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Abstract: Soil information is critical in watershed-scale hydrological modelling; however, it is still
debated which level of complexity the soil data should contain. In the present study, we have
compared the effect of two levels of soil data on the hydrologic simulation of a mesoscale, urbanised
watershed (630 km2) in central South Africa. The first level of soil data, land type (LT) data, is currently
the best, readily available soil information that covers the whole of South Africa. In the LT database,
the entire study area is covered by only two soil types. The second level of soil data (DSM) was created
by means of digital soil mapping based on hydropedological principles. It resulted in six different
soil types with different hydrological behaviour (e.g., interflow, recharge, responsive). The two
levels of soil data were each included in the revised version of the Soil and Water Assessment Tool
(SWAT+). To compare the effects of different complexity of soil information on the simulated water
balance, the outputs of the uncalibrated models were compared to the three nested gauging stations
of the watershed. For the LT scenario, the simulation efficiencies calculated with the Kling–Gupta
efficiency (KGE) for the three nested gauging stations (640 km2, 550 km2, 54 km2) of 0, 0.33 and
−0.23 were achieved, respectively. Under the DSM scenario, KGE increased to 0.28, 0.44 and 0.43
indicating an immediate improvement of the simulation by integrating soil data with detailed
information on hydrological behaviour. In the LT scenario, actual evapotranspiration (aET) was
clearly underestimated compared to MODIS-derived aET, while surface runoff was overestimated.
The DSM scenario resulted in higher simulated aET compared to LT and lower surface runoff.
The higher simulation efficiency of DSM in the smaller headwater catchments can be attributed to the
inclusion of the interflow soil type, which covers the governing runoff generation process better than
the LT scenario. Our results indicate that simulations benefit from more detailed soil information,
especially in smaller areas where fewer runoff generation processes dominate.

Keywords: hydrological processes; hydropedology; predictions in ungauged basins; SWAT+ model

1. Introduction

Soil is a dominant factor in controlling hydrological flowpaths through partitioning precipitation into
different components of the water balance. This is due to the ability of soil to store and transmit water [1].
Soil information is therefore an important input into physically based hydrological models [2,3], but soil
information is often not readily available in appropriate format for modellers to use [4]. Reasons for this
are, firstly, that existing soil maps were not primarily produced with hydrological modelling purposes
in mind [5], and, secondly, the costs and time involved in measuring important soil hydraulic properties
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(e.g., water retention characteristics and conductivity) and representing these properties spatially.
The result is that the level of spatial detail of soil inputs is seldom comparable with other spatial inputs,
such as remote-sensed land use and topography. Consequently, the models rely strongly on calibration
against measured data, to optimise simulations and account for the lack of adequate representation of the
heterogeneous landscape [6–8]. These models tend to be over-parameterised, with many combinations
of the model structure or parameters leading to the same final result (i.e., equifinality [9,10]). This leads
to uncertainty about whether the models are representing the hydrological processes dominating in a
particular area. Often these models then ‘work’ in the specific area where they were calibrated, but for
the wrong process reasons [11]. This limits their value to predicting the impact of climate and land-use
change, as well as their extrapolation value to ‘ungauged’ areas.

The advances in digital soil mapping (DSM; [12]) have paved the way for providing detailed
soil information in an adequate scale and format for hydrological modelling studies (e.g., [7,13–17]).
But does this enhanced soil information translate into more efficient modelling? Several studies found
that there is improved accuracy in modelling results when compared to measured streamflow or
at least reduced parameter uncertainty during calibration [14,16,18–20]. For example, the inclusion
of more detailed soil descriptions and representation in the Agriculture Catchments Research Unit
(ACRU) model led to an increase in Nash–Sutcliffe efficiency (NSE) of between 9% and 52% in semi-arid
catchments in South Africa [14]. DSM using the Soil Land Inference Model (SoLIM) yielded a more
detailed soil map for a data-scarce area in Portugal [16]. When this map was used to parameterise the
Soil and Water Assessment Tool (SWAT) model, it resulted in an increase in NSE of around 7% compared
to legacy soil data. Romanowicz et al. [18], evaluated the contribution of ‘generic’ (1:500,000 scale) and
‘detailed’ (1:25,000 scale) soil maps to streamflow prediction accuracies. Using several model setups in
SWAT, the detailed soil information outperformed the course soil information in predicting streamflow
accurately. The sensitivity of the SWAT model to soil information, and contribution of detailed soil
distribution to streamflow predictions, was further demonstrated in the improved simulation efficiency
when detailed Soil and Terrain (SOTER) data was used instead of coarse SOTER data, in Benin [19].
Others maintain that the small improvements in modelling accuracy do not necessarily justify the
cost and time to gather improved soil information [21]. In general, these studies agree that the
physical-based distributed models on which the different levels of soil information were tested are
very sensitive to the soil data. Most of these studies also relied on calibration of the models, and they
focus therefore on the optimisation of the model using different levels of soil information.

In this study, the objective was to evaluate the impact of different levels of soil information on
model performance. The hypothesis was that improved soil information, developed through DSM,
will reflect hydrological processes more accurately, and this will translate into improved simulation
efficiency. The focus was on the direct contribution of improved soil information to modelling efficiency
and we did not try to optimize the model through extensive calibration, essentially treating the
catchment as ungauged. We further explored the changes in simulated processes resulting from the
different soil information sets and the impact thereof on water resource management.

2. Materials and Methods

2.1. Study Area

The study area is approximately 630 km2 and lies between Johannesburg (largest city in South
Africa) and the capital city, Pretoria (Figure 1). The area lies in the Gauteng Province, which hosts
a quarter of the country’s population (59 million) and is responsible for generating the majority of
the gross domestic product. Due to the economic importance of the area, it is subjected to significant
development pressure resulting from urbanisation.
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Figure 1. The study area with sub-basins, weirs and climate stations. The City of Johannesburg is 

located in the south with the capital city of South Africa, Pretoria, in the north. 

The Jukskei River drains the catchment in a northerly direction. The geology of the study site is 

granite and gneiss of the Lanseria Gneiss of the Johannesburg Dome Granite [20,22] with Leptosols, 

Plinthosols, Cambisols, Stagnosols and Fluvisols being the dominant reference groups found [23]. 

The vegetation type is Egoli Granite Grassland, forming part of the Mesic Highveld Grassland 

Bioregion [24]. More than two-thirds of this vegetation unit has been transformed by urbanisation. 

The catchment lies between 1245 and 1709 m.a.s.l., on the Highveld of South Africa. The terrain is 

hilly, with the majority of hillslopes having an average slope of less than 5%. The climate is marked 

by convectional thunderstorms during summer months (October to April), with an average annual 

rainfall of around 700 mm. Days are hot during summer (average maximum temperature of around 

25 °C) with cold nights during winter (average minimum temperature of approximately 4 °C).  

2.2. The SWAT+ Model, Model Inputs and Setup 

The hydrological model SWAT+ (v 1.2.3) was used for the modelling with QSWAT+ (v. 1.2.2) to 

set up the watershed. SWAT+ is a revised version of the well-known Soil and Water Assessment Tool 

(SWAT; [25]). SWAT is a process-based semi-distributed catchment scale model which is widely used 

to simulate water quality and quantity to predict and assess the impacts of land use, climate change, 

soil erosion and pollution. As one of the first steps, the model divides the catchment into hydrological 

response units (HRUs). An HRU is a homogenous area in terms of soils, land use and slope. The 

model calculates various components of the water balance, such as overland flow, infiltration, lateral 

flow, percolation, evapotranspiration and discharge to the stream from each HRU. In addition, the 

model is capable of simulating crop growth and nutrient/pollution fluxes through the landscape. For 

a more complete description of the SWAT model see [26], and for changes in the SWAT+ version see 

[27]. Only a few important inputs and processes in the model are discussed here. The model was run 

from January 2000 until December 2013. The first three years were used as a warm-up period, 

followed by 11 years of validation. Since the aim of the study was to evaluate the direct contribution 

of improved soil information to modelling efficiency, we did not include a calibration period.  

2.2.1. Topography and Land Use 

Elevation was obtained from a 30-m Shuttle Radar Topography Mission Digital Elevation Model 

(SRTM DEM) ([28]; Figure 2a). The current land use was obtained from the 2013–2014 SA National 

Figure 1. The study area with sub-basins, weirs and climate stations. The City of Johannesburg is
located in the south with the capital city of South Africa, Pretoria, in the north.

The Jukskei River drains the catchment in a northerly direction. The geology of the study site is
granite and gneiss of the Lanseria Gneiss of the Johannesburg Dome Granite [20,22] with Leptosols,
Plinthosols, Cambisols, Stagnosols and Fluvisols being the dominant reference groups found [23].
The vegetation type is Egoli Granite Grassland, forming part of the Mesic Highveld Grassland
Bioregion [24]. More than two-thirds of this vegetation unit has been transformed by urbanisation.
The catchment lies between 1245 and 1709 m.a.s.l., on the Highveld of South Africa. The terrain is
hilly, with the majority of hillslopes having an average slope of less than 5%. The climate is marked
by convectional thunderstorms during summer months (October to April), with an average annual
rainfall of around 700 mm. Days are hot during summer (average maximum temperature of around
25 ◦C) with cold nights during winter (average minimum temperature of approximately 4 ◦C).

2.2. The SWAT+Model, Model Inputs and Setup

The hydrological model SWAT+ (v 1.2.3) was used for the modelling with QSWAT+ (v. 1.2.2) to
set up the watershed. SWAT+ is a revised version of the well-known Soil and Water Assessment Tool
(SWAT; [25]). SWAT is a process-based semi-distributed catchment scale model which is widely used
to simulate water quality and quantity to predict and assess the impacts of land use, climate change,
soil erosion and pollution. As one of the first steps, the model divides the catchment into hydrological
response units (HRUs). An HRU is a homogenous area in terms of soils, land use and slope. The model
calculates various components of the water balance, such as overland flow, infiltration, lateral flow,
percolation, evapotranspiration and discharge to the stream from each HRU. In addition, the model is
capable of simulating crop growth and nutrient/pollution fluxes through the landscape. For a more
complete description of the SWAT model see [26], and for changes in the SWAT+ version see [27].
Only a few important inputs and processes in the model are discussed here. The model was run from
January 2000 until December 2013. The first three years were used as a warm-up period, followed by
11 years of validation. Since the aim of the study was to evaluate the direct contribution of improved
soil information to modelling efficiency, we did not include a calibration period.
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2.2.1. Topography and Land Use

Elevation was obtained from a 30-m Shuttle Radar Topography Mission Digital Elevation Model
(SRTM DEM) ([28]; Figure 2a). The current land use was obtained from the 2013–2014 SA National
Land-Cover Map dataset [29]. The land-cover was re-grouped into SWAT land uses with pre-defined
parameters for each use (Figure 2b).
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Figure 2. (a) Elevation of the study catchment with streams and Department of Water Affairs (DWA)
weirs; (b) dominant land-use in the study area as modified from the National Land Cover Map
2013–2014 [29].

2.2.2. Climate Information

Daily rainfall and minimum and maximum temperatures were obtained from two climate stations,
namely, the Johannesburg Botanical Gardens (BOT) and OR Tambo Airport (INT) (Figure 1) of the South
African Weather Service. Daily solar radiation, relative humidity and wind speed were obtained from the
Climate Forecast System Reanalysis (CFSR) project [30], done by the National Center for Environmental
Prediction (NCEP). This information was used to calculate daily potential evapotranspiration using the
Penman–Monteith approach.

2.2.3. Soil Information

SWAT+ requires a soil dataset as a spatial layer. Details on soil horizons such as depth, particle
size distribution, saturated hydraulic conductivity (Ks), bulk density (Db), carbon content and available
water capacity (AWC) are required for each layer. The latter is synonymous with the more familiar
‘plant available water’.

Two levels of soil information were used in this study (Figure 3). The first was the land type
(LT) database [31]. The LT database is the only soil dataset that covers the whole of South Africa at
a 1:250,000 scale. A land type is an area with relatively homogenous soil forming factors (climate,
geology and topography) resulting in relatively homogenous soil distribution patterns [32]. The LT
database is currently the best readily available source of hydrological soil information available in
South Africa. With the exception of Ks, all the SWAT+ required properties for the LT data are available
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from [33] and are summarized in Table 1. ROSSETTA [34] was used to derive the Ks for different
horizons from the texture classes.Hydrology 2020, 7, x FOR PEER REVIEW 5 of 15 
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Figure 3. Different levels of soil information used in the study: (a) land type information (LT) obtained
from the [31] and (b) Digital Soil Map (DSM) data, produced by [17,35], together with locations of
representative profiles used to derive hydraulic properties of the soil types.

Table 1. Selected hydraulic properties of the soil horizons in different soil information datasets.

Level Soil Group Hydro-Group Horizon Depth Db 1 AWC 2 Ks 3 OC 4 Clay Silt Sand

mm g.cm−3 mm.mm−1 mm.h−1 %

Land Type (LT)
Bb1 B

A 300 1.4 0.09 16.2 1.5 15.0 10.0 75.0

B 660 1.5 0.09 6.9 0.5 20.0 10.0 70.0

Bb2 B
A 300 1.5 0.88 11.9 1.5 18.0 10.0 73.0

B 790 1.6 0.68 7.3 0.5 23.0 10.0 69.0

Digital soil
mapping(DSM)

Recharge (deep) A

A 300 1.4 0.09 218.5 1.2 21.6 11.1 67.6

B 1200 1.3 0.09 172.0 0.8 29.7 13.2 57.2

C 1500 1.4 0.08 56.9 0.4 27.1 15.7 57.6

Recharge
(shallow) A A 300 1.4 0.12 218.5 1.6 21.6 11.1 67.6

Interflow (A/B) C

A 300 1.4 0.06 112.5 1.8 21.6 11.1 67.6

E 600 1.3 0.09 87.5 0.6 29.1 14.7 56.6

B 1200 1.4 0.08 2.0 0.5 46.2 14.2 39.7

Interflow
(soil/bedrock) B

A 300 1.4 0.13 218.5 1.8 21.6 11.1 67.6

B 800 1.3 0.07 172.0 0.8 29.1 14.7 56.6

C 1000 1.5 0.06 15.0 0.4 46.2 14.2 39.7

R 1500 1.8 0.06 0.1 0.0 46.2 14.2 39.7

Responsive (wet) D

A 300 1.4 0.06 10.2 2.1 21.6 11.1 67.6

G 1000 1.2 0.07 5.0 0.9 52.8 19.6 27.6

G2 1300 1.6 0.06 0.1 0.4 52.8 19.6 27.6

Responsive
(shallow) C

A 300 1.4 0.13 10.2 1.8 21.6 11.1 67.6

R 500 1.8 0.07 1.0 0.0 46.2 14.2 39.7
1 Db–bulk density; 2 AWC–Available Water Capacity; 3 Ks–saturated hydraulic conductivity; 4 OC–organic carbon.

The second soil data set was developed through a digital soil mapping approach and is called
DSM data for the remainder of this paper. The development of the soil map used in this study is
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discussed in detail in [17,35]. Here, we provide only key methodological steps that were followed to
create the DSM dataset:

• Environmental covariates (e.g., elevation, slope, topographic wetness index and NDVI) were
obtained for the entire Halfway House Granite area (approximately 1050 km2).

• The conditioned hypercube sampling method (cHLHS) was used to identify 30 hillslopes which
are representative of the entire attribute space. Accessibility of the sites was an important
consideration. Landowners are not always keen 1) to allow you on their property and 2) allow
digging of profiles on their lawns. Large areas of the catchment are also urbanized (Figure 2b)
and the surface sealed; this explains the concentration of observation locations in certain areas
(Figure 3b).

• A total of 273 soil observations were made with hand auger (Figure 3b). The soils were
classified in accordance with the South African Soil Classification [36] and then regrouped into
hydropedological soil types (Table 2; [37]).

• The soil observation database was then divided into training (75%) and evaluation (25%)
observations. The soil map was then created in R by running the multinomial logistic regression
algorithm (MNLR; [38]) on the training data. The produced map (Figure 3b), had an evaluation
point accuracy of 80% and a Kappa statistic value of 0.71 [17], which indicates a substantial
agreement with reality, and was therefore deemed to be acceptable for use in the modelling exercise.

• Hydraulic properties for representative profiles were obtained from two consultancy projects in
the area [39,40]. Representative profiles (n = 24; Figure 3b) of different hydropedological types
were opened. These profiles were typical ‘modal’ profiles representing the soil forms (Table 2).

• Undisturbed core samples were collected from diagnostic horizons. The core samples were
used to determine Db, particle size distribution, and the water retention characteristics using the
hanging column method. The double ring infiltration method was used to determine the Ks of
diagnostic soil horizons in situ. For more specific details on the sample strategy and measurement
methodology, see [39].

• Lastly, the hydraulic properties used as SWAT+ inputs for the different horizons of the
hydropedological soil types were obtained by averaging these property values of the soil
forms in the specific hydropedological soil type (Table 2). These values are summarised in Table 1.

Contrasting with the LT database, the DSM map shows higher variety of soils (two vs. six),
and there is considerably more detail on the spatial distribution of the soils (Figure 3). The DSM
dataset is dominated by the hydropedological classes ‘interflow (soil/bedrock)’ and ‘recharge (deep)’.

2.2.4. Validation Data and Statistical Comparison

Streamflow data was recorded at three weirs, managed by Department of Water Affairs (DWA),
in the catchment, with long-term measurements (Figure 1). A2H044 drains the entire studied catchment
(630 km2), whereas A2H043 and A2H047 drain approximately 550 km2 and 54 km2, respectively.
Daily streamflow was converted to monthly average values for comparison purposes.

We also compared simulated actual evapotranspiration (S-aET) against aET derived from energy
balance modelling using remote sensing data as input. We used data from MOD16 [41,42], which is
also based on the Penman–Monteith approach. The 8-day aET was converted to monthly values and
averaged for the entire basin using a ‘weighted average’ approach. This was done by (1) assigning
a monthly aET value for each landscape unit (LSU), (2) multiplying this by the fraction of the basin
covered by the specific LSU, and (3) adding the aET for all LSU to get a basin value. The monthly
average basin value was compared to monthly S-aET at basin scale.
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Table 2. Hydropedological soil types used in the DSM data, their dominant characteristics and similar
WRB, IUSS reference groups.

Hydropedological Soil Type [37] Soil Forms [36] Reference Groups [32] Defining Characteristic

Recharge (deep) Clovelly, Constantia, Griffen,
Hutton, Shortlands Acrisols, Nitisols

Soil profiles showing no signs of
wetness in the profile; fast vertical
drainage through and out of the
profile is dominant.

Recharge (shallow) Mispah, Glenrosa, Mayo Leptosols

Shallow soils with chromic
colours in the topsoil; underlying
bedrock is permeable and
drainage out of profile dominant.

Interflow (A/B) Kroonstad, Longlands,
Sterkspruit, Wasbank

Stagnosols, Planosols,
Plinthosols

Hydromorphic properties
between top and subsoil signify
periodic saturation. These are
typically duplex soils with
textural discontinuity between top
and subsoil, resulting in a perched
water table at A/B horizon
interface and interflow.

Interflow (soil/bedrock)
Avalon, Bainsvlei, Bloemdal,
Dresden, Fernwood, Glencoe,
Pinedene, Tukulu, Westleigh

Acrisols, Stagnosols,
Arenosols, Plinthosols,
Stagnosols,

Hydromorphic properties at the
soil/bedrock interface indicate
saturation due to relatively
impermeable bedrock. Perched
water table at the bedrock
interface will result in interflow at
soil/bedrock interface.

Responsive (wet) Katspruit, Rensburg Gleysols

Gleyed subsoils indicate long
periods of saturation, typical of
wetland soils. Soils will respond
quickly to rain events and
promote overland flow due to
saturation excess.

Responsive (shallow) Mispah, Glenrosa Leptosols

Shallow soils with bleached
colours in the topsoil indicate that
underlying bedrock is slowly
permeable. Small storage capacity
of the soil will quickly be exceeded
following rainstorms and promote
overland flow generation.

For statistical comparisons, we made use of three widely used statistical indices, namely coefficient
of determination (R2), root-mean-square error (RMSE) and the Kling–Gupta efficiency (KGE). The latter
is calculated using [43]:

KGE = 1−

√
(r− 1)2 +

(
σsim
σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

(1)

where r represents the correlation coefficient, σsim and σsim the standard deviations in simulations and
observations, respectively, and µsim and µobs the means of simulations and observations. KGE = 1
represents a perfect fit and values smaller than −0.41 imply that the means of the observations provide
a better fit than the model [44]. In addition to these statistical indices, we assessed streamflow time
series, yearly water balances and spatial aET visually to aid in the discussion of model output.

3. Results

The two model set-ups had identical numbers of sub-basins (19) and landscape units (230),
because the same DEM was used to delineate these. The number of HRUs was, however, twice as high
for the DSM simulation when compared to the LT simulation (i.e., 2034 and 1132, respectively). This is
due to the higher level of detail in the DSM soil map compared to the LT soil map (Figure 3).

For both LT and DSM simulations, baseflow was substantially underestimated in the two larger
catchments (Figure 4). The underestimation is more pronounced in the larger (>500 km2) catchment
(Figure 4a,b) than in the smaller (54 km2) catchment (Figure 4c). Overestimation of peak flows is
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associated with both model runs, but more obvious with LT simulations than DSM simulations.
Statistical indices indicate that there are moderate correlations with observed streamflow (R2

≥ 0.6) at
all scales for both simulations. The RMSE error, however, is high and the KGE relatively low. At all three
scales, the DSM simulation performed better than the LT simulation when all three statistical indices
were considered. The difference in the KGE was especially worth noting in the smaller catchment
(Figure 4c) with 0.43 for the DSM simulation and −0.23 for the LT simulation.
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When compared to MOD16-derived actual evaporation (aET), both simulations underestimated
aET considerably (see deviation from 1:1 line in Figure 5). The underestimation was larger with the LT
soil dataset (Figure 5a) than with the DSM dataset (Figure 5b). These differences are also indicated in
the RMSE values of 4.6 and 3.4 for the LT and DSM simulations, respectively. The KGE values were
also notably lower with the LT simulation (0.25) when compared to the DSM (0.4) simulation.
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Figure 5. Monthly aET derived from MOD16 against simulated aET using (a) the LT soil dataset and
(b) the DSM dataset for the entire basin.

The underestimation of S-aET and streamflow is also visible when yearly average water balance
components are considered (Table 3). Total streamflow is underestimated by 17% for LT and 38%
for DSM simulations for the entire basin (A2H044). This underestimation was more pronounced at
weir A2H023, with 18% for LT and 41% for DSM. In the smaller catchment (A2H047), streamflow was
overestimated by 30% with the LT simulation and underestimated by 18% under the DSM simulation.

Table 3. Average yearly major water balance components for different simulations for the three
studied catchments.

Weir A2H044 (630 km2) A2H023 (547 km2) A2H047 (54 km2)

Annual Average Values (mm) Observed DSM LT Observed DSM LT Observed DSM LT

Precipitation 635 635 635 638 638 616 616
Total discharge 350 216 292 367 218 302 262 214 341
Overland flow 59 255 61 265 72 318

Lateral flow 156 37 156 37 142 23
Percolation 10 16 10 15 10 11

aET 7231 407 326 409 319 391 263
pET 1796 1796 1796 1796 1800 1800

1 MOD16-derived aET for observed.



Hydrology 2020, 7, 34 10 of 15

For the LT simulation, streamflow to rainfall is approximately 46%, with 51% of the rainfall
contributing to evapotranspiration in the entire catchment (A2H044). The streamflow:rainfall ratio is
considerably smaller for the DSM simulation (34%), with a larger contribution to evaporation (64%)
for this catchment. The total discharge for the LT simulation is considerably higher when compared to
the DSM simulation at all scales, a difference of 76, 84 and 127 mm.year−1 for A2H044, A2H023 and
A2H047, respectively. This increase is largely due to a 4-fold increase in the simulated overland flow
under LT at all scales. The lateral flow component of the DSM simulation is, however, between four
and six times higher than for the LT simulation.

Yearly average MOD16-derived aET is 723 mm, which is considerably higher than the rainfall.
S-aET is approximately half of the MOD16-derived aET. Differences between S-aET of the different
model runs are worth noting. At all scales, LT produced less S-aET than DSM; these differences amount
to 24%, 28% and 48% with decreasing catchment size (Table 3).

The variation in lateral flow simulation is remarkable (Figure 6). The majority of LSUs in the LT
simulation produced less than 30 mm.year−1 (Figure 6a), whereas almost all of the LSUs in the DSM
simulation produced more than 90 mm.year−1 (Figure 6b). It is also worth noting that there is limited
visual correlation between the relatively low- and high-producing LSUs of the LT simulation and the
relatively low- and high-producing LSUs of the DSM simulations.
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4. Discussion

4.1. Streamflow Simulations

The streamflow predictions were surprisingly accurate (especially for weir A2H023), considering
that the models were not calibrated against measured flow. Similar studies, for example, obtained R2

values of between 0.42 and 0.71 [19], 0.15 [20], and between 0.61 and 0.74 [21]. In terms of quantifying
overall modelling efficiency, the KGE captures correlation and deviation between simulated and
measured values. According to Knoben et al. [44], a KGE of greater than −0.41 implies that the model
prediction is a better fit than the mean observed value. With this as benchmark, all the simulations
produced ‘reasonable’ simulations.
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There is, however, a clear underestimation of baseflow in the larger catchments (A2H044
and A2H023), which translates into an underestimation of total streamflow (Figure 4, Table 3).
This underestimation could be corrected by adjusting groundwater parameters in the model.
Decreasing the threshold depth for return flow to occur (GWQMN), decreasing the coefficient
of re-evaporation from the groundwater (GW_REVAP) and increasing the threshold depth of the
groundwater before re-evaporation occurs (REVAMPM) for different HRUs will likely increase baseflow
contributions [45]. To optimise simulations and evaluate parameter uncertainty could be the objective
of a future study (similar to [16]), but, here, we focused on the direct contribution of different soil
inputs to the model performance.

From the simulations, it is clear that more detailed soil information provided better simulations,
presumably because the governing runoff generation processes are better reflected. The higher R2 in
the large catchments (Figure 4a,b), especially the higher KGE, indicates better modelling performance.
Worth noting is that the improved statistical indices associated with the DSM dataset were observed
despite greater underestimation of total discharge on the water balance of the larger catchments
(Table 3). This is important, implying that a better representation of the overall water balance does not
necessary translate to improved representation of streamflow generation processes. The improved
performance can mostly be attributed to improved predictions of peak flows. Higher conductivity (Ks)
of surface horizons and deeper soils (Table 1) of the DSM soil inputs will increase infiltration and water
storage. Moreover, the textural discontinuity of the interflow soils leads to higher simulated subsurface
lateral flows (Figure 3), which also has an effect on the simulated peak flows. The relatively low
conductivity and comparatively shallower soils (Table 1) of the LT soil inputs will promote overland
flow generation and a quick response to rainfall. This is supported by the summary of water balance
in Table 3, where LT simulations generated four times more overland flow than DSM simulations.

The impact of more detailed soil information is more pronounced in the smaller catchment
(Figure 4c, Table 3), with a marked decrease in RMSE and an increase in the KGE from the LT to DSM
simulations. The increase in KGE is especially noteworthy. This statistical index improves from −0.23
to 0.43. For the 54-km2 catchment, the more detailed soil information improved the model predictions
from relatively ‘poor’ to ‘acceptable’. In the 54-km2 catchment, the improvement in the simulations is
also visible in the water balance. Total discharge is underestimated by 18% for the DSM simulation
(compared to >38% for the same soil dataset in the lager catchments), whereas the LT simulations
overestimate streamflow by 30%. From our simulations, it appears that detailed soil information
becomes more important in smaller areas, where fewer runoff generation processes dominate, a notion
supported by [14]. It is also important to recognize that land-use change, such as urbanisation or
open-cast mining, is site-specific. Details of where, when and which hydrological processes dominate
are therefore vital for planning in smaller catchments. The optimum scale of soil data for different-sized
catchments is however still not known, and certainly worth exploring in future.

4.2. Groundwater Contributions

The underestimation of baseflow, especially in the larger catchments (Figure 4a,b), could be
attributed to groundwater contributions from outside the catchment area. In general, the groundwater
level is deeper than 10 m in the study site [22]. The contribution of groundwater (or fractured rock
aquifers) is assumed to be significant, especially during low-rainfall months. Based on our simulations,
groundwater contributes to between 62 and 134 mm of the Jukskei’s streamflow per year, i.e., between
18% and 38% of streamflow. It would be important to validate these findings through detailed
measurements and dedicated modelling.

The external contribution of groundwater from outside the catchment area could also be linked to
the underestimation of S-aET when compared to the MOD16 aET (Figure 5, Table 3). One must keep in
mind that MOD16 (or other remote-sensed) aET values are also ‘modelled’ values. Direct comparisons
with simulated values and interpretations in relation to hydrological processes should therefore
be made with care. In this study, it appears that MOD16 overestimates aET when compared to
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rainfall. This is in contrast with another South African study, where MOD16 underestimated aET when
compared to measured values [46]. Regardless, the considerably higher MOD16 aET (compared to
S-aET) and the underestimation of baseflow (Figure 4), especially during dry months, suggest that
streamflow and aET are supported with contributions of water not accounted for in the catchment
water balance.

The relatively smaller underestimation of total discharge in the 54-km2 catchment with the DSM
simulations and overestimation with the LT simulation could be an indication that groundwater only
makes a considerable contribution to higher-order streams.

4.3. Implications for Management

In the study area, subsurface lateral flow has important implications for urbanisation. The term
‘wet basement syndrome’ (WBS, [39,47]) refers to accumulation of water when lateral flowpaths are
intersected by foundations. WBS has implications for infrastructural development (e.g., dampness
of walls) and graveyards as well as environmental consequences in the alteration in wetland water
regimes. Where wetland waters are supplied through lateral flow, surface sealing or intersection of
lateral flowpaths will change the water regimes and, ultimately, the ecosystem services provided by
the wetland [48].

Representing the spatial distribution of dominant streamflow generation processes is vital for
decision making (e.g., [9,16,19]). Here, we showed how different soil information datasets impact
the spatial representation of lateral flow generation. In Figure 6, the relative contributions of lateral
flow on 230 different landscape units (LSU) are presented and they differ not only in terms of the
volume of flow generated but also in terms of the spatial distribution of the relatively high- and
low-generating LSUs. For decision making purposes, the spatial representation could be refined to
HRU scale (2034 units). Such information can help with the planning of development projects, such as
the location of subsurface drains, graveyards and the type of foundation to consider in different areas.
Without detailed soil information, the importance of lateral flow in this catchment would have been
underestimated, and this highlights the role that spatially distributed models can play in the design
and evaluation of water management plans [18].

5. Conclusions

This work presented results from hydrological simulations using two levels of soil inputs.
More detailed soil information, developed through advanced digital soil mapping techniques, resulted
in more accurate simulations of streamflow when compared to measured values. The improved
simulation accuracy was obtained without calibration of the model. This is promising for hydrological
modelling in ungauged areas, where long-term streamflow monitoring for calibration is absent.
The underestimation of baseflow, especially in the larger catchments, and potential contribution of
groundwater from beyond the catchment boundary are modelling aspects that need to be considered
in future studies.

In our study, the impact of the improved soil information was more pronounced in the smaller
catchment than in the larger ones. The ideal level of detail (or scale) of soil information for hydrological
modelling of different sized catchments remains an important question. It is, however, clear that the
SWAT+ model is sensitive to soil inputs, and we argued that the spatial representation of dominant
hydrological processes is captured more accurately with more detailed soil information. Any reasonable
effort should therefore be made to improve the soil information to realistically reflect hydrological
processes in order to improve land use planning, especially in areas dedicated for urbanisation.
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