Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characterization
2.2. Orbital Data from Terra and Aqua Satellites (MODIS Sensor)
2.3. Statistical Analysis of Data
3. Results and Discussion
3.1. Thematic Maps to Surface (Tsup and ET–MODIS)
3.2. Regression Model (ET–Predictive)
3.3. Quantitative and Spatiotemporal Variability in NEB
3.4. Seasonality of Biophysical Parameters and ET–MODIS in NEB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Fu, Q. Expansion of Global Drylands under a Warming Climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. What Do We Know about Water Scarcity in Semi-Arid Zones? A Global Analysis and Research Trends. Water 2022, 14, 2685. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale Water Scarcity Requires Micro-scale Approaches. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global Desertification: Drivers and Feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Sharma, P.J.; Patel, P.L.; Jothiprakash, V. Impact of Rainfall Variability and Anthropogenic Activities on Streamflow Changes and Water Stress Conditions across Tapi Basin in India. Sci. Total Environ. 2019, 687, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Feng, X.; Fu, B. Driving Forces of Agricultural Expansion and Land Degradation Indicated by Vegetation Continuous Fields (VCF) Data in Drylands from 2000 to 2015. Glob. Ecol. Conserv. 2020, 23, e01087. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Tomasella, J.; Alvalá, R.C.S.; Sestini, M.F.; Affonso, A.G.; Rodriguez, D.A.; Barbosa, A.A.; Cunha, A.P.M.A.; Valles, G.F.; Crepani, E.; et al. Identifying Areas Susceptible to Desertification in the Brazilian Northeast. Solid. Earth 2015, 6, 347–360. [Google Scholar] [CrossRef]
- Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. Frequency, Duration and Severity of Drought in the Semiarid Northeast Brazil Region. Int. J. Climatol. 2018, 38, 517–529. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic Characteristics of the 2010–2016 Drought in the Semiarid Northeast Brazil Region. Acad. Bras. Cienc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Mariano, D.A.; dos Santos, C.A.C.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of Remote Sensing Indicators to Assess Effects of Drought and Human-Induced Land Degradation on Ecosystem Health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- da Silva, J.L.B.; de Albuquerque Moura, G.B.; Lopes, P.M.O.; França e Silva, Ê.F.; Ortiz, P.F.S.; de Oliveira Silva, D.A.; Da Silva, M.V.; de Souza Guedes, R.V. Monitoramento Espaço-Temporal Do Risco de Degradação Ambiental e Desertificação Por Sensoriamento Remoto Em Região Semiárida. Rev. Bras. Geogr. Física 2020, 13, 544–563. [Google Scholar] [CrossRef]
- De Oliveira, M.L.; dos Santos, C.A.C.; de Oliveira, G.; Silva, M.T.; da Silva, B.B.; de Brito Leite Cunha, J.E.; Ruhoff, A.; Santos, C.A.G. Remote Sensing-Based Assessment of Land Degradation and Drought Impacts over Terrestrial Ecosystems in Northeastern Brazil. Sci. Total Environ. 2022, 835, 155490. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, H.A. Flash Drought and Its Characteristics in Northeastern South America during 2004–2022 Using Satellite-Based Products. Atmosphere 2023, 14, 1629. [Google Scholar] [CrossRef]
- Refati, D.C.; da Silva, J.L.B.; Macedo, R.S.; da Cunha Correia Lima, R.; da Silva, M.V.; Pandorfi, H.; Silva, P.C.; de Oliveira-Júnior, J.F. Influence of Drought and Anthropogenic Pressures on Land Use and Land Cover Change in the Brazilian Semiarid Region. J. S. Am. Earth Sci. 2023, 126, 104362. [Google Scholar] [CrossRef]
- Da Silva, J.L.B.; de Albuquerque Moura, G.B.; da Silva, M.V.; de Oliveira-Júnior, J.F.; Jardim, A.M.D.R.F.; Refati, D.C.; da Cunha Correia Lima, R.; de Carvalho, A.A.; Ferreira, M.B.; de Brito, J.I.B.; et al. Environmental Degradation of Vegetation Cover and Water Bodies in the Semiarid Region of the Brazilian Northeast via Cloud Geoprocessing Techniques Applied to Orbital Data. J. S. Am. Earth Sci. 2023, 121, 104164. [Google Scholar] [CrossRef]
- Vieira, R.M.d.S.P.; Tomasella, J.; Cunha, A.P.M.d.A.; Barbosa, A.A.; Pompeu, J.; Ferreira, Y.; Santos, F.C.; Alves, L.M.; Ometto, J. Socio-Environmental Vulnerability to Drought Conditions and Land Degradation: An Assessment in Two Northeastern Brazilian River Basins. Sustainability 2023, 15, 8029. [Google Scholar] [CrossRef]
- Palácio, H.A.Q.; Andrade, E.M.; Santos, J.C.N.; Neto, J.R.A.; Brasil, P.P. Emergy Evaluation of Semi-Arid Watersheds under Different Management Strategies. Trans. ASABE 2013, 56, 1357–1363. [Google Scholar] [CrossRef]
- Schulz, C.; Koch, R.; Cierjacks, A.; Kleinschmit, B. Land Change and Loss of Landscape Diversity at the Caatinga Phytogeographical Domain—Analysis of Pattern-Process Relationships with MODIS Land Cover Products (2001–2012). J. Arid. Environ. 2017, 136, 54–74. [Google Scholar] [CrossRef]
- De Lucena, M.S. Aspectos Ambientais Das Áreas Susceptíveis à Desertificação e Características Socioambientais Do Núcleo de Desertificação Do Seridó Do Rio Grande Do Norte (RN) E Paraíba (PB). HOLOS 2019, 5, 1–17. [Google Scholar] [CrossRef]
- Ledru, M.-P.; Jeske-Pieruschka, V.; Bremond, L.; Develle, A.-L.; Sabatier, P.; Martins, E.S.P.R.; de Freitas Filho, M.R.; Fontenele, D.P.; Arnaud, F.; Favier, C.; et al. When Archives Are Missing, Deciphering the Effects of Public Policies and Climate Variability on the Brazilian Semi-Arid Region Using Sediment Core Studies. Sci. Total Environ. 2020, 723, 137989. [Google Scholar] [CrossRef]
- Da Silva, J.L.B.; de Albuquerque Moura, G.B.; da Silva, M.V.; Lopes, P.M.O.; de Souza Guedes, R.V.; e Silva, Ê.F.D.F.; Ortiz, P.F.S.; de Moraes Rodrigues, J.A. Changes in the Water Resources, Soil Use and Spatial Dynamics of Caatinga Vegetation Cover over Semiarid Region of the Brazilian Northeast. Remote Sens. Appl. 2020, 20, 100372. [Google Scholar] [CrossRef]
- Sathler, D. Understanding Human Development, Poverty and Water Scarcity Patterns in the Brazilian Semi-Arid through Cluster Analysis. Environ. Sci. Policy 2021, 125, 167–178. [Google Scholar] [CrossRef]
- De Barros de Sousa, L.; de Assunção Montenegro, A.A.; da Silva, M.V.; Almeida, T.A.B.; de Carvalho, A.A.; da Silva, T.G.F.; de Lima, J.L.M.P. Spatiotemporal Analysis of Rainfall and Droughts in a Semiarid Basin of Brazil: Land Use and Land Cover Dynamics. Remote Sens. 2023, 15, 2550. [Google Scholar] [CrossRef]
- Pinheiro, A.G.; Dos Santos, J.C.N.; Palácio, H.A.D.Q.; De Araújo Neto, J.R.; De Andrade, E.M. Eficiência da cobertura vegetal na redução das perdas de água e solo no município de iguatu. Irriga 2018, 23, 133–142. [Google Scholar] [CrossRef]
- Andrade, E.M.; Guerreiro, M.J.S.; Palácio, H.A.Q.; Campos, D.A. Ecohydrology in a Brazilian Tropical Dry Forest: Thinned Vegetation Impact on Hydrological Functions and Ecosystem Services. J. Hydrol. Reg. Stud. 2020, 27, 100649. [Google Scholar] [CrossRef]
- Da Silva, M.V.; Pandorfi, H.; de Almeida, G.L.P.; de Lima, R.P.; dos Santos, A.; Jardim, A.M.D.R.F.; Rolim, M.M.; da Silva, J.L.B.; Batista, P.H.D.; da Silva, R.A.B.; et al. Spatio-Temporal Monitoring of Soil and Plant Indicators under Forage Cactus Cultivation by Geoprocessing in Brazilian Semi-Arid Region. J. S. Am. Earth Sci. 2021, 107, 103155. [Google Scholar] [CrossRef]
- De Oliveira Borges Neto, I.; Xavier, R.A.; de Souza, B.I.; Santos, L.J.C.; Soares, D.A.; de Souza, J.J.L.L. Preliminary Experimental Data on Surface Runoff and Soil Loss in the Caatinga. Earth Surf. Process Landf. 2023, 48, 1712–1723. [Google Scholar] [CrossRef]
- Da Rosa Ferraz Jardim, A.M.; de Morais, J.E.F.; de Souza, L.S.B.; de Carvalho, D.; da Silva, M.V.; Pandorfi, H.; de Oliveira-Júnior, J.F.; da Silva, J.L.B.; Steidle Neto, A.J.; Morellato, L.P.C.; et al. A Systematic Review of Energy and Mass Fluxes, and Biogeochemical Processes in Seasonally Dry Tropical Forests and Cactus Ecosystems. J. S. Am. Earth Sci. 2023, 126, 104330. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Ma, Y.; He, J.; He, Y.; Zheng, C.; Gao, W.; Ma, C. Variability Analysis and the Conservation Capacity of Soil Water Storage under Different Vegetation Types in Arid Regions. Catena 2023, 230, 107269. [Google Scholar] [CrossRef]
- Marengo, J.A.; Bernasconi, M. Regional Differences in Aridity/Drought Conditions over Northeast Brazil: Present State and Future Projections. Clim. Change 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Tomasella, J.; Ribeiro-Neto, G.G.; Brown, M.; Garcia, S.R.; Brito, S.B.; Carvalho, M.A. Changes in the Spatial–Temporal Patterns of Droughts in the Brazilian Northeast. Atmos. Sci. Lett. 2018, 19, e855. [Google Scholar] [CrossRef]
- Costa, R.L.; Macedo de Mello Baptista, G.; Gomes, H.B.; Daniel dos Santos Silva, F.; Lins da Rocha Júnior, R.; de Araújo Salvador, M.; Herdies, D.L. Analysis of Climate Extremes Indices over Northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Ribeiro Neto, G.G.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing Drought in the Drylands of Northeast Brazil under Regional Warming Exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; dos Santos Vianna, M.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.; Bender, F. Drought in Northeast Brazil: A Review of Agricultural and Policy Adaptation Options for Food Security. Clim. Resil. Sustain. 2022, 1, e17. [Google Scholar] [CrossRef]
- Hastenrath, S. Exploring the Climate Problems of Brazil’s Nordeste: A Review. Clim. Change 2012, 112, 243–251. [Google Scholar] [CrossRef]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Zeri, M. Cluster Analysis Applied to the Spatial and Temporal Variability of Monthly Rainfall in Alagoas State, Northeast of Brazil. Int. J. Climatol. 2014, 34, 3546–3558. [Google Scholar] [CrossRef]
- Hounsou-gbo, G.A.; Araujo, M.; Bourlès, B.; Veleda, D.; Servain, J. Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast. Adv. Meteorol. 2015, 2015, 902084. [Google Scholar] [CrossRef]
- Hounsou-Gbo, G.A.; Servain, J.; Araujo, M.; Martins, E.S.; Bourlès, B.; Caniaux, G. Oceanic Indices for Forecasting Seasonal Rainfall over the Northern Part of Brazilian Northeast. Am. J. Clim. Change 2016, 5, 261–274. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Oliveira, P.T.; Santos e Silva, C.M.; Lima, K.C. Climatology and Trend Analysis of Extreme Precipitation in Subregions of Northeast Brazil. Theor. Appl. Clim. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Lucena, R.L.; Cabral Júnior, J.B.; Steinke, E.T. Comportamento Hidroclimatológico Do Estado Do Rio Grande Do Norte e Do Município de Caicó. Rev. Bras. Meteorol. 2018, 33, 485–496. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation Complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- De Albuquerque Moura, G.B.; de Brito, J.I.B.; de Assis Salviano de Sousa Sousa, F.; Cavalcanti, E.P.; da Silva, J.L.B.; Nascimento, C.R.; Lopes, P.M.O. Identificação de Preditores Para as Chuvas Do Setor Leste Do Nordeste Do Brasil Utilizando Análise de Correlação Canônica. Rev. Bras. Geogr. Física 2020, 13, 1463–1482. [Google Scholar] [CrossRef]
- Tomasella, J.; Silva Pinto Vieira, R.M.; Barbosa, A.A.; Rodriguez, D.A.; de Oliveira Santana, M.; Sestini, M.F. Desertification Trends in the Northeast of Brazil over the Period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Brasil Neto, R.M.; Santos, C.A.G.; do Nascimento, T.V.M.; da Silva, R.M.; dos Santos, C.A.C. Evaluation of the TRMM Product for Monitoring Drought over Paraíba State, Northeastern Brazil: A Statistical Analysis. Remote Sens. 2020, 12, 2184. [Google Scholar] [CrossRef]
- IBGE Produto Interno Bruto—PIB. Available online: https://www.ibge.gov.br/explica/pib.php (accessed on 20 February 2024).
- Da Silva Pinto Vieira, R.M.; do Amaral Cunha, A.P.M.; dos Santos Alvalá, R.C.; Carvalho, V.C.; Ferraz Neto, S.; Sestini, M.F. Land Use and Land Cover Map of a Semiarid Region of Brazil for Meteorological and Climatic Models. Rev. Bras. Meteorol. 2013, 28, 129–138. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; Araújo Júnior, G.d.N.; Silva, M.V.d.; Santos, A.d.; Silva, J.L.B.d.; Pandorfi, H.; Oliveira-Júnior, J.F.d.; Teixeira, A.H.d.C.; Teodoro, P.E.; de Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Maguire, M.S.; da Silva, B.B.; Neale, C.M.U.; Serrão, E.A.O.; Ferreira, J.D.; de Moura, M.S.B.; dos Santos, C.A.C.; Silva, M.T.; Rodrigues, L.N.; et al. Assessment of Water Demands for Irrigation Using Energy Balance and Satellite Data Fusion Models in Cloud Computing: A Study in the Brazilian Semiarid Region. Agric. Water Manag. 2023, 281, 108260. [Google Scholar] [CrossRef]
- Silva, J.L.B.; Moura, G.B.A.; Silva, Ê.F.F.; Lopes, P.M.O.; Silva, T.T.F.; Lins, F.A.C.; Silva, D.A.O.; Ortiz, P.F.S. Spatial-Temporal Dynamics of the Caatinga Vegetation Cover by Remote Sensing in Municipality of the Brazilian Semi-Arid. Rev. Bras. Ciências Agrárias Braz. J. Agric. Sci. 2019, 14, 1–10. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Da Silva, J.L.B.; Bezerra, A.C.; de Albuquerque Moura, G.B.; da Rosa Ferraz Jardim, A.M.; Batista, P.H.D.; de Jesus, F.L.F.; Sanches, A.C.; da Silva, M.V. Spatiotemporal Dynamics of Agricultural Areas with Central Pivot Using Orbital Remote Sensing in the Brazilian Semiarid. Smart Agric. Technol. 2022, 2, 100052. [Google Scholar] [CrossRef]
- De Oliveira, L.M.M.; Montenegro, S.M.G.L.; da Silva, B.B.; Antonino, A.C.D.; Moura, A.E.S.S. de Evapotranspiração Real Em Bacia Hidrográfica Do Nordeste Brasileiro Por Meio Do SEBAL e Produtos MODIS. Rev. Bras. Eng. Agrícola E Ambient. 2014, 18, 1039–1046. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A Review of Remote Sensing Based Actual Evapotranspiration Estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Mutti, P.R.; da Silva, L.L.; de Sousa Medeiros, S.; Dubreuil, V.; Mendes, K.R.; Marques, T.V.; Lúcio, P.S.; Santos e Silva, C.M.; Bezerra, B.G. Basin Scale Rainfall-Evapotranspiration Dynamics in a Tropical Semiarid Environment during Dry and Wet Years. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 29–43. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Wang, Y.; Fang, G. Dynamic Changes in Terrestrial Net Primary Production and Their Effects on Evapotranspiration. Hydrol. Earth Syst. Sci. 2016, 20, 2169–2178. [Google Scholar] [CrossRef]
- Ferreira, T.R.; da Silva, B.B.; de Moura, M.S.B.; Verhoef, A.; Nóbrega, R.L.B. The Use of Remote Sensing for Reliable Estimation of Net Radiation and Its Components: A Case Study for Contrasting Land Covers in an Agricultural Hotspot of the Brazilian Semiarid Region. Agric. Meteorol. 2020, 291, 108052. [Google Scholar] [CrossRef]
- Parente, L.; Ferreira, L. Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016. Remote Sens. 2018, 10, 606. [Google Scholar] [CrossRef]
- Bezerra, A.C.; da Silva, J.L.B.; de Albuquerque Moura, G.B.; Lopes, P.M.O.; Nascimento, C.R.; Ribeiro, E.P.; Galvíncio, J.D.; da Silva, M.V. Dynamics of Land Cover and Land Use in Pernambuco (Brazil): Spatio-Temporal Variability and Temporal Trends of Biophysical Parameters. Remote Sens. Appl. 2022, 25, 100677. [Google Scholar] [CrossRef]
- Bezerra, A.C.; Silva, J.L.B.d.; Silva, D.A.d.O.; Nascimento, C.R.; Ribeiro, E.P.; Galvincio, J.D.; Silva, M.V.d.; Oliveira, H.F.E.d.; Mesquita, M.; Oliveira-Júnior, J.F.d.; et al. Seasonality of Biophysical Parameters in Extreme Years of Precipitation in Pernambuco: Relations, Regionalities, and Variability. Atmosphere 2023, 14, 1712. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- IBGE Estimativas Da População Residente Para Os Municípios e Para as Unidades Da Federação|IBGE. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=downloads (accessed on 23 January 2024).
- MI/SUDENE Nova Delimitação Da Região Semiárida Do Brasil/Resolução No 115, de 23 de Novembro de 2017. Available online: https://www.gov.br/sudene/pt-br (accessed on 23 January 2024).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.P.M.; Alvalá, R.C.; Nobre, C.A.; Carvalho, M.A. Monitoring Vegetative Drought Dynamics in the Brazilian Semiarid Region. Agric. Meteorol. 2015, 214–215, 494–505. [Google Scholar] [CrossRef]
- IBGE Biomas e Sistema Costeiro-Marinho Do Brasil: Compatível Com a Escala 1: 250 000. Série Relatórios Metodológicos. v. 45 2019. 164p. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101676 (accessed on 23 January 2024).
- Vermote, E.; NASA GSFC; MODAPS SIPS-NASA. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid. ArchiveSets: 61, PGE21. NASA LP DAAC.; 2015. Available online: https://lpdaac.usgs.gov/products/mod09a1v006/ (accessed on 26 January 2024).
- NASA/MODIS MODIS Data Products. Available online: https://modis.gsfc.nasa.gov/data/dataprod/ (accessed on 23 January 2024).
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W. SEBAL (Surface Energy Balance Algorithms for Land). Adv. Train. Users Man. Ida. Implement. Version 2002, 1, 97. [Google Scholar]
- Batista, P.H.D.; de Almeida, G.L.P.; da Silva, J.L.B.; Pandorfi, H.; da Silva, M.V.; Batista da Silva, R.A.; Neves de Melo, M.V.; Costa Lins, F.A.; Cordeiro Junior, J.J.F. Short-Term Grazing and Its Impacts on Soil and Pasture Degradation. Dyna 2020, 87, 123–128. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z. Validation of the Land-Surface Temperature Products Retrieved from Terra Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment In Symposia of the Society for Experimental Biology 1965. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theor. Basis Doc. Collect. 2013, 5, 600. [Google Scholar]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-End Gap-Filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (for Collection 6); National Aeronautics and Space Administration: Washington, DC, USA, 2019; Volume 6.
- Warrick, A.W. Spatial Variability of Soil Physical Properties in the Field. Appl. Soil. Phys. 1980, 13, 319–344. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R. Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Vorovencii, I. Assessing and Monitoring the Risk of Desertification in Dobrogea, Romania, Using Landsat Data and Decision Tree Classifier. Environ. Monit. Assess. 2015, 187, 204. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, J.M.; de Albuquerque Moura, G.B.; da Silva, B.B.; Lopes, P.M.O.; de França e Silva, Ê.F. Parâmetros Biofísicos Obtidos Por Sensoriamento Remoto Em Região Semiárida Do Estado Do Rio Grande Do Norte, Brasil. Rev. Bras. Eng. Agrícola E Ambient. 2014, 18, 73–84. [Google Scholar] [CrossRef]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought Preparedness in Brazil. Weather. Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef]
- Santos, C.A.G.; do Nascimento, T.V.M.; da Silva, R.M. Analysis of Forest Cover Changes and Trends in the Brazilian Semiarid Region between 2000 and 2018. Environ. Earth Sci. 2020, 79, 418. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization Alters Spatiotemporal Patterns of Ecosystem Primary Production: A Case Study of the Phoenix Metropolitan Region, USA. J. Arid. Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Maia, A.R.S.; Lopes, F.B.; de Andrade, E.M. Influence of Climatic Seasonality on a Survey of Land Use and Cover in the Semi-Arid Region. J. Agric. Sci. 2018, 10, 311. [Google Scholar] [CrossRef]
MODIS Sensor Product | |||||
---|---|---|---|---|---|
Surface Reflectance—Terra (MOD09A1) and Aqua (MYD09A1)—Version 6 | |||||
Multispectral Band | Temporal Resolution | Spatial Resolution | Radiometric Resolution | Processing Level | Multiplier Factor |
r1 (0.620–0.670 μm) | 8 days | 500 m | 16 bits | L3 | 0.0001 |
r2 (0.841–0.876 μm) | |||||
r3 (0.459–0.479 μm) | |||||
r4 (0.545–0.565 μm) | |||||
r5 (1.230–1.250 μm) | |||||
r6 (1.628–1.652 μm) | |||||
r7 (2.105–2.155 μm) |
MODIS Sensor Product | |||||
---|---|---|---|---|---|
Suface Temperature—Terra (MOD11A2) and Aqua (MYD11A2)—Version 6 | |||||
Layer | Temporal Resolution | Spatial Resolution | Radiometric Resolution | Processing Level | Multiplier/Additional Factor |
LST_Day_1 km | 8 days | 1000 m | 16 bits | L3 | 0.02 /0.0 |
Local time of day | 8 bits | 0.1 /0.0 | |||
Band 31 emissivity | 0.002 /0.49 | ||||
Band 32 emissivity | 0.002 /0.49 |
MODIS Sensor Product | |||||
---|---|---|---|---|---|
Actual Evapotranspiration (ET–MODIS)—Terra (MOD16A2) and Aqua (MYD16A2)—Version 6 | |||||
Layer | Temporal Resolution | Spatial Resolution | Radiometric Resolution | Processing Level | Multiplier Factor |
ET–MODIS | 8 days | 500 m | 16 bits | L4 | 0.1 |
Fonte | 1 DF | 2 SS | 3 AS | F Value | p-Value |
---|---|---|---|---|---|
Regression | 2 | 269.438 | 134.719 | 269.84 | 0.000 |
NDVI | 1 | 1.207 | 1.207 | 2.42 | 0.129 |
EVI | 1 | 28.850 | 28.850 | 57.79 | 0.000 |
Error | 35 | 17.474 | 0.499 | - | - |
Total | 37 | 286.912 | - | - | - |
Year | Tsup (°C) | ET–MODIS (mm 8-day−1) | ET–Predictive (mm 8-day−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Av. | SD | CV (%) | Min. | Max. | Av. | SD | CV (%) | Min. | Max. | Av. | SD | CV (%) | |
2000 | 20.72 | 43.28 | 31.51 | 2.89 | 9.17 | - | - | - | - | - | 0.00 | 81.00 | 24.25 | 24.48 | 100.95 |
2001 | 21.40 | 43.35 | 32.50 | 3.10 | 9.54 | 0.80 | 56.91 | 17.73 | 8.07 | 45.52 | 0.00 | 82.04 | 23.49 | 23.88 | 101.66 |
2002 | 21.69 | 41.82 | 32.04 | 2.87 | 8.96 | 0.58 | 58.38 | 18.46 | 8.33 | 45.27 | 0.00 | 81.97 | 24.35 | 24.53 | 100.74 |
2003 | 21.73 | 41.46 | 32.45 | 2.80 | 8.63 | 0.70 | 62.04 | 19.28 | 8.74 | 45.33 | 0.00 | 82.00 | 23.52 | 23.91 | 101.66 |
2004 | 20.57 | 43.66 | 31.60 | 2.71 | 8.57 | 0.30 | 59.10 | 20.82 | 7.79 | 37.41 | 0.00 | 82.99 | 24.93 | 25.04 | 100.44 |
2005 | 21.40 | 42.16 | 32.02 | 2.81 | 8.77 | 0.20 | 59.60 | 20.54 | 7.53 | 36.66 | 0.00 | 84.99 | 25.22 | 25.41 | 100.75 |
2006 | 21.27 | 40.60 | 31.31 | 2.72 | 8.69 | 0.45 | 58.32 | 21.62 | 7.78 | 35.98 | 0.00 | 84.03 | 25.69 | 25.79 | 100.39 |
2007 | 21.46 | 42.19 | 32.50 | 2.96 | 9.11 | 0.10 | 57.03 | 18.04 | 8.28 | 45.90 | 0.00 | 83.00 | 24.01 | 24.19 | 100.75 |
2008 | 21.77 | 41.76 | 31.96 | 2.54 | 7.95 | 0.30 | 57.21 | 20.36 | 7.62 | 37.43 | 0.00 | 79.95 | 24.61 | 24.67 | 100.24 |
2009 | 21.36 | 42.56 | 31.15 | 2.35 | 7.54 | 0.20 | 61.29 | 23.78 | 7.60 | 31.96 | 0.00 | 82.82 | 25.75 | 25.70 | 99.81 |
2010 | 21.61 | 42.13 | 32.19 | 2.75 | 8.54 | 0.10 | 58.60 | 21.08 | 7.91 | 37.52 | 0.00 | 82.02 | 25.58 | 25.63 | 100.20 |
2011 | 20.53 | 42.86 | 31.01 | 2.50 | 8.06 | 0.80 | 59.54 | 22.95 | 7.82 | 34.07 | 0.00 | 83.00 | 25.73 | 25.84 | 100.43 |
2012 | 21.61 | 44.03 | 33.71 | 3.18 | 9.43 | 0.10 | 59.86 | 15.91 | 8.67 | 54.49 | 0.00 | 81.99 | 21.42 | 22.45 | 104.81 |
2013 | 21.39 | 43.78 | 33.21 | 3.11 | 9.36 | 0.20 | 59.78 | 18.79 | 9.09 | 48.38 | 0.00 | 82.01 | 22.59 | 23.64 | 104.65 |
2014 | 20.50 | 43.49 | 32.55 | 2.99 | 9.18 | 0.20 | 58.19 | 19.76 | 8.35 | 42.26 | 0.00 | 80.98 | 23.47 | 23.98 | 102.17 |
2015 | 22.38 | 44.86 | 34.07 | 3.07 | 9.01 | 0.53 | 58.21 | 17.30 | 8.30 | 47.98 | 0.00 | 81.00 | 22.47 | 23.08 | 102.71 |
2016 | 21.88 | 44.12 | 33.74 | 3.01 | 8.92 | 0.60 | 57.70 | 17.62 | 8.04 | 45.63 | 0.00 | 81.93 | 22.23 | 22.86 | 102.83 |
2017 | 21.08 | 45.28 | 33.07 | 3.07 | 9.28 | 0.10 | 58.92 | 18.34 | 8.80 | 47.98 | 0.00 | 81.96 | 22.33 | 23.29 | 104.30 |
2018 | 20.85 | 42.17 | 32.30 | 2.83 | 8.76 | 0.80 | 57.24 | 19.90 | 8.58 | 43.11 | 0.00 | 83.84 | 23.67 | 24.30 | 102.66 |
2019 | 22.23 | 46.41 | 32.66 | 2.75 | 8.42 | 0.57 | 60.55 | 19.74 | 8.67 | 43.92 | 0.00 | 81.95 | 24.51 | 24.79 | 101.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.L.B.d.; Silva, M.V.d.; Jardim, A.M.d.R.F.; Lopes, P.M.O.; Oliveira, H.F.E.d.; Silva, J.A.O.S.; Mesquita, M.; Carvalho, A.A.d.; Cézar Bezerra, A.; Oliveira-Júnior, J.F.d.; et al. Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil. Hydrology 2024, 11, 32. https://doi.org/10.3390/hydrology11030032
Silva JLBd, Silva MVd, Jardim AMdRF, Lopes PMO, Oliveira HFEd, Silva JAOS, Mesquita M, Carvalho AAd, Cézar Bezerra A, Oliveira-Júnior JFd, et al. Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil. Hydrology. 2024; 11(3):32. https://doi.org/10.3390/hydrology11030032
Chicago/Turabian StyleSilva, Jhon Lennon Bezerra da, Marcos Vinícius da Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Pabrício Marcos Oliveira Lopes, Henrique Fonseca Elias de Oliveira, Josef Augusto Oberdan Souza Silva, Márcio Mesquita, Ailton Alves de Carvalho, Alan Cézar Bezerra, José Francisco de Oliveira-Júnior, and et al. 2024. "Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil" Hydrology 11, no. 3: 32. https://doi.org/10.3390/hydrology11030032
APA StyleSilva, J. L. B. d., Silva, M. V. d., Jardim, A. M. d. R. F., Lopes, P. M. O., Oliveira, H. F. E. d., Silva, J. A. O. S., Mesquita, M., Carvalho, A. A. d., Cézar Bezerra, A., Oliveira-Júnior, J. F. d., Ferreira, M. B., Cavalcante, I. T. R., Silva, E. F. d., & Moura, G. B. d. A. (2024). Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil. Hydrology, 11(3), 32. https://doi.org/10.3390/hydrology11030032