid products and station data.

Data Name
BPNN NARX

R Pbias RSME NSE R Pbias RSME NSE

GLDAS-2+EMI 0.25◦ 0.967 −0.00581 0.976 93.520 0.989 0.00126 0.561 97.858
average resultsof grid data 0.962 0.000574 1.049 92.485 0.988 0.00034 0.600 97.544

Station Data 0.963 0.00180 1.053 92.450 0.988 −0.00060 0.599 97.560

From Figure 5, we can see more intuitively that the accuracy of modeling results with grid
precipitation data was little different from that with station data. In addition, although using GLDAS-2
0.25◦ with EMI as an input showed the smallest RSME and the highest correlation coefficient with
observed data, the average percentage bias of GLDAS-2 was larger than the other group. It can be seen
from the above results that it was feasible to use grid rainfall products as the solution of sparse area
of stations. Because the grid data integrated the results of the satellite data and the ground station
data, it was more reliable than the conventional spatial interpolation results of ground station data.



Remote Sens. 2020, 12, 1096 13 of 18

In this experiment, the prediction result using grid data input was slightly better than that using only
ground station.
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Figure 5. Comparison of modeling results using grid products and station data.3.4. Influence on water
level modeling results using different precipitation products and different resolutions.

3.3.1. Influence of using Different Precipitation Products

In order to verify the influence of different grid precipitation products on the model construction,
we resampled the three products of CHIRPS, GLDAS-2, and TRMM-V7 to 0.25◦ and constructed the
model. The final experimental results are shown in Table 8. The Nash efficiency coefficients of using
CHIRPS, GLDAS-2, and TRMM-V7 data based on the BPNN model were 93%, 91%, and 92%, and those
of the NARX model were all above 97%.

Table 8. Modeling results using different grid precipitation products.

Data Name
BPNN NARX

SR R Pbias RSME NSE R Pbias RSME NSE

GLDAS-2 0.25◦ 0.967 −0.00581 0.976 93.520 0.989 0.00126 0.561 97.858
TRMM-V7 0.25◦ 0.959 0.00714 1.098 91.787 0.987 −0.00009 0.616 97.419

CHIRPS 0.25◦ 0.965 0.00325 1.019 92.933 0.988 0.00007 0.605 97.505

Figure 6 shows the accuracy histogram of three different products; we can find that the GLDAS –2
data modeling results were the best by comprehensive comparison. The R of using GLDAS-2 with the
NARX network was 0.989, the RSME was 0.561 m, and the Nash efficiency coefficient was 97.858%.
However, modeling with TRMM-V7 and CHIRPS data showed less percentile deviation. For the Jinsha
River Basin, GLDAS-2 data was the best rainfall input among the above three kinds of rainfall products,
but the performance gap of the three kinds of grid precipitation products was not large, in which
the absolute deviation of CHIRPS group was the smallest, which may have been due to the better
performance of CHIRPS data on the extreme value of rainfall estimation.
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3.3.2. Influence of using Different Resolution Products

In order to explore the influence of grid product resolution on model building, we resampled each
grid product to a different resolution: GLDAS-2 and TRMM data were resampled to 0.5◦ (the original
resolution was 0.25◦) and CHIRPS data were resampled to 0.25 and 0.5 degrees (the original resolution
was 0.05◦), as shown in Figure 7. The Nash efficiency coefficients of using BPNN with CHIRPS input
for 0.05◦, 0.25◦, and 0.5◦ were 90.857%, 92.933%, and 92.727%, while those using the NARX network
were 97.447%, 97.505%, and 97.277%. From Figure 7, we can see that the grid product input with
different resolutions had little influence on the modeling results. For the CHIRPS and TRMM data,
the prediction accuracy of products with higher resolution was slightly reduced, but for GLDAS-2 data,
the high-resolution input modeling results were slightly better. For the input of different resolutions of
the same precipitation product, the short-term water level prediction accuracy using spatial resolutions
of 0.25 ◦× 0.25 ◦ and 0.5 ◦× 0.5 ◦ had little difference and the model prediction result of the high spatial
resolution grid data input of chirps did not significantly improve, which may have been due to the
model over-fitting problem caused by the high input dimension. For model training, using 0.5 ◦ × 0.5 ◦

spatial resolution data for input can significantly improve the processing speed of the model, so the
use of low and medium resolution data can be considered in the process of model training.

In total, when choosing the BP neural network model as the fitting model, using in-site stations,
CHIRPS and GLDAS-2 data as input data sources did not have an obvious influence on the
prediction results, and grid precipitation products could get similar results to rain-gauge station
inputs. When selecting the NARX network as a fitting model, the results of using the GLDAS-2
precipitation product as an input were generally better than those of using rain-gauge station inputs
and CHIRPS data. There was little difference between the accuracy of simulation results by using grid
precipitation products and that by using ground stations. The results of using ground stations to build
the model were almost the same as using grid precipitation products. When GLDAS-2 data were used
as a model input, the result of water level modeling was slightly better than that of the ground station.
However, the percentage deviation between the two models using the in-site station as an input was
better than using precipitation products, which was due to the grid precipitation products tending to
underestimate high rainfall values [40].
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Figure 7. Comparison of performance of the water level modeling using different resolutions. (a) Nash
efficiency coefficient for water level prediction using GLDAS-2 data. (b) Nash efficiency coefficient for
water level prediction using TRMM-V7 data. (c) Nash efficiency coefficient for water level prediction
using CHIRPS data.

4. Conclusions

Precipitation–water level modeling usually lacks a clear model-building mechanism. In this study,
we showed a specific data-driven process for grid precipitation–water level modeling and evaluated
the accuracy of the model. The different data were used as input variables for the two different neural
network models. The results of this study lead to the following conclusions:

1. Compared with the BP neural network, the NARX time series network can significantly improve
the accuracy of water level modeling, which is related to the NARX network, considering the
time lag effect.

2. Compared with the ground station, the grid data can get similar results in general. The GLDAS 2
data are better than the ground station in water level modeling. Therefore, in an area where the
water level station is missing, the surface rainfall data can be used as an available alternative of
ground battle points for water level modeling experiments.

3. Under the same resolution, the water level modeling results with different data sources are similar,
although the GLDAS 2 results are slightly better. Using the same data source, the experimental
results of water level modeling with different resolutions of surface rainfall data have little
difference, so it is of little significance to pursue high-resolution surface rainfall products in the
construction of a precipitation–water level model.
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4. In this paper, by putting forward a method for building a precipitation–water level model,
the influencing factors of each part of the water level model are discussed, which has certain
guiding significance for future research into water level modeling.

At present, our research can only predict the short-term water level and does not consider the
influence of distance effect in the basin on the time delay of rainfall water level process. In the future,
we will continue to consider the use of the machine learning method to predict the medium and
long-term water level and divide the distance according to the spatial correlation factors in the basin.
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