Regional Climatological Drought: An Assessment Using High-Resolution Data
Abstract
:1. Introduction
- (1)
- Does the adopted downscaling method show satisfactory performance?
- (2)
- How well do the downscaled climatological data depict spatial variability on drought study?
2. Study Area
2.1. Araveli Region (AV)
2.2. Bundelkhand Region
2.3. Kansabati Region
3. Data and Methodology
3.1. Data
3.2. Methodology
3.2.1. Downscaling with Bias Correction
3.2.2. Evaluation and Validation
3.2.3. Potential Evapotranspiration
3.2.4. Climate Based Drought Index: Self-Calibrating Palmer Drought Severity Index (scPDSI)
3.2.5. Past Droughts Events
3.2.6. Drought Frequency and Severity
4. Results
4.1. Validation of Downscaled Climate Variables
4.2. Droughts in the AV Region
4.3. Droughts in BK Region
4.4. Droughts in KSB Region
4.5. Frequency of Droughts
5. Discussion
6. Conclusions
- The delta downscaling method successfully enhanced precipitation and temperature at various resolutions using the corresponding climatology to 1 km × 1 km spatial resolution.
- The values of root-mean-square error and coefficients of correlation (R) values indicated that the downscaled climate products are robust in capturing the interannual drought variability.
- The incorporation of the delta downscaling method to produce scPDSI based drought products showed the potential to assess higher resolution drought information within smaller spatial extents.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. The SPEIbase: A new gridded product for the analysis of drought variability and drought impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2007, 31, 79–105. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Stocker, T.F.; Dahe, Q.; Plattner, G.K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Xie, S.P. Technical summary. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Bisht, D.S.; Sridhar, V.; Mishra, A.; Chatterjee, C.; Raghuwanshi, N.S. Drought characterization over India under projected climate scenario. Int. J. Climatol. 2019, 39, 1889–1911. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Characterizing present and future drought changes over eastern China. Int. J. Clim. 2017, 37, 138–156. [Google Scholar] [CrossRef]
- Thilakarathne, M.; Sridhar, V. Characterization of future drought conditions in the Lower Mekong River basin. Weather Clim. Extrem. 2017, 17, 47–58. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, S.-Y.; Kim, J.-S.; Sur, C.; Chen, J. Extreme drought hotspot analysis for adaptation to a changing climate: Assessment of applicability to the five major river basins of the Korean Peninsula. Int. J. Clim. 2018, 38, 4025–4032. [Google Scholar] [CrossRef]
- Scheff, J.; Frierson, D.M. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 2015, 28, 5583–5600. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 2015, 28, 4490–4512. [Google Scholar] [CrossRef]
- Ault, T.R.; Cole, J.E.; Overpeck, J.T.; Pederson, G.T.; Meko, D.M. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Clim. 2014, 27, 7529–7549. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Samra, J.S. Review and Analysis of Drought Monitoring, Declaration and Management in India; IWMI: Colombo, Sri Lanka, 2004. [Google Scholar]
- Shrestha, A.; Rahaman, M.M.; Kalra, A.; Jogineedi, R.; Maheshwari, P. Climatological drought forecasting using bias corrected CMIP6 climate data: A case study for India. Forecasting 2020, 2, 59–84. [Google Scholar] [CrossRef]
- De, U.S.; Dube, R.K.; Rao, G.P. Extreme weather events over India in the last 100 years. J. Ind. Geophys. Union 2005, 9, 173–187. [Google Scholar]
- Mishra, V.; Shah, R.; Thrasher, B. Soil moisture droughts under the retrospective and projected climate in India. J. Hydrometeorol. 2014, 15, 2267–2292. [Google Scholar] [CrossRef]
- Nath, R.; Nath, D.; Li, Q.; Chen, W.; Cui, X. Impact of drought on agriculture in the Indo-Gangetic Plain, India. Adv. Atmos. Sci. 2017, 34, 335–346. [Google Scholar] [CrossRef]
- Pant, G.B.; Parthasarathy, S.B. Some aspects of an association between the southern oscillation and indian summer monsoon. Theor. Appl. Clim. 1981, 29, 245–252. [Google Scholar] [CrossRef]
- Mallya, G.; Mishra, V.; Niyogi, D.; Tripathi, S.; Govindaraju, R.S. Trends and variability of droughts over the Indian monsoon region. Weather Clim. Extrem. 2016, 12, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, R.; Kalra, A.; Kumar, S. Analyzing the effect of CMIP5 climate projections on streamflow within the Pajaro River Basin. Open Water J. 2020, 6, 5. [Google Scholar]
- Fischer, E.; Seneviratne, S.I.; Vidale, P.L.; Luthi, D.; Schär, C. Soil moisture–Atmosphere interactions during the 2003 European summer heat wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Lamichhane, G.R.; Shrestha, A.; Thakur, B.; Kalra, A.; Ahmad, S. Using SWAT to Simulate Streamflow in Trinity River Basin, Texas, USA. In World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management; American Society of Civil Engineers: Reston, VA, USA, 2019. [Google Scholar]
- Joshi, N.; Tamaddun, K.; Parajuli, R.; Kalra, A.; Maheshwari, P.; Mastino, L.; Velotta, M. Future changes in water supply and demand for Las Vegas Valley: A system dynamic approach based on CMIP3 and CMIP5 climate projections. Hydrology 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.; Kalra, A.; Ahmad, S.; Lamb, K.W.; Lakshmi, V. Bringing statistical learning machines together for hydro-climatological predictions-case study for Sacramento San joaquin River Basin, California. J. Hydrol. Reg. Stud. 2020, 27, 100651. [Google Scholar] [CrossRef]
- Shrestha, A.; Bhattacharjee, L.; Baral, S.; Thakur, B.; Joshi, N.; Kalra, A.; Gupta, R. Understanding Suitability of MIKE 21 and HEC-RAS for 2D Floodplain Modeling. In Proceedings of the World Environmental Water Resources Congress 2020, Henderson, NV, USA, 17–21 May 2020; pp. 237–253. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Nasrollahi, N.; Hsu, K.-L.; Sorooshian, S. Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theor. Appl. Clim. 2015, 123, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Grasso, V.F.; Singh, A. Early Warning Systems: State-of-Art Analysis and Future Directions; Draft Report; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, W.; Sheffield, J.; Stefanski, R.; Cripe, D.; Pulwarty, R.; Vogt, J.V.; Nicholson, M. Toward global drought early warning capability. Bull. Am. Meteorol. Soc. 2013, 94, 776–787. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Clim. Res. 2002, 22, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorology variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, M.; Shahid, S.; Hazarika, M.K.; Nashrrullah, S.; Harun, S.B.; Shamsudin, S. Analysis of meteorological drought pattern during different climatic and cropping seasons in Bangladesh. J. Am. Water Resour. Assoc. 2015, 51, 794–806. [Google Scholar] [CrossRef]
- Thomas, T.; Nayak, P.C.; Ghosh, N.C. Spatiotemporal analysis of drought characteristics in the bundelkhand region of central india using the standardized precipitation index. J. Hydrol. Eng. 2015, 20, 05015004. [Google Scholar] [CrossRef]
- Meshram, S.G.; Gautam, R.; Kahya, E. Drought analysis in the tons River Basin, India during 1969–2008. Theor. Appl. Climatol. 2018, 132, 939–951. [Google Scholar] [CrossRef]
- Moreno, A.; Hasenauer, H. Spatial downscaling of European climate data. Int. J. Climatol. 2016, 36, 1444–1458. [Google Scholar] [CrossRef]
- Shah, R.D.; Mishra, V. Development of an Experimental Near-Real-Time Drought Monitor for India. J. Hydrometeorol. 2015, 16, 327–345. [Google Scholar] [CrossRef]
- Lorenz, R.; Davin, E.L.; Seneviratne, S.I. Modeling land-climate coupling in Europe: Impact of land surface representation on climate variability and extremes. J. Geophys. Res. Atmos. 2012, 117, D20109. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, E.; Fricker, T.E.; Challinor, A.J.; Ferro, C.A.T.; Ho, C.K.; Osborne, T.M. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Chang. Boil. 2012, 19, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R. The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci. 2010, 14, 1125–1138. [Google Scholar] [CrossRef] [Green Version]
- Mosier, T.M.; Hill, D.F.; Sharp, K.V. 30-Arcsecond monthly climate surfaces with global land coverage. Int. J. Clim. 2013, 34, 2175–2188. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Kumar, M.N.; Murthy, C.S.; Sai, M.V.R.S.; Roy, P.S. Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index. Meteorol. Appl. 2011, 19, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Aadhar, S.; Mishra, V. High-resolution near real-time drought monitoring in South Asia. Sci. Data 2017, 4, 170145. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Dandekar, M.M.; Raut, P.S. Variability in drought incidence over India—A statistical approach. Mausam 1989, 40, 207–214. [Google Scholar]
- Pai, D.S.; Sridhar, L.; Guhathakurtha, P.; Hatwar, H.R. District-Wide Drought Climatology of the South West Monsoon Season over India Based on Standard Precipitation Index (SPI). Nat. Hazards 2011, 59, 1797–1813. [Google Scholar] [CrossRef]
- Thomas, J.; Prasannakumar, V. Temporal analysis of rainfall (1871–2012) and drought characteristics over a tropical monsoon-dominated State (Kerala) of India. J. Hydrol. 2016, 534, 266–280. [Google Scholar] [CrossRef]
- Ganguli, P.; Reddy, M.J. Risk assessment of droughts in Gujarat using bivariate copulas. Water Resour. Manag. 2012, 26, 3301–3327. [Google Scholar] [CrossRef]
- Rohde, R. Comparison of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques on ideal synthetic data. Berkeley Earth Tech. Rep. 2013, 1, 15. Available online: http://static.berkeleyearth.org/memos/robert-rohde-memo.pdf (accessed on 26 December 2018).
- Dai, A.; Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Clim. Chang. 2017, 144, 519–533. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Brier, G.W. Some Applications of Statistics to Meteorology; Penn State University: Centre County, PA, USA, 1968. [Google Scholar]
- Van Der Schrier, G.; Jones, P.; Briffa, K.R. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the definition of reference evapotranspiration. ICID Bull. 1994, 43, 1–34. [Google Scholar] [CrossRef]
- Allen, R.G. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43, 35–92. [Google Scholar]
- Lockwood, J.G. Is potential evapotranspiration and its relationship with actual evapotranspiration sensitive to elevated atmospheric CO2 levels? Clim. Chang. 1999, 41, 193–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirement; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Alley, W.M. The Palmer drought severity index: Limitations and assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K.; Siddiqui, A.R. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Preethi, B.; Ramya, R.; Patwardhan, S.K.; Mujumdar, M.; Kripalani, R.H. Variability of Indian summer monsoon droughts in CMIP5 climate models. Clim. Dyn. 2019, 53, 1937–1962. [Google Scholar] [CrossRef]
- Ghosh, K.G. Spatial and temporal appraisal of drought jeopardy over the Gangetic West Bengal, eastern India. Geoenviron. Disasters 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Pingale, S.M.; Khare, D.; Jat, M.K.; Adamowski, J. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res. 2014, 138, 73–90. [Google Scholar] [CrossRef]
- Singh, A.K.; Tripathi, J.N.; Singh, K.K.; Singh, V.; Sateesh, M. Comparison of different satellite-derived rainfall products with IMD gridded data over Indian meteorological subdivisions during Indian Summer Monsoon (ISM) 2016 at weekly temporal resolution. J. Hydrol. 2019, 575, 1371–1379. [Google Scholar] [CrossRef]
- Herrera, D.; Ault, T. Insights from a new high-resolution drought atlas for the Caribbean spanning 1950–2016. J. Clim. 2017, 30, 7801–7825. [Google Scholar] [CrossRef]
- Gutmann, E.; Pruitt, T.; Clark, M.P.; Brekke, L.; Arnold, J.R.; Raff, D.A.; Rasmussen, R.M. An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res. 2014, 50, 7167–7186. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R. Spatial and temporal drought analysis in the Kansabati river basin, India. Int. J. River Basin Manag. 2005, 3, 31–41. [Google Scholar] [CrossRef]
- Mittal, N.; Mishra, A.; Singh, R.; Bhave, A.G.; Van der Valk, M. Flow regime alteration due to anthropogenic and climatic changes in the Kangsabati River, India. Ecohydrol. Hydrobiol. 2014, 14, 182–191. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Panda, R.K. Effect of climate change on rice yield at Kharagpur, West Bengal. Int. J. Food Agric. Vet. Sci. 2013, 4, 6–12. [Google Scholar] [CrossRef]
- Joshi, N.; Rahaman, M.; Thakur, B.; Shrestha, A.; Kalra, A.; Gupta, R. Assessing the effects of climate variability on groundwater in Northern India. In Proceedings of the World Environmental and Water Resources Congress 2020: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environmental Engineering, Henderson, NV, USA, 17–21 May 2020; pp. 41–52. [Google Scholar] [CrossRef]
Dataset | Spatial Resolution | Time Period | Variable | Spatial Coverage |
---|---|---|---|---|
BEST | 1° | 1950–2016 | Temperature | Global |
NCEP-NCAR reanalysis | 2.5° | 1950–2016 | Global | |
Worldclim2 (climatology) | 1 km | 1970–2000 | Global | |
India Water Portal | Station data | 1950–2002 | In India only | |
GPCC version 7 | 1° | 1950–2016 | Precipitation | Global |
CHIRPS | 0.05° | 1981–2016 | Global | |
Worldclim2 (climatology) | 1 km | 1970–2000 | Global | |
India Water Portal | Station data | 1950–2002 | In India only | |
NCEP-NCAR reanalysis | 2° | 1950–2016 | Cloud cover | Global |
NCEP-NCAR reanalysis | 2.5° | 1950–2016 | Windspeed | Global |
SRTM Elevation | 30 m | - | Elevation | Global |
Severity | Index Values |
---|---|
Mild | ≤−1.5 |
Severe | ≤−3.0 |
Extreme | ≤−4.0 |
Study Area | Statistical Parameters | Minimum Temperature | Maximum Temperature | Precipitation |
---|---|---|---|---|
AV | RMSE | 1.87 | 2.75 | 41.21 |
Correlation | 0.95 | 0.91 | 0.92 | |
Bias | −0.53 | 1.50 | −0.98 | |
BK | RMSE | 2.75 | 2.83 | 47.81 |
Correlation | 0.96 | 0.93 | 0.94 | |
Bias | −1.16 | 0.78 | 5.03 | |
KSB | RMSE | 1.52 | 2.08 | 49.69 |
Correlation | 0.91 | 0.91 | 0.93 | |
Bias | 0.14 | −0.18 | −3.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, A.; Rahaman, M.M.; Kalra, A.; Thakur, B.; Lamb, K.W.; Maheshwari, P. Regional Climatological Drought: An Assessment Using High-Resolution Data. Hydrology 2020, 7, 33. https://doi.org/10.3390/hydrology7020033
Shrestha A, Rahaman MM, Kalra A, Thakur B, Lamb KW, Maheshwari P. Regional Climatological Drought: An Assessment Using High-Resolution Data. Hydrology. 2020; 7(2):33. https://doi.org/10.3390/hydrology7020033
Chicago/Turabian StyleShrestha, Alen, Md Mafuzur Rahaman, Ajay Kalra, Balbhadra Thakur, Kenneth W. Lamb, and Pankaj Maheshwari. 2020. "Regional Climatological Drought: An Assessment Using High-Resolution Data" Hydrology 7, no. 2: 33. https://doi.org/10.3390/hydrology7020033
APA StyleShrestha, A., Rahaman, M. M., Kalra, A., Thakur, B., Lamb, K. W., & Maheshwari, P. (2020). Regional Climatological Drought: An Assessment Using High-Resolution Data. Hydrology, 7(2), 33. https://doi.org/10.3390/hydrology7020033