Hydrometeorological Trends in a Low-Gradient Forested Watershed on the Southeastern Atlantic Coastal Plain in the USA
Abstract
:1. Introduction
1.1. Rationale
1.2. Background and Related Work
2. Study Objectives
3. Materials and Methods
3.1. Study Site
3.2. Data Collection
3.2.1. Rainfall
3.2.2. Streamflow
3.2.3. Weather Data and Potential Evapotranspiration (PET)
3.2.4. Groundwater
3.3. Data Analysis
Rainfall, Streamflow, Evapotranspiration, and Weather
3.4. Trend Analysis
3.5. Design of Rainfall and Flood Frequency Analyses for Infrastructure Vulnerability Assessment
3.5.1. Generalized Extreme Value Analysis
3.5.2. Log-Pearson Type III (LPIII) Distribution
4. Results and Discussion
4.1. Annual Rainfall, Streamflow, ROC, ET, and PET
4.2. Trends in Annual Rainfall, Temperature, Streamflow, Runoff Coefficient (ROC), PET, and ET
4.3. Monthly Rainfall and Streamflow
4.4. Daily Rainfall Frequency Duration
4.5. Daily Flow Duration Frequency Curves
4.6. Daily Flow Rate Frequencies for Dry, Wet, and Normal Years
4.7. Peak Discharge versus Rainfall of Various Duration
4.8. Water Table
4.9. Precipitation Intensity–Duration–Frequencies and Design Flood Frequencies
5. Summary and Conclusions
6. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Hazardous Fuel Treatment | Clearcut/Thinning | |||||
---|---|---|---|---|---|---|
Year | Acres | Hectares | % of Watershed | Acres | Hectares | % of Watershed |
2005 | 3122 | 1264 | 24.1 | |||
2006 | 9660 | 3911 | 74.6 | 52 | 21.1 | 0.40 |
2007 | 11,545 | 4674 | 89.2 | |||
2008 | 7624 | 3087 | 58.9 | |||
2009 | 9538 | 3862 | 73.7 | 52 | 21.1 | 0.40 |
2010 | 8425 | 3411 | 65.1 | |||
2011 | 5481 | 2219 | 42.3 | 61 | 24.7 | 0.47 |
2012 | 14,616 | 5917 | 112.9 | 169 | 68.4 | 1.31 |
2013 | 2413 | 977 | 18.6 | 382 | 154.7 | 2.95 |
2014 | 7986 | 3233 | 61.7 | |||
2015 | 960 | 389 | 7.4 | 85 | 34.4 | 0.66 |
2016 | 11,024 | 4463 | 85.2 | 169 | 68.4 | 1.31 |
2017 | 5500 | 2227 | 42.5 | |||
2018 | 2777 | 1124 | 21.5 | |||
2019 | 6470 | 2619 | 50.0 | 275 | 111.3 | 2.12 |
2020 | 3006 | 1217 | 23.2 | 44 | 17.8 | 0.34 |
2021 | 2973 | 1204 | 23.0 | 75 | 30.4 | 0.58 |
Year | Rainfall, mm | P-T PET, mm | Flow, mm | ROC | ET, mm | ET/P-T PET | ET/Rainfall |
---|---|---|---|---|---|---|---|
2005 | 1425 | 1219 | 574 | 0.4 | 851 | 0.7 | 0.6 |
2006 | 1152 | 1297 | 147 | 0.13 | 1005 | 0.77 | 0.87 |
2007 | 1070 | 1217 | 47 | 0.04 | 1023 | 0.84 | 0.96 |
2008 | 1386 | 1158 | 346 | 0.25 | 1040 | 0.9 | 0.75 |
2009 | 1727 | 1127 | 590 | 0.34 | 1137 | 1.01 | 0.66 |
2010 | 1198 | 1239 | 146 | 0.12 | 1052 | 0.85 | 0.88 |
2011 | 1033 | 1335 | 19 | 0.02 | 1014 | 0.76 | 0.98 |
2012 | 1210 | 1274 | 91 | 0.08 | 1119 | 0.88 | 0.92 |
2013 | 1537 | 1169 | 326 | 0.21 | 1211 | 1.04 | 0.79 |
2014 | 1453 | 1193 | 365 | 0.25 | 1088 | 0.91 | 0.75 |
2015 | 2214 | 1252 | 1512 | 0.68 | 702 | 0.56 | 0.32 |
2016 | 1668 | 1304 | 438 | 0.26 | 1230 | 0.94 | 0.74 |
2017 | 1611 | 1306 | 457 | 0.28 | 1154 | 0.88 | 0.72 |
2018 | 1520 | 1314 | 406 | 0.27 | 1114 | 0.85 | 0.73 |
2019 | 1612 | 1353 | 349 | 0.22 | 1263 | 0.93 | 0.78 |
2020 | 2018 | 1287 | 683 | 0.34 | 1335 | 1.04 | 0.66 |
2021 | 1145 | 1271 | 132 | 0.12 | 1013 | 0.8 | 0.88 |
Average | 1469 | 1254 | 390 | 0.24 | 1079 | 0.86 | 0.76 |
Std dev | 327 | 65 | 350 | 0.16 | 151 | 0.12 | 0.16 |
COV | 0.22 | 0.05 | 0.9 | 0.67 | 0.14 | 0.14 | 0.21 |
Water Year | Rainfall (GS) | Rainfall (DS) | Flow (GS) | Flow (DS) | ET (GS) | ET (DS) | ROC (GS) | ROC (DS) |
---|---|---|---|---|---|---|---|---|
mm | mm | mm | mm | mm | mm | mm | mm | |
2005 | 1085 | 340 | 430 | 144 | 655 | 196 | 0.40 | 0.42 |
2006 | 791 | 360 | 26 | 121 | 766 | 239 | 0.03 | 0.34 |
2007 | 721 | 348 | 1 | 47 | 721 | 302 | 0.00 | 0.13 |
2008 | 1119 | 266 | 258 | 88 | 862 | 178 | 0.23 | 0.33 |
2009 | 1004 | 724 | 154 | 436 | 849 | 288 | 0.15 | 0.60 |
2010 | 862 | 336 | 100 | 46 | 762 | 290 | 0.12 | 0.14 |
2011 | 716 | 316 | 14 | 5 | 702 | 311 | 0.02 | 0.02 |
2012 | 717 | 492 | 17 | 74 | 700 | 419 | 0.02 | 0.15 |
2013 | 1053 | 485 | 245 | 81 | 807 | 404 | 0.23 | 0.17 |
2014 | 942 | 511 | 159 | 205 | 783 | 306 | 0.17 | 0.40 |
2015 | 1665 | 549 | 1216 | 296 | 449 | 253 | 0.73 | 0.54 |
2016 | 1385 | 283 | 384 | 54 | 1001 | 230 | 0.28 | 0.19 |
2017 | 1323 | 288 | 382 | 74 | 941 | 213 | 0.29 | 0.26 |
2018 | 1015 | 506 | 167 | 239 | 848 | 266 | 0.16 | 0.47 |
2019 | 995 | 617 | 93 | 255 | 902 | 362 | 0.09 | 0.41 |
2020 | 1457 | 560 | 411 | 272 | 1046 | 289 | 0.28 | 0.48 |
2021 | 843 | 302 | 125 | 7 | 718 | 295 | 0.15 | 0.02 |
Mean | 1041 | 428 | 246 | 144 | 795 | 285 | 0.20 | 0.30 |
Std dev | 277 | 137 | 289 | 121 | 141 | 66 | 0.18 | 0.18 |
COV | 0.27 | 0.32 | 1.17 | 0.84 | 0.18 | 0.23 | 0.90 | 0.60 |
References
- Jayakaran, A.; Williams, T.M.; Ssegane, H.S.; Amatya, D.M.; Song, B.; Trettin, C.C. Hurricane impacts on a pair of coastal forested watersheds: Implications of selective hurricane damage to forest structure and streamflow dynamics. Hydrol. Earth Syst. Sci. 2014, 18, 1151–1164. [Google Scholar] [CrossRef]
- Kramer, M.G. Our Built and Natural Environments: A Technical Review of the Interactions Among Land Use, Transportation, and Environmental Quality; Environmental Protection Agency: Washington, DC, USA, 2013; 148p. [Google Scholar]
- Emmett, K. Changing Forest Dynamics from Yellowstone to the Great Smoky Mountains. In Proceedings of the Forest, Climate and Society Seminar Series, the French National Institute for Agriculture, Food, and the Environment (INRAE) Office, Champenoux, France, 19 September 2022. [Google Scholar]
- Schleeweis, K.; Moisen, G.G.; Toney, C.; Schroeder, T.A.; Huang, C.; Freeman, E.A.; Goward, S.N.; Dungan, J.L. NAFD-ATT Forest Canopy Cover Loss from Landsat, CONUS, 1986–2010; ORNL DAAC: Oak Ridge, TN, USA, 2020. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Day, C.A.; Bremer, K.A. Modeling urban hydrology: A comparison of new urbanist and traditional neighborhood design surface runoff. Int. J. Geosci. 2013, 4, 891. [Google Scholar] [CrossRef]
- Zheng, Q.; Hao, L.; Huang, X.; Sun, L.; Sun, G. Effects of Urbanization on Watershed Evapotranspiration and Its Components in Southern China. Water 2020, 12, 645. [Google Scholar] [CrossRef]
- Schueler, T. The importance of imperviousness. Watershed Prot. Tech. 1994, 1, 100–111. [Google Scholar]
- Nagy, R.C.; Lockaby, B.G. Urbanization in the Southeastern United States: Socioeconomic forces and ecological responses along an urban-rural gradient. Urban Ecosyst. 2010, 14, 71–86. [Google Scholar] [CrossRef]
- Weir, D.N.; Greis, J.G. The Southern Forest Futures Project: Summary Report; General Technical Report SRS-168; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2012; 54p. [Google Scholar]
- Corbin, J.; Morgan, H.; Patrohay, E.; Williams, T.; Amatya, D.M.; Darnault, C. Hydrologic Modeling of Development Effect Scenarios on a Relatively Undisturbed Coastal Forest Watershed. J. S. C. Water Resour. 2021, 8, 39–50. [Google Scholar]
- Amatya, D.M.; Trettin, C.C. Long-term ecohydrologic monitoring: A case study from the Santee Experimental Forest, South Carolina. J. S. C. Water Resour. 2019, 6, 46–55. [Google Scholar] [CrossRef]
- Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwartz, G.E.; Moore, R.B. The role of headwater streams in downstream water quality. J. Am. Water Resour. Assoc. 2007, 43, 41–59. [Google Scholar] [CrossRef]
- Moran, M.S.; Peters, D.P.C.; McClaran, M.P.; Nichols, M.H.; Adams, M.B. Long-term data collection at USDA experimental sites for studies of ecohydrology. Ecohydrology 2008, 1, 377–393. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef]
- Bosch, D.D.; Sheridan, J.M.; Lowrence, R.R.; Hubbard, R.K.; Strickland, T.C.; Feyereisen, G.W.; Sullivan, D.G. Little River Experimental Watershed Database. Water Resour. Res. 2007, 43, W09470. [Google Scholar] [CrossRef]
- Gibbins, C.; Vericat, D.; Batalla, R.J. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshw. Biol. 2007, 52, 2369–2384. [Google Scholar] [CrossRef]
- Wyżga, B.; Amirowicz, A.; Radecki-Pawlik, A.; Zawiejska, J. Hydromorphological conditions, potential fish habitats and the fish community in a mountain river subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians. River Res. Appl. 2009, 5, 517–536. [Google Scholar] [CrossRef]
- Amatya, D.M.; Tian, S.; Marion, D.A.; Caldwell, P.; Laseter, S.; Youssef, M.A.; Grace, J.M.; Chescheir, G.M.; Panda, S.; Ouyang, Y.; et al. Estimates of Precipitation IDF Curves and Design Discharges for Road-Crossing Drainage Structures: Case Study in Four Small Forested Watersheds in the Southeastern, U.S. J. Hydrol. Eng. 2021, 26, 05021004. [Google Scholar] [CrossRef]
- Panda, S.S.; Amatya, D.M.; Grace, J.M.; Caldwell, P.; Marion, D.A. Extreme precipitation-based vulnerability assessment of road-crossing drainage structures in forested watersheds using an integrated environmental modeling approach. Environ. Model. Softw. 2022, 155, 105413. [Google Scholar] [CrossRef]
- Lovett, D.M.; Burns, D.A.; Driscoll, C.T.; Jenkins, J.C.; Mitchell, M.J.; Rustad, L.; Shanley, J.B.; Likens, G.E.; Haeuber, R. Who needs environmental monitoring? Front. Ecol. Environ. 2007, 5, 253–260. [Google Scholar] [CrossRef]
- Vose, J.M.; Swank, W.T.; Adams, M.B.; Amatya, D.M.; Campbell, J.; Johnson, S.; Swanson, F.J.; Kolka, R.; Lugo, A.E.; Musselman, R.; et al. The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research. In USDA Forest Service Experimental Forests and Ranges; Hayes, D.C., Stout, S.L., Crawford, R.H., Hoover, A.P., Eds.; Springer: New York, NY, USA, 2014; pp. 387–403. [Google Scholar] [CrossRef]
- Swank, W.T.; Vose, J.M.; Elliott, K.J. Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment. For. Ecol. Manag. 2001, 143, 163–178. [Google Scholar] [CrossRef]
- Tajchman, S.J.; Fu, H.; Kochenderfer, J.N. Water and energy balance of a forested Appalachian watershed. Agric. For. Meteorol. 1997, 84, 61–68. [Google Scholar] [CrossRef]
- Amatya, D.M.; Herbert, S.; Trettin, C.C.; Hamidi, M.D. Evaluation of Paired Watershed Runoff Relationships since Recovery from a Major Hurricane on a Coastal Forest—A Basis for Examining Effects of Pinus palustris Restoration on Water Yield. Water 2021, 13, 3121. [Google Scholar] [CrossRef]
- Amatya, D.M.; Skaggs, R.W. Long-term hydrology and water quality of a drained pine plantation in North Carolina. Trans. ASABE 2011, 54, 2087–2098. [Google Scholar] [CrossRef]
- Dai, Z.; Trettin, C.C.; Amatya, D.M. Effects of Climate Variability on Forest Hydrology and Carbon Sequestration on the Santee Experimental Forest in Coastal South Carolina (General Technical Report SRS-172); USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2013. [Google Scholar]
- Epps, T.; Hitchcock, D.; Jayakaran, A.D.; Loflin, D.; Williams, T.M.; Amatya, D.M. Characterization of storm flow dynamics of headwater streams in the South Carolina lower Coastal Plain. J. Am. Water Resour. Assoc. 2013, 49, 76–89. [Google Scholar] [CrossRef]
- Eshleman, K.N.; Pollard, J.S.; O’Brien, A.K. Interactions between groundwater and surface water in a Virginia coastal plain watershed. Hydrol. Processes 1994, 8, 389–410. [Google Scholar] [CrossRef]
- Harder, S.V.; Amatya, D.M.; Callahan, T.J.; Trettin, C.C.; Hakkila, J. Hydrology and water budget for a first-order forested Atlantic Coastal Plain watershed, South Carolina. J. Am. Water Resour. Assoc. 2007, 43, 563–575. [Google Scholar] [CrossRef]
- Pyzoha, J.E.; Callahan, T.J.; Sun, G.; Trettin, C.C.; Miwa, M. A Conceptual Hydrologic Model for a Forested Carolina Bay Depressional Wetland on the Coastal Plain of South Carolina, USA. Hydrol. Processes 2008, 22, 2689–2698. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Chescheir, G.M.; Fernandez, G.P.; Amatya, D.M.; Diggs, J. Effects of Land Use on Soil Properties and Hydrology of Drained Coastal Plain Watersheds. Trans. ASABE 2011, 54, 1357–1365. [Google Scholar] [CrossRef]
- Slattery, M.C.; Gares, P.A.; Phillips, J.D. Multiple modes of storm runoff generation in a North Carolina coastal plain watershed. Hydrol. Processes 2006, 20, 2953–2969. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Amatya, D.M.; Skaggs, R.W.; Swift, L.W.; Shepard, J.P.; Riekerk, H. A comparison of the hydrology of the coastal forested wetlands/pine flatwoods and the mountainous uplands in the southern, U.S. J. Hydrol. 2002, 263, 92–104. [Google Scholar] [CrossRef]
- Williams, T.M. Evidence of runoff production mechanisms in low gradient coastal forested watersheds. In Proceedings of the ASABE Annual International Meeting, Minneapolis Convention Center, Minneapolis, MN, USA, 17–20 June 2007. [Google Scholar]
- Andréassian, V.; Oddos, A.; Michel, C.; Anctil, F.; Perrin, C.; Loumagne, C. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resour. Res. 2004, 40, W05209. [Google Scholar] [CrossRef]
- Trettin, C.C.; Amatya, D.M.; Gaskins, T.; Miniat, C.F.; Chow, A.; Callahan, T. Watershed Response to Longleaf Pine Restoration—Application of Paired Watersheds on the Santee Experimental Forest. In Working Watersheds and Coastal Systems: Research and Management for a Changing Future, Proceedings of the Sixth Interagency Conference on Research in the Watersheds, Shepherdstown, WV, USA, 23–26 July 2018; Latimer, J.S., Trettin, C.C., Bosch, D.D., Lane, C.R., Eds.; e-General Technical Report SRS-243; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2019; pp. 194–201. [Google Scholar]
- Wei, X.; Li, Q.; Zhang, M.; Liu, W.; Fan, H. Chapter 11—Forest Cover Changes and Hydrology in Large Watersheds. In Forest Hydrology: Processes, Management, and Applications; Amatya, D.M., Williams, T.M., Bren, L., de Jong, C., Eds.; CABI Publishers: Wallingford, UK, 2016; pp. 180–191. [Google Scholar]
- Shaman, J.; Stieglitz, M.; Burns, D. Are big basins just the sum of small catchments? Hydrol. Processes 2004, 18, 3195–3206. [Google Scholar] [CrossRef]
- Haley, E.B. Field Measurements and Hydrologic Modeling of the Turkey Creek Watershed, South Carolina. Master’s Thesis, College of Charleston, Charleston, SC, USA, 2007. [Google Scholar]
- Amatya, D.M.; Callahan, T.J.; Trettin, C.C.; Radecki-Pawlik, A. Hydrologic and Water Quality Monitoring on Turkey Creek Watershed, Francis Marion National Forest, SC. In Proceedings of the Annual ASABE Int’l Meeting, Reno, NV, USA, 21–24 June 2009. ASABE paper # 09-5999. [Google Scholar]
- Amatya, D.M.; Jha, M.K. Evaluating SWAT model for a low gradient forested watershed in Coastal South Carolina. Trans. ASABE 2011, 54, 2151–2163. [Google Scholar] [CrossRef]
- La Torre Torres, I. Seasonal Relationships between Precipitation and Stream Flow Patterns Related to Watershed Characteristics of Two Third-Order Coastal Plain Watersheds in South Carolina. Master’s Thesis, College of Charleston, Charleston, SC, USA, 2008. [Google Scholar]
- La Torre Torres, I.; Amatya, D.M.; Callahan, T.J.; Sun, G. Seasonal rainfall-runoff relationships in a lowland forested watershed in the Southeastern USA. Hydrol. Processes 2011, 25, 2032–2045. [Google Scholar] [CrossRef]
- Muwamba, A.; Amatya, D.M.; Trettin, C.C.; Glover, J. Comparing nutrients export from first, second, and third order watersheds at South Carolina Atlantic Coastal Plain. In Headwaters to Estuaries: Advances in Watershed Science and Management: Proceedings of the 5th Interagency Conference On Research in the Watersheds (General Technical Report SRS-211), North Charleston, SC, USA, 2–5 March 2015; Stringer, C.E., Krauss, K.W., Latimer, J.S., Eds.; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2016; pp. 83–88. [Google Scholar]
- Trettin, C.C.; Amatya, D.M.; Muwamba, A.; Glover, J.; Wenerick, W. Chapter 15: Ecoregion 8.5.3 Southern Coastal Plain: Santee Experimental Forest, South Carolina. In Biological Responses to Stream Nutrients: A Synthesis of Science from Experimental Forests and Ranges; Doug Ryan, D., Ed.; PNW-GTR-981; Pacific Northwest Station, USDA Forest Service: Washington, DC, USA, 2022; pp. 389–414. [Google Scholar]
- Hook, D.D.; Buford, M.A.; Williams, T.M. Impact of Hurricane Hugo on the South Carolina Coastal Plain forest. J. Coast. Res. 1991, 8, 291–300. [Google Scholar]
- Amatya, D.M.; Trettin, C.C.; Panda, S.; Ssegane, H. Application of LiDAR data for Hydrologic Assessments of Low-gradient Coastal Watershed Drainage Characteristics. J. Geogr. Inf. Syst. 2013, 5, 171–195. [Google Scholar] [CrossRef]
- Amatya, D.M.; Callahan, T.J.; Hansen, W.F.; Trettin, C.C.; Radecki-Pawlik, A.; Meire, P. Turkey Creek—A case study of ecohydrology and integrated watershed management in the low-gradient Atlantic Coastal Plain, U.S.A. J. Water Resour. Protect. 2015, 7, 792–814. [Google Scholar] [CrossRef]
- Amatya, D.M.; Callahan, T.J.; Trettin, C.C. Synthesis of 10 years of studies on Turkey Creek watershed. In Headwaters to Estuaries: Advances in Watershed Science and Management, Proceedings of the Fifth Interagency Conference on Research in the Watersheds, North Charleston, SC, USA, 2–5 March 2015; Stringer, C.E., Krauss, K.W., Latimer, J.S., Eds.; e-General Technical Report SRS-211; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2016; 302p. [Google Scholar]
- Callahan, T.J.; Vulava, V.M.; Passarello, M.C.; Garrett, C.G. Estimating groundwater recharge in lowland watershed. Hydrol. Processes 2012, 26, 2845–2855. [Google Scholar] [CrossRef]
- Amatya, D.M.; Callahan, T.J.; Walega, A.; Morrison, A.; Vulava, V. Storm Event Analysis of Four Forested Catchments on the Atlantic Coastal Plain using MSME, a Modified SCS-CN Runoff Model. J. Hydrol. 2022, 608, 127772. [Google Scholar] [CrossRef]
- Walega, A.; Amatya, D.M.; Caldwell, P.; Marion, D.; Panda, S. Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. J. Hydrol. Reg. Stud. 2020, 2, 100645. [Google Scholar] [CrossRef]
- Ku, P.; Tsui, M.; Farmer, T.; Chen, H.; Amatya, D.M.; Trettin, C.; Chow, A. Effects of Forest Management Practice (Prescribed Burning) on Mercury Transport: A Case Study in a Paired Experimental Watershed in Lower Coastal Plain of South Carolina; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2021. [Google Scholar]
- Trettin, C.C.; Czwartacki, B.; Allan, C.; Amatya, D.M. Linking freshwater tidal hydrology to carbon cycling in bottomland hardwood wetlands. In Headwaters to Estuaries: Advances in Watershed Science and Management, Proceedings of the Fifth Interagency Conference on Research in the Watersheds, North Charleston, SC, USA, 2–5 March 2015; Stringer, C.E., Krauss, K.W., Latimer, J.S., Eds.; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2016. [Google Scholar]
- Amatya, D.M.; Trettin, C.C. Development of watershed hydrologic research at Santee Experimental Forest, Coastal South Carolina. In Advancing the Fundamental Sciences, Proceedings of the Forest Service National Earth Sciences Conference, San Diego, CA, 18–22 October 2004; Furniss, M.J., Clifton, C.F., Ronnenberg, K.L., Eds.; General Technical Report PNW-GTR-689; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2007; Volume 1, pp. 180–190. [Google Scholar]
- Morrison, A. Storm Event Analysis at Varying Watershed Scales: Turkey Creek, Santee Experimental Forest, South Carolina. Master’s Thesis, College of Charleston, Charleston, SC, USA, 2016. [Google Scholar]
- Gaskins, A.; (Forest Service District Range Office, Francis Marion National Forest, Huger, SC, USA). Personal communication, 2022.
- Maceyka, A.; (Francis Marion and Sumter National Forest, Huger, SC, USA). Personal communication, 2023.
- Amatya, D.M.; Chescheir, G.M.; Williams, T.M.; Skaggs, R.W. Long-term water table dynamics of forested wetlands: Drivers and their effects on wetland hydrology in the Southeastern Atlantic Coastal Plain. Wetlands 2020, 40, 65–79. [Google Scholar] [CrossRef]
- Soil Conservation Service. Soil Survey of Berkeley County, South Carolina; Soil Conservation Service: Washington, DC, USA, 1980. [Google Scholar]
- Amatya, D.M.; Trettin, C.C.; Harrison, C.A.; Arnold, J.A. Long-term hydro-meteorology and water quality data from low-gradient catchments of varying scales on the Santee experimental Forest, South Carolina. Hydrol. Processes 2022, 36, e14549. [Google Scholar] [CrossRef]
- Amatya, D.M.; Trettin, C.C. Santee Experimental Forest, Watershed 78: Streamflow, Water Chemistry, Water Table, and Weather Data; Forest Service Research Data Archive: Fort Collins, CO, USA, 2022. [Google Scholar] [CrossRef]
- Amatya, D.M.; Harrison, C.A. Grass and forest potential evapotranspiration comparison using 5 methods in the Atlantic Coastal Plain. J. Hydrol. Eng. 2016, 21, 05016007. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriatetechniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Coes, A.L.; Spruill, T.B.; Thomasson, M.J. Multiple-method estimationof recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrogeol. J. 2007, 15, 773–788. [Google Scholar] [CrossRef]
- Amatya, D.M.; Trettin, C.C. Santee Experimental Forest Headquarters: Climate Data; Forest Service Research Data Archive: Fort Collins, CO, USA, 2020. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Kizilersu, A.; Kreer, M.; Thomas, A.W. The Weibull distribution. Significance 2018, 15, 10–11. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated Baseflow Separation and Recession Analysis Techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Dhorde, A.G.; Zarenistanak, M. Three-way approach to test data homogeneity: An analysis of temperature and precipitation series over southwestern Islamic Republic of Iran. J. Ind. Geophys. Union 2013, 17, 233–242. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 1, 245–259. [Google Scholar] [CrossRef]
- Libiseller, C.; Grimvall, A. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics 2002, 13, 71–84. [Google Scholar] [CrossRef]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; Volume 208, p. 208. [Google Scholar]
- Perica, S.; Pavlovic, S.; St Laurent, M.; Trypaluk, C.; Unruh, D.; Wilhite, O. Precipitation-Frequency Atlas of the United States; Volume 11, Version 2.0: Texas; U.S. Department of Commerce: Silver Spring, MD, USA, 2018. [Google Scholar]
- Hosking, J.R.M. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Statist. Soc. Ser. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Papalexiou, S.M. Assessing extremes in hydroclimatology: A review on probabilistic methods. J. Hydrol. 2022, 605, 127302. [Google Scholar] [CrossRef]
- Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- England, J.F., Jr.; Cohn, T.A.; Faber, B.A.; Stedinger, J.R.; Thomas, W.O., Jr.; Veilleux, A.G.; Kiang, J.E.; Mason, R.R., Jr. Guidelines for Determining Flood Flow Frequency—Bulletin 17C (ver. 1.1, May 2019); Techniques and Methods 4-B5; U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Feaster, T.D.; Gotvald, A.J.; Weaver, J.C. Magnitude and Frequency of Rural Floods in the Southeastern United States; Scientific Investigations Report 2009-5156; U.S. Geological Survey: Conway, SC, USA, 2009; Volume 3, 226p. [Google Scholar]
- Amatya, D.M.; Trettin, C.C. Annual Evapotranspiration of a Forested Wetland Watershed, SC; Paper # 07-2222; Annual Conference of the ASABE: St. Joseph, MI, USA, 2007. [Google Scholar]
- Mizzell, H.; Malsick, M.; Tyler, W. The historic South Carolina rainfall and major floods of October 1–5, 2015. J. S. C. Water Resour. 2016, 3, 3–7. [Google Scholar] [CrossRef]
- Amatya, D.M.; Skaggs, R.W.; Gregory, J.D. Comparison of methods for estimating REF-ET. J. Irrig. Drain. Eng. 1995, 121, 427–435. [Google Scholar] [CrossRef]
- Amatya, D.M.; Williams, T.M.; Nettles, J.E.; Skaggs, R.W.; Trettin, C.C. Comparison of Hydrology Two Atlantic Coastal Plain Forests, U.S.A. Trans. ASABE 2019, 62, 1509–1529. [Google Scholar] [CrossRef]
- Amatya, D.M.; Dai, Z.; Tian, S.; Sun, G. Long-term PET and ET of two Different Forests on the Atlantic Coastal Plain. ET Special Collection. Trans. ASABE 2016, 59, 647–660. [Google Scholar]
- Sun, G.; Noormets, A.; Gavazzi, M.; McNulty, S.G.; Chen, J.; Domec, J.-C.; King, J.; Amatya, D.M.; Skaggs, R.W. Energy and Water Balances of Two Contrasting Loblolly Pine Plantations on the Lower Coastal Plain of North Carolina, USA. For. Ecol. Managem. 2010, 259, 1299–1310. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, M. Role of meteorological controls on interannual variations in wet-period characteristics of wetlands. Water Resour. Res. 2016, 52, 5056–5074. [Google Scholar] [CrossRef]
- Mizzell, H.; Malsick, M.; Abramyan, I. South Carolina’s climate report card: Understanding South Carolina’s climate trends and variability. J. S. C. Water Resour. 2014, 1, 4–9. [Google Scholar] [CrossRef]
- Marion, D.A.; Sun, G.; Caldwell, P.V.; Ford, C.R.; Ouyang, Y.; Amatya, D.M.; Clinton, B.D.; Conrads, P.A.; Gull-Laird, S.; Dai, Z.; et al. Chapter 9: Managing Forest Water Quantity and Quality Under Climate Change. In Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems; Vose, J., Kleipzig, K., Eds.; CRC Press: Boca Raton, FL, USA, 2013; 496p. [Google Scholar]
- Amatya, D.M.; Harrison, C.A.; Trettin, C.C. Hydro-meteorologic assessment of October 2015 extreme precipitation event on Santee Experimental Forest watersheds, SC. J. S. C. Water Resour. 2016, 3, 19–30. [Google Scholar]
- Amatya, D.M.; Radecki-Pawlik, A. Flow Dynamics of Three Forested Watersheds in Coastal South Carolina, U.S.A. Acta Scient. Pol.–Form. Circumiectus 2007, 6, 3–17. [Google Scholar]
- Bower, L.M.; Peoples, B.K.; Eddy, M.C.; Scott, M.C. Quantifying flow–ecology relationships across flow regime class and ecoregions in South Carolina. Sci. Total Environ. 2022, 802, 149721. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. Flow duration curves II: A review of applications in water resources planning. J. Am. Water Resour. Assoc. 1995, 31, 1029–1039. [Google Scholar] [CrossRef]
- Wałęga, A.; Kędzior, R.; Książek, L.; Młyński, D.; Strużyński, A.; Grela, J.; Madej, P.; Skalski, T. Flow predictability indicates the ecological quality of the river: A case of invertebrates in Central Europe. Ecol. Indic. 2022, 143, 109308. [Google Scholar] [CrossRef]
- Frankiewicz, P.; Radecki-Pawlik, A.; Wałęga, A.; Łapińka, M.; Wojtal-Frankiewicz, A. Small hydraulic structures, big environmental problems: Is it possible to mitigate the negative impacts of culverts on stream biota? Environ. Rev. 2021, 29, 510–528. [Google Scholar] [CrossRef]
- Young, C.E.; Klawitter, R.A. Hydrology of Wetland Forest Watersheds; Report, No. 4; Council on Hydrology Clemson University Water Resources Research Institute: Clemson, SC, USA, 1968; pp. 29–38. [Google Scholar]
- Williams, T.M.; Amatya, D.M. Coastal plain soils and geomorphology: A key to understanding forest hydrology. In Headwaters to Estuaries: Advances in Watershed Science and Management, Proceedings of the Fifth Interagency Conference on Research in the Watersheds, North Charleston, SC, USA, 2–5 March 2015; Stringer, C.E., Krauss, K.W., Latimer, J.S., Eds.; e-General Technical Report SRS-211; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2016; 302p. [Google Scholar]
- Griffin, M.P.; Callahan, T.J.; Vulava, V.M.; Williams, T.J. Influence of soil type and antecedent soil moisture conditions on storm-event flow pathways in lower coastal plain watersheds of the southeastern United States. Water Resour. Res. 2014, 50, 8265–8280. [Google Scholar] [CrossRef]
- Callahan, T.J.; Amatya, D.M.; Stone, P. Coastal forests and groundwater: Using case studies to understand the effects of drivers and stressors for resource management. Sustainability 2017, 9, 447. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process 2015, 2, 729–749. [Google Scholar] [CrossRef]
- Feaster, T.D.; Gotvald, A.J.; Weaver, J.C. Methods for Estimating the Magnitude and Frequency of Floods for Urban and Small, Rural Streams in Georgia, South Carolina, and North Carolina, 2011; US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Bosch, D.D.; Coffin, A.W.; Sheridan, J.; Pisani, O.; Endale, D.M.; Strickland, T.C. Little River Experimental Watershed, a keystone in understanding of coastal plain watersheds. Hydrol. Processes 2021, 35, e14334. [Google Scholar] [CrossRef]
- Keefer, T.O.; Renard, K.G.; Goodrich, D.C.; Heilman, P.; Unkrich, C.L. Quantifying Extreme Rainfall Events and their Hydrologic Response in the Walnut Gulch Experimental Watershed in Southeastern Arizona. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings 2015; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015; p. 1. [Google Scholar]
- Pascolini-Campbell, M.A.; Reager, J.T.; Fisher, J.B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 2020, 56, 2019WR026594. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Blanche, C.A.; Hodges, J.D.; Nebeker, T.E.; Moehring, D.M. Southern pine beetle: The host dimension. Bulletins 1983, 764. Available online: https://scholarsjunction.msstate.edu/mafes-bulletins/764 (accessed on 20 February 2024).
- Kolb, T.E.; Fettig, C.J.; Ayres, M.P.; Bentz, B.J.; Hicke, J.A.; Mathiasen, R.; Stewart, J.E.; Weed, A.S. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 2016, 380, 321–334. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Addington, R.N.; Hudson, S.J.; Hiers, J.K.; Hurteau, M.D.; Hutcherson, T.F.; Matusick, G.; Parker, J.M. Relationships among wildfire, prescribed fire, and drought in a fire-prone landscape in the South-Eastern United States. Int. J. Wildland Fire 2015, 24, 778–783. [Google Scholar] [CrossRef]
- Emmett, K.D.; Pomara, L.Y.; Riitters, K.; Schroeder, T. Leveraging remotely sensed data to understand drivers of forest change for the Southeastern, U.S. In Proceedings of the International Association of Landscape Ecology North America Annual Meeting, Virtual, 11–14 April 2022. [Google Scholar]
- Dewitz, J. National Land Cover Database (NLCD) 2016 Products (Ver. 3.0, November 2023); U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Brooks, B.-G.J.; Lee, D.C.; Pomara, L.Y.; Hargrove, W.W. Monitoring Broadscale Vegetational Diversity and Change across North American Landscapes Using Land Surface Phenology. Forests 2020, 11, 606. [Google Scholar] [CrossRef]
- Conrads, P.A.; Roehl, E.A., Jr.; Daamen, R.C.; Cook, J.B. Simulation of Salinity Intrusion along the Georgia and South Carolina Coasts Using Climate-Change Scenarios; Scientific Investigation Report 2013-5036; U.S. Geological Survey: Reston, VA, USA, 2013; 92p. Available online: https://pubs.usgs.gov/sir/2013/5036/ (accessed on 20 February 2024).
- Cherry, G.S.; Peck, M.F. Saltwater Intrusion in the Floridan Aquifer System near Downtown Brunswick, Georgia, 1957–2015; Open-File Report 2017–2010; U.S. Geological Survey: Reston, VA, USA, 2017; 10p. [Google Scholar] [CrossRef]
- Eamus, D.; Fu, B.; Springer, A.E.; Stevens, L.E. Groundwater Dependent Ecosystems: Classification, Identification Techniques and Threats. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern, U.S. J. Hydrol. 2021, 601, 126641. [Google Scholar] [CrossRef]
- Amatya, D.M.; Fialkowski, M.; Bitner, A. A Numerical Water Table Depth Computing Model for Poorly Drained Soils. Wetlands 2018, 39, 39–54. [Google Scholar] [CrossRef]
- Sun, G.; Caldwell, P.; Noormets, A.; McNulty, S.G.; Cohen, E.; Moore Myers, J.; Domec, J.-C.; Treasure, E.; Mu, Q.; Xiao, J.; et al. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. J. Geophys. Res. Biogeosci. 2011, 116, G00J05. [Google Scholar] [CrossRef]
- Amatya, D.M.; Hamidi, D.; Trettin, C.C.; Dai, Z. Simulating Hydrology of Current Stands and Post-longleaf Pine Restoration in Coastal South Carolina. In Enhancing Landscapes for Sustainable Intensification and Watershed Resiliency—Proceedings of the 7th Interagency Conference on Research in the Watersheds, Corvallis, OR, USA, 16–19 November 2020; Latimer, J.S., Bosch, D.D., Faustini, J., Lane, C.R., Trettin, C.C., Eds.; Gen. Tech. Rep. SRS–264; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2022; 217p. [Google Scholar] [CrossRef]
Characteristics | Values |
---|---|
Elevation range, m | 3.5–11.5 |
Average basin slope, % | <2.0 |
Area, ha | 5240 |
Channel Slope, % | 0.1 |
Maximum Channel length, m | 2020 |
Dominant soil types a | Lenoir, Wahee, Lynchburg, Goldsboro, Rains |
B-horizon soil hydraulic conductivity, cm/s | 10−5, 10−4, 10−3, 10−2, 10−3 |
Vegetation categories | Pine mixed, Loblolly pine |
No. | Recorded | Recorder | Recorder | Recorder | Record | Recorded | Analyzed | Remarks |
---|---|---|---|---|---|---|---|---|
Variable | Type | Numbers | Location | Length | Unit | Unit | ||
1 | Rainfall | Tipping bucket | 1-Auto/ 1-Man | Middle of WS78 | 2005–2021 | 0.25 mm/tip | mm/day | Manual backup; gap fill |
2 | Streamflow | Sutron Bubbler | 1 | WS78 Outlet | 2005–2021 | cfs | mm/day | Starting from March 2005 |
3 | Air Temperature | Vaisala | 1 | Middle of WS78 | 2005–2021 | °C | °C | Starting late October 2005 |
4 | Relative Humidity | Vaisala | 1 | Middle of WS78 | 2005–2021 | % | % | Starting late October 2005 |
5 | Wind Speed | Met One | 1 | Middle of WS78 | 2005–2021 | m s−1 | m s−2 | Starting late October 2005 |
6 | Solar Radiation | LICOR/Apogee | 1 | Middle of WS78 | 2005–2021 | W m2 | Mj m2 d−1 | Starting late October 2005 |
7 | Shallow GW | WL-16 | 5 | Distributed | 2006–2019 | cm | cm | Staring mid 2006 |
8 | Deep GW | Manual well | 3 piezometers | Middle of WS78 | 2006–2021 | cm | cm | Staring mid 2007 |
Year | Rainfall mm | PET, mm | Flow, mm | ROC, Flow/Rain | ET, mm | ET/P-T PET | ET/Rain |
---|---|---|---|---|---|---|---|
2005 | 1527 | 1220 | 400 | 0.26 | 1127 | 0.78 | 0.74 |
2006 | 1122 | 1298 | 119 | 0.11 | 1003 | 0.77 | 0.89 |
2007 | 994 | 1212 | 94 | 0.09 | 900 | 0.74 | 0.91 |
2008 | 1463 | 1194 | 349 | 0.24 | 1114 | 0.93 | 0.76 |
2009 | 1553 | 1116 | 387 | 0.25 | 1166 | 1.05 | 0.75 |
2010 | 1304 | 1229 | 349 | 0.27 | 955 | 0.78 | 0.73 |
2011 | 1043 | 1304 | 57 | 0.06 | 986 | 0.76 | 0.94 |
2012 | 1117 | 1295 | 23 | 0.02 | 1094 | 0.85 | 0.98 |
2013 | 1546 | 1183 | 320 | 0.21 | 1226 | 1.04 | 0.79 |
2014 | 1389 | 1250 | 255 | 0.18 | 1134 | 0.91 | 0.82 |
2015 | 2243 | 1216 | 1167 | 0.52 | 1076 | 0.60 | 0.48 |
2016 | 1834 | 1285 | 588 | 0.32 | 1246 | 0.97 | 0.68 |
2017 | 1579 | 1322 | 437 | 0.28 | 1142 | 0.86 | 0.72 |
2018 | 1587 | 1312 | 424 | 0.27 | 1163 | 0.89 | 0.73 |
2019 | 1422 | 1350 | 218 | 0.15 | 1205 | 0.89 | 0.85 |
2020 | 1979 | 1298 | 646 | 0.33 | 1333 | 1.03 | 0.67 |
2021 | 1289 | 1206 | 315 | 0.24 | 974 | 0.77 | 0.76 |
AVERAGE | 1470 | 1255 | 362 | 0.22 | 1108 | 0.86 | 0.78 |
SD | 331.10 | 60.62 | 269.99 | 0.12 | 115.54 | 0.12 | 0.12 |
COV | 0.23 | 0.05 | 0.75 | 0.53 | 0.10 | 0.14 | 0.15 |
Variable (Units) | Whole Study Period | Excluding Year 2015 | Direction | ||||
---|---|---|---|---|---|---|---|
Modified MK Test | Sen Slope (Per Decade) | Modified MK Test | Sen Slope (Per Decade) | ||||
Z-Statistics | p-Value | Z-Statistics | p-Value | ||||
Rainfall (mm) | 1.61 | 0.11 | 238.38 | 1.58 | 0.12 | 220.96 | Positive |
Streamflow (mm) | 0.74 | 0.46 | 100.56 | 0.63 | 0.53 | 103.57 | Positive |
PET (mm) | 2.93 | 0.003 | 57.08 | 2.71 | 0.007 | 65.36 | Positive |
Total ET (mm) | 2.1 | 0.04 | 162.29 | 2.48 | 0.01 | 184.17 | Positive |
ROC | 0.78 | 0.43 | 0.06 | 0.68 | 0.5 | 0.05 | Positive |
Tmax (°C) | 0.05 | 0.96 | 0.06 | 0.1 | 0.92 | 0.06 | Positive |
Tmin (°C) | 3.74 | 0.0002 | 1.98 | 3.96 | 7.53 × 10−5 | 2.15 | Positive |
Tavg (°C) | 2.48 | 0.01 | 1.03 | 2.57 | 0.01 | 1.08 | Positive |
Variable | Ucrit | U | K | P | Results |
---|---|---|---|---|---|
TC water table | 459 | 385 | 12.19.2012 | 0.29 | no change point |
TC piezometer | 478 | 478 | 4.01.2010 | 0.22 | no change point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amatya, D.M.; Callahan, T.J.; Mukherjee, S.; Harrison, C.A.; Trettin, C.C.; Wałęga, A.; Młyński, D.; Emmett, K.D. Hydrometeorological Trends in a Low-Gradient Forested Watershed on the Southeastern Atlantic Coastal Plain in the USA. Hydrology 2024, 11, 31. https://doi.org/10.3390/hydrology11030031
Amatya DM, Callahan TJ, Mukherjee S, Harrison CA, Trettin CC, Wałęga A, Młyński D, Emmett KD. Hydrometeorological Trends in a Low-Gradient Forested Watershed on the Southeastern Atlantic Coastal Plain in the USA. Hydrology. 2024; 11(3):31. https://doi.org/10.3390/hydrology11030031
Chicago/Turabian StyleAmatya, Devendra M., Timothy J. Callahan, Sourav Mukherjee, Charles A. Harrison, Carl C. Trettin, Andrzej Wałęga, Dariusz Młyński, and Kristen D. Emmett. 2024. "Hydrometeorological Trends in a Low-Gradient Forested Watershed on the Southeastern Atlantic Coastal Plain in the USA" Hydrology 11, no. 3: 31. https://doi.org/10.3390/hydrology11030031
APA StyleAmatya, D. M., Callahan, T. J., Mukherjee, S., Harrison, C. A., Trettin, C. C., Wałęga, A., Młyński, D., & Emmett, K. D. (2024). Hydrometeorological Trends in a Low-Gradient Forested Watershed on the Southeastern Atlantic Coastal Plain in the USA. Hydrology, 11(3), 31. https://doi.org/10.3390/hydrology11030031