Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The SWAT+ Model, Model Inputs and Setup
2.2.1. Topography and Land Use
2.2.2. Climate Information
2.2.3. Soil Information
- ●
- Environmental covariates (e.g., elevation, slope, topographic wetness index and NDVI) were obtained for the entire Halfway House Granite area (approximately 1050 km2).
- ●
- The conditioned hypercube sampling method (cHLHS) was used to identify 30 hillslopes which are representative of the entire attribute space. Accessibility of the sites was an important consideration. Landowners are not always keen 1) to allow you on their property and 2) allow digging of profiles on their lawns. Large areas of the catchment are also urbanized (Figure 2b) and the surface sealed; this explains the concentration of observation locations in certain areas (Figure 3b).
- ●
- ●
- The soil observation database was then divided into training (75%) and evaluation (25%) observations. The soil map was then created in R by running the multinomial logistic regression algorithm (MNLR; [38]) on the training data. The produced map (Figure 3b), had an evaluation point accuracy of 80% and a Kappa statistic value of 0.71 [17], which indicates a substantial agreement with reality, and was therefore deemed to be acceptable for use in the modelling exercise.
- ●
- ●
- Undisturbed core samples were collected from diagnostic horizons. The core samples were used to determine Db, particle size distribution, and the water retention characteristics using the hanging column method. The double ring infiltration method was used to determine the Ks of diagnostic soil horizons in situ. For more specific details on the sample strategy and measurement methodology, see [39].
- ●
2.2.4. Validation Data and Statistical Comparison
3. Results
4. Discussion
4.1. Streamflow Simulations
4.2. Groundwater Contributions
4.3. Implications for Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, S.J.; Mcsweeney, K.; Lowery, B. Identification of the spatial distribution of soils using a process-based terrain characterization. Geoderma 2001, 103, 249–272. [Google Scholar] [CrossRef]
- Beven, K. Surface water hydrology—Runoff generation and basin structure. Rev. Geophys. 1983, 21, 721–730. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Ayana, E.K.; Yen, H.; Jeong, J.; MacAlister, C.; Taylor, R.; Gerik, T.J.; Steenhuis, T.S. Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena 2018, 163, 332–341. [Google Scholar] [CrossRef]
- Lilly, A.; Boorman, D.; Hollis, J.D. The development of a hydrological classification of UK soils and the inherent scale changes. Nutr. Cycl. Agroecosyst. 1998, 50, 299–302. [Google Scholar] [CrossRef]
- Zhu, A.X.; Mackay, D.S. Effects of spatial detail of soil information on watershed modelling. J. Hydrol. 2001, 248, 54–77. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, J.J.; Sivapalan, M.; Vaché, K.; Dunn, S.; Grant, G.; Haggerty, R.; Hinz, C.; Hooper, R.; Kirchner, J.; Roderick, M.L.; et al. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res. 2007, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Julich, S.; Breuer, L.; Frede, H.-G. Integrating heterogeneous landscape characteristics into watershed scale modelling. Adv. Geosci. 2012, 31, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Ayana, E.K.; Dile, Y.T.; Narasimhan, B.; Srinivasan, R. Dividends in flow prediction improvement using high-resolution soil database. J. Hydrol. Reg. Stud. 2019, 21, 159–175. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Seibert, J.; McDonnell, J.J. On the dialog between experimentalist and modeller in catchment hydrology: Use of soft data for multicriteria model calibration. Water Res. Res. 2002, 38, 1241–1252. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendoça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Thompson, J.A.; Roecker, S.; Gunwald, S.; Owens, P.R. Digital soil mapping: Interactions with and applications for hydropedology. In Hydropedology: Synergistic Integration of Soil Science and Hydrology; Lin, H.S., Ed.; Elsevier: Amsterdam, Netherlands, 2012; pp. 665–709. [Google Scholar]
- Van Tol, J.J.; van Zijl, G.M.; Riddell, E.S.; Fundisi, D. Application of hydropedological insights in hydrological modelling of the Stevenson Hamilton Research Supersite, Kruger National Park, South Africa. Water SA 2015, 41, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Van Zijl, G.M.; van Tol, J.J.; Riddell, E.S. Digital mapping for hydrological modelling. In Digital Soil Mapping Across Paradigms, Scales and Boundaries; Zhang, G., Brus, D., Liu, F., Song, X., Lagacherie, P., Eds.; Springer: Singapore, 2016; pp. 115–129. [Google Scholar]
- Wahren, F.T.; Julich, S.; Nunes, J.P.; Gonzalez-Pelayo, O.; Hawtree, D.; Feger, K.H.; Keizer, J.J. Combining digital soil mapping and hydrological modelling data in a data scarce watershed in north-central Portugal. Geoderma 2016, 264, 350–362. [Google Scholar] [CrossRef]
- Van Zijl, G.M.; van Tol, J.J.; Bouwer, D.; Lorentz, S.A.; Le Roux, P.A.L. Combining Historical Remote Sensing, Digital Soil Mapping and Hydrological Modelling to Produce Solutions for Infrastructure Damage in Cosmo City, South Africa. Remote Sens. 2020, 12, 433. [Google Scholar] [CrossRef] [Green Version]
- Romanowicz, A.A.; Vancloostera, M.; Rounsevelb, M.; La Junesseb, I. Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle catchment, Belgium. Ecol. Modell. 2005, 187, 27–39. [Google Scholar] [CrossRef]
- Bossa, A.Y.; Diekkrüger, B.; Igué, A.M.; Gaiser, T. Analyzing the effects of different soil databases on modelling of hydrological processes and sediment yield in Benin (West Africa). Geoderma 2012, 173, 61–74. [Google Scholar] [CrossRef]
- Diek, S.; Temme, A.J.A.M.; Teuling, A.J. The effect of spatial soil variation on the hydrology of a semi-arid Rocky Mountain catchment. Geoderma 2014, 235, 113–126. [Google Scholar] [CrossRef]
- Geza, M.; McCray, J.E. Effects of soil data resolution on SWAT model stream flow and water quality predictions. J. Environ. Manag. 2008, 88, 393–406. [Google Scholar] [CrossRef]
- Dippenaar, M.A.; Van Rooy, J.L. Review of engineering, hydrogeological and vadose 540 zone hydrological aspects of the Lanseria Gneiss, Goudplaats-Hout River Gneiss and 541 Nelspruit Suite Granite (South Africa). J. Afr. Earth Sci. 2014, 91, 12–31. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- South African National Biodiversity Institute (SANBI). The Vegetation Map of South Africa, Lesotho and Swaziland. Mucina, L., Rutherford, M.C., Powrie, L.W., Eds.; Version. 2012. Available online: http://bgis.sanbi.org/SpatialDataset/Detail/18 (accessed on 14 September 2019).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment, part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Williams, J.; Arnold, J.; Kiniry, J. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Srinivasan, R. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- USGS (United States Geological Survey). Landsat Images. Available online: http://landsat.usgs.gov (accessed on 16 September 2019).
- Geoterraimage. 2013–2014 South African National Land-Cover Dataset; Report Created for Department of Environmental Sciences; DEA/CARDNO SCPF002: Implementation of Land Use Maps for South Africa; Department of Environmental Affairs: Pretoria, South Africa, 2015. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2015, 91, 1015–1057. [Google Scholar] [CrossRef]
- Land Type Survey Staff. Land Types of South Africa: Digital Map (1:250,000 Scale) and Soil Inventory Datasets; ARC-Institute for Soil, Climate and Water: Pretoria, South Africa, 1972–2002. [Google Scholar]
- Paterson, D.G.; Turner, D.P.; Wiese, L.D.; Van Zijl, G.; Clarke, C.E.; Van Tol, J.J. Spatial soil information in South Africa: Situational analysis, limitations and challenges. S. Afr. J. Sci. 2015, 111, 1–7. [Google Scholar] [CrossRef]
- Schulze, R.E. Soils: Agrohydrological Information Needs, Information Sources and Decision Support. In South African Atlas of Climatology and Agrohydrology; Schulze, R.E., Ed.; WRC Report 1489/1/06, Section 4.1; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta, a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Van Zijl, G.M.; Van Tol, J.J.; Tinnefeld, M.; Le Roux, P.A.L. A hillslope based digital soil mapping approach, for hydropedological assessments. Geoderma 2019, 354, 113888. [Google Scholar] [CrossRef]
- Soil Classification Working Group. Soil Classification: A Taxonomic System for South Africa; Department of Agricultural Development: Pretoria, South Africa, 1991. [Google Scholar]
- Van Tol, J.J.; Le Roux, P.A.L. Hydropedological grouping of South African soil forms. S. Afr. J. Plant. Soil. 2019, 36, 233–235. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.J.; Heuvelink, G.B.M.; Stoorvogel, J.J. Updating the 1: 50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma 2009, 151, 311–326. [Google Scholar] [CrossRef]
- Tinnefeld, M.; Le Roux, P.A.L.; Job, N.; Van Zijl, G.M.; Van Tol, J.J.; Lorentz, S.A. Research Report on the Hydropedology of Part of the Halfway House Granite Dome; Department of Infrastructure and Environment, City of Johannesburg Metropolitan Council: Johannesburg, South Africa; University of the Free State, Institute of Groundwater Studies: Bloemfontein, South Africa, 2017. [Google Scholar]
- DSA. Cosmo City Hydropedological Report; Report prepared for Johannesburg Roads Agency (JRA); Digital Soils Africa; DSA: Port Elizabeth, South Africa, 2019. [Google Scholar]
- ORNL; DAAC. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. Subset obtained for MOD16A2 Product at 25.9549S,27.9639E, Time Period: 2002-01-01 to 2010-12-27, and Subset Size: 60.5 × 60.5 km. Available online: https://doi.org/10.3334/ORNLDAAC/1379 (accessed on 2 April 2020).
- Running, Q.M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2017. Available online: https://doi.org/10.5067/MODIS/MOD16A2.00 (accessed on 2 April 2020).
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Sys. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of global evapotranspiration product (MOD16) using flux tower data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef] [Green Version]
- Van der Waals, J.H. Hydropedology Wetland Impact Assessment and Management Report; Proposed Linksfield Development Site; Terrasoil: Gauteng Province, South Africa, 2014. [Google Scholar]
- Van Tol, J.J.; Lorentz, S.A.; van Zijl, G.M.; Le Roux, P.A.L. The contribution of hydropedological assessments to the availability and sustainable water, for all (SDG#6). In Soil and Sustainable Development Goals; Lal, R., Horn, R., Kosaki, T., Eds.; Catena-Schweizerbart: Stuttgart, Germany, 2018; pp. 102–117. [Google Scholar]
Level | Soil Group | Hydro-Group | Horizon | Depth | Db 1 | AWC 2 | Ks 3 | OC 4 | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|---|---|---|
mm | g.cm−3 | mm.mm−1 | mm.h−1 | % | |||||||
Land Type (LT) | Bb1 | B | A | 300 | 1.4 | 0.09 | 16.2 | 1.5 | 15.0 | 10.0 | 75.0 |
B | 660 | 1.5 | 0.09 | 6.9 | 0.5 | 20.0 | 10.0 | 70.0 | |||
Bb2 | B | A | 300 | 1.5 | 0.88 | 11.9 | 1.5 | 18.0 | 10.0 | 73.0 | |
B | 790 | 1.6 | 0.68 | 7.3 | 0.5 | 23.0 | 10.0 | 69.0 | |||
Digital soil mapping(DSM) | Recharge (deep) | A | A | 300 | 1.4 | 0.09 | 218.5 | 1.2 | 21.6 | 11.1 | 67.6 |
B | 1200 | 1.3 | 0.09 | 172.0 | 0.8 | 29.7 | 13.2 | 57.2 | |||
C | 1500 | 1.4 | 0.08 | 56.9 | 0.4 | 27.1 | 15.7 | 57.6 | |||
Recharge (shallow) | A | A | 300 | 1.4 | 0.12 | 218.5 | 1.6 | 21.6 | 11.1 | 67.6 | |
Interflow (A/B) | C | A | 300 | 1.4 | 0.06 | 112.5 | 1.8 | 21.6 | 11.1 | 67.6 | |
E | 600 | 1.3 | 0.09 | 87.5 | 0.6 | 29.1 | 14.7 | 56.6 | |||
B | 1200 | 1.4 | 0.08 | 2.0 | 0.5 | 46.2 | 14.2 | 39.7 | |||
Interflow (soil/bedrock) | B | A | 300 | 1.4 | 0.13 | 218.5 | 1.8 | 21.6 | 11.1 | 67.6 | |
B | 800 | 1.3 | 0.07 | 172.0 | 0.8 | 29.1 | 14.7 | 56.6 | |||
C | 1000 | 1.5 | 0.06 | 15.0 | 0.4 | 46.2 | 14.2 | 39.7 | |||
R | 1500 | 1.8 | 0.06 | 0.1 | 0.0 | 46.2 | 14.2 | 39.7 | |||
Responsive (wet) | D | A | 300 | 1.4 | 0.06 | 10.2 | 2.1 | 21.6 | 11.1 | 67.6 | |
G | 1000 | 1.2 | 0.07 | 5.0 | 0.9 | 52.8 | 19.6 | 27.6 | |||
G2 | 1300 | 1.6 | 0.06 | 0.1 | 0.4 | 52.8 | 19.6 | 27.6 | |||
Responsive (shallow) | C | A | 300 | 1.4 | 0.13 | 10.2 | 1.8 | 21.6 | 11.1 | 67.6 | |
R | 500 | 1.8 | 0.07 | 1.0 | 0.0 | 46.2 | 14.2 | 39.7 |
Hydropedological Soil Type [37] | Soil Forms [36] | Reference Groups [32] | Defining Characteristic |
---|---|---|---|
Recharge (deep) | Clovelly, Constantia, Griffen, Hutton, Shortlands | Acrisols, Nitisols | Soil profiles showing no signs of wetness in the profile; fast vertical drainage through and out of the profile is dominant. |
Recharge (shallow) | Mispah, Glenrosa, Mayo | Leptosols | Shallow soils with chromic colours in the topsoil; underlying bedrock is permeable and drainage out of profile dominant. |
Interflow (A/B) | Kroonstad, Longlands, Sterkspruit, Wasbank | Stagnosols, Planosols, Plinthosols | Hydromorphic properties between top and subsoil signify periodic saturation. These are typically duplex soils with textural discontinuity between top and subsoil, resulting in a perched water table at A/B horizon interface and interflow. |
Interflow (soil/bedrock) | Avalon, Bainsvlei, Bloemdal, Dresden, Fernwood, Glencoe, Pinedene, Tukulu, Westleigh | Acrisols, Stagnosols, Arenosols, Plinthosols, Stagnosols, | Hydromorphic properties at the soil/bedrock interface indicate saturation due to relatively impermeable bedrock. Perched water table at the bedrock interface will result in interflow at soil/bedrock interface. |
Responsive (wet) | Katspruit, Rensburg | Gleysols | Gleyed subsoils indicate long periods of saturation, typical of wetland soils. Soils will respond quickly to rain events and promote overland flow due to saturation excess. |
Responsive (shallow) | Mispah, Glenrosa | Leptosols | Shallow soils with bleached colours in the topsoil indicate that underlying bedrock is slowly permeable. Small storage capacity of the soil will quickly be exceeded following rainstorms and promote overland flow generation. |
Weir | A2H044 (630 km2) | A2H023 (547 km2) | A2H047 (54 km2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Annual Average Values (mm) | Observed | DSM | LT | Observed | DSM | LT | Observed | DSM | LT |
Precipitation | 635 | 635 | 635 | 638 | 638 | 616 | 616 | ||
Total discharge | 350 | 216 | 292 | 367 | 218 | 302 | 262 | 214 | 341 |
Overland flow | 59 | 255 | 61 | 265 | 72 | 318 | |||
Lateral flow | 156 | 37 | 156 | 37 | 142 | 23 | |||
Percolation | 10 | 16 | 10 | 15 | 10 | 11 | |||
aET | 7231 | 407 | 326 | 409 | 319 | 391 | 263 | ||
pET | 1796 | 1796 | 1796 | 1796 | 1800 | 1800 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Tol, J.; van Zijl, G.; Julich, S. Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment. Hydrology 2020, 7, 34. https://doi.org/10.3390/hydrology7020034
van Tol J, van Zijl G, Julich S. Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment. Hydrology. 2020; 7(2):34. https://doi.org/10.3390/hydrology7020034
Chicago/Turabian Stylevan Tol, Johan, George van Zijl, and Stefan Julich. 2020. "Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment" Hydrology 7, no. 2: 34. https://doi.org/10.3390/hydrology7020034
APA Stylevan Tol, J., van Zijl, G., & Julich, S. (2020). Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment. Hydrology, 7(2), 34. https://doi.org/10.3390/hydrology7020034