Modeling a Metamorphic Aquifer through a Hydro-Geophysical Approach: The Gap between Field Data and System Complexity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Hydrogeological Setting
2.3. Mathematical Modeling
2.3.1. Hydrogeological Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gustafson, G.; Krásny, J. Crystalline rock aquifers: Their occurrence, use and importance. Appl. Hydrogeol. 1994, 2, 64–75. [Google Scholar] [CrossRef]
- Wright, E.P.; Burgess, W.G. The Hydrogeology of Crystalline Basement Aquifers in Africa. Geol. Soc. Spec. Publ. 1992, 66, 264. [Google Scholar] [CrossRef]
- Baiocchi, A.; Dragoni, W.; Lotti, F.; Piacentini, S.M.; Piscopo, V. A Multi-Scale Approach in Hydraulic Characterization of a Metamorphic Aquifer: What Can Be Inferred about the Groundwater Abstraction Possibilities. Water 2015, 7, 4638–4656. [Google Scholar] [CrossRef] [Green Version]
- Stober, I.; Bucher, K. Hydrogeology of Crystalline Rocks; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Dewandel, B.; Lachassagne, P.; Wyns, R.; Maréchal, J.C.; Krishnamurthy, N.S. A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controller by single or multiphase weathering. J. Hydrol. 2006, 320, 260–284. [Google Scholar] [CrossRef]
- Sharp, J.M. Fractured Rock Hydrogeology; Taylor & Francis: London, UK, 2014. [Google Scholar]
- Tsang, Y.W.; Tsang, C.F.; Hale, F.V.; Dverstorp, B. Tracer transport in a stochastic continuum model of fractured media. Water Resour. Res. 1996, 32, 3077–3092. [Google Scholar] [CrossRef]
- Hsieh, P.A. Scale effects in fluid flow through fractured geological media. In Scale Dependence and Scale Invariance in Hydrology; Sposito, G., Ed.; Cambridge Univ. Press: Cambridge, UK, 1998; pp. 35–353. [Google Scholar]
- Howard, K.W.K.; Hughes, M.; Charlesworth, D.L.; Ngobi, G. Hydrogeologic evaluation of fracture permeability in crystalline basement aquifers of Uganda. Hydrogeol. J. 1992, 1, 55–65. [Google Scholar] [CrossRef]
- Maréchal, J.C.; Dewandel, B.; Subrahmanyam, K. Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour. Res. 2004, 40, W11508. [Google Scholar] [CrossRef] [Green Version]
- de Marsily, G.; Lavedan, G.; Boucher, M.; Fasanino, G. Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In Geostatistics for Natural Resources Characterization, Part 2; NATO Advanced Study Institute: Dordrecht, The Netherlands, 1984; pp. 831–849. [Google Scholar]
- Ahmed, S.; de Marsily, G. Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resour. Res. 1987, 23, 1717–1737. [Google Scholar] [CrossRef]
- Nastev, M.; Savard, M.; Lapcevic, P.; Lefebvre, R.; Martel, R. Hydraulic properties and scale effects investigation in regional rock aquifers, southwestern, Quebec, Canada. Hydrogeol. J. 2004, 12, 257–269. [Google Scholar] [CrossRef]
- Patriarche, D.; Castro, M.C.; Goovaerts, P. Estimating regional hydraulic conductivity fields—A comparative study of geostatistical methods. Math. Geol. 2005, 37, 587–613. [Google Scholar] [CrossRef]
- Razack, M.; Lasm, T. Geostatistical estimation of the transmissivity in a highly fractured metamorphic and crystalline aquifer (Man-Danane Region, Western Ivory Coast). J. Hydrol. 2006, 325, 164–178. [Google Scholar] [CrossRef]
- Li, W.; Englert, A.; Cirpka, O.A.; Vanderborght, J.; Vereecken, H. Twodimensional characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour. Res. 2007, 43, W04433. [Google Scholar] [CrossRef] [Green Version]
- Straface, S.; Yeh, T.C.J.; Zhu, J.; Troisi, S.; Lee, C.H. Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resour. Res. 2007, 43, W07432. [Google Scholar] [CrossRef]
- Kolterman, C.E.; Gorelick, S.M. Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches. Water Resour. Res. 1996, 32, 2617–2658. [Google Scholar] [CrossRef]
- de Marsily, G.; Delay, F.; Gonçalvès, J.; Renard, P.H.; Teles, V.; Violette, S. Dealing with spatial heterogeneity. Hydrogeol. J. 2005, 13, 161–183. [Google Scholar] [CrossRef]
- Straface, S.; Chidichimo, F.; Rizzo, E.; Riva, M.; Barrash, W.; Revil, A.; Cardiff, M.; Guadagnini, A. Joint inversion of steady-state hydrologic and self-potential data for 3D hydraulic conductivity distribution at the Boise Hydrogeophysical Research Site. J. Hydrol. 2011, 407, 115–128. [Google Scholar] [CrossRef]
- Neuman, S.P. Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resour. Res. 1973, 9, 1006–1021. [Google Scholar] [CrossRef]
- Yeh, W.W.G. Review of parameter estimation procedures in groundwater hydrology: The inverse problem. Water Resour. Res. 1986, 22, 95–108. [Google Scholar] [CrossRef]
- de Marsily, G.; Delhomme, J.P.; Delay, F.; Buoro, A. 40 years of inverse problems in hydrogeology. C. R. L’academie Sci. Ser. IIA—Earth Planet Sci. 1999, 329, 73–87. [Google Scholar] [CrossRef]
- Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L.J. Inverse problem in hydrogeology. Hydrogeol. J. 2005, 13, 206–222. [Google Scholar] [CrossRef]
- Straface, S. Estimation of transmissivity and storage coefficient by means of a derivative method using the early-time drawdown. Hydrogeol. J. 2009, 17, 1679–1687. [Google Scholar] [CrossRef]
- Kelley, W.E. Geoelectrical sounding for estimating hydraulic conductivity. Groundwater 1977, 15, 420–425. [Google Scholar] [CrossRef]
- Urish, D.W. Electrical resistivity-hydraulic conductivity relationship in glacial outwash aquifers. Water Resour. Res. 1981, 17, 1401–1408. [Google Scholar] [CrossRef]
- Vouillamoz, J.M.; Descloitres, M.; Toe, G.; Legchenko, A. Characterization of crystalline basement aquifers with MRS: Comparison with boreholes and pumping tests data in Burkina Faso. Near Surf. Geophys. 2005, 3, 205–213. [Google Scholar] [CrossRef]
- Straface, S.; Rizzo, E.; Chidichimo, F. Estimation of hydraulic conductivity and water table map in a large scale laboratory model by means of the self-potential method. J. Geophys. Res. 2010, 115, B06105. [Google Scholar] [CrossRef]
- Chidichimo, F.; De Biase, M.; Rizzo, E.; Masi, S.; Straface, S. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site. J. Hydrol. 2015, 522, 572–581. [Google Scholar] [CrossRef]
- Ahmed, S.; de Marsily, G.; Talbot, A. Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Groundwater 1988, 26, 78–86. [Google Scholar] [CrossRef]
- Fallico, C.; Vita, M.C.; De Bartolo, S.; Straface, S. Scaling Effect of the Hydraulic Conductivity in a Confined Aquifer. Soil Sci. 2012, 177, 385–391. [Google Scholar] [CrossRef]
- Dewandel, B.; Maréchal, J.C.; Bour, O.; Ladouche, B.; Ahmed, S.; Chandra, S.; Pauwels, H. Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. J. Hydrol. 2012, 416–417, 83–97. [Google Scholar] [CrossRef]
- Paillet, F.L. Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour. Res. 1998, 34, 997–1010. [Google Scholar] [CrossRef]
- Maréchal, J.C.; Dewandel, B.; Ahmed, S.; Galeazzi, L.; Zaidi, F.K. Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J. Hydrol. 2006, 329, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Le Borgne, T.; Bour, O.; de Dreuzy, J.; Davy, P.; Touchard, F. Equivalent mean flow models for fractured aquifers: Insights from a pumping test scaling interpretation. Water Resour. Res. 2004, 40, W03512. [Google Scholar] [CrossRef]
- Le Borgne, T.; Bour, O.; Paillet, F.L.; Caudal, J.P. Assessment of preferential flow path connectivity, and hydraulic properties at single-borehole and crossborehole scales in a fractured aquifer. J. Hydrol. 2006, 328, 347–359. [Google Scholar] [CrossRef]
- Courtois, N.; Lachassagne, P.; Wyns, R.; Blanchin, R.; Bougaïré, F.D.; Somé, S.; Tapsoba, A. Large-Scale Mapping of Hard-Rock Aquifer Properties Applied to Burkina Faso. Groundwater 2010, 48, 269–283. [Google Scholar] [CrossRef]
- Guihéneuf, N.; Boisson, N.; Bour, O.; Dewandel, B.; Perrin, J.; Dausse, A.; Viossanges, M.; Chandra, S.; Ahmed, S.; Maréchal, J.C. Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. J. Hydrol. 2014, 511, 320–334. [Google Scholar] [CrossRef]
- Lee, C.H.; Chang, J.L.; Deng, B.W. A continuum approach for estimating permeability in naturally fractured rocks. Eng. Geol. 1995, 39, 71–85. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Mace, R.E.; Barrett, M.E.; Smith, B. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J. Hydrol. 2003, 276, 135–158. [Google Scholar] [CrossRef]
- Lemieux, J.M.; Therrien, R.; Kirkwood, D. Small scale study of groundwater flow in a fractured carbonate-rock aquifer at the St-Eustache quarry, Québec, Canada. Hydrogeol. J. 2006, 14, 603–612. [Google Scholar] [CrossRef]
- Long, J.C.S.; Remer, J.S.; Wilson, C.R.; Witherspoon, P.A. Porous media equivalents for networks of discontinuous fractures. Water Resour. Res. 1982, 18, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, P.A.; Neuman, S.P.; Stiles, G.K.; Simpson, E.S. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2 Methodology and application to fractured rocks. Water Resour. Res. 1985, 21, 1667–1676. [Google Scholar] [CrossRef]
- Neuman, S.P. Stochastic Continuum Representation of Fractured Rock Permeability as an Alternative to the Rev and Fracture Network Concepts. In Proceedings of the 28th US Symposium on Rock Mechanics, Tucson, AZ, USA, 29 June–1 July 1987. [Google Scholar]
- Neuman, S.P. Trends, prospects and challenge in quantifying flow and transport through fractured aquifer. Hydrogeol. J. 2005, 13, 124–147. [Google Scholar] [CrossRef]
- Bradbury, K.R.; Muldoon, M.A.; Zaporec, A.; Levy, J. Delineation of Wellhead Protection Areas in Fractured Rocks; US EPA Technical Guidance Document, EPA 570/9-91-009; EPA: Washington, DC, USA, 1991. [Google Scholar]
- Baiocchi, A.; Dragoni, W.; Lotti, F.; Piscopo, V. Sustainable yield of fractured rock aquifers: The case of crystalline rocks of Serre Massif (Calabria, Southern Italy). In Fractured Rock Hydrogeology; Sharp, J.M., Ed.; Taylor &Francis Group: London, UK, 2014; pp. 79–97. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley & Sons: New York, NY, USA, 1990; 824p. [Google Scholar]
- Heath, R.C. Basic Groundwater Hydrology; U.S. Geological Survey Water-Supply Paper 2220: Washington, DC, USA, 1983; 86p. [Google Scholar]
- Dragoni, W. Some considerations on climatic changes, water resources and water needs in the Italian region south of the 43° N. In Water, Environment and Society in Times of Climatic Change; Issar, A., Brown, N., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 241–271. [Google Scholar]
- Bianchini, S.; Cigna, F.; Del Ventisette, C.; Moretti, S.; Casagli, N. Monitoring Landslide-Induced Displacements with TerraSAR-X Persistent Scatterer Interferometry (PSI): Gimigliano Case Study in Calabria Region (Italy). Int. J. Geosci. 2013, 4, 1467–1482. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, J.P.; Bello, M.; Brancaleoni, G.P.; Cantarella, G.; Costa, V.; Frixa, A.; Golfetto, F.; Merlini, S.; Riva, M.; Torricelli, S.; et al. A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics 2000, 324, 267–320. [Google Scholar] [CrossRef]
- Tansi, C.; Muto, F.; Critelli, S.; Iovine, G. Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (Southern Italy). J. Geodyn. 2007, 43, 393–414. [Google Scholar] [CrossRef]
- Brutto, F.; Muto, F.; Loreto, M.F.; De Paola, N.; Tripodi, V.; Critelli, S.; Facchin, L. The Neogene-Quaternary geodynamic evolution of the central Calabrian Arc: A case study from the western Catanzaro Trough basin. J. Geodyn. 2016, 102, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Bonardi, G.; Cello, G.; Perrone, V.; Tortorici, L.; Turco, E.; Zupetta, A. Palinspastic restoration of the northern sector of the Calabro-Peloritani arc in a semiquantitative model. Boll. Soc. Geol. Ital. 1982, 101, 259–274. [Google Scholar]
- Tortorici, L. Lineamenti geologico-strutturali dell’Arco Calabro Peloritano (Geologic structural lineaments of the Calabrian-Peloritan Arc). Soc. Ital. Mineral. Petrogr. 1982, 38, 927940. [Google Scholar]
- Critelli, S.; Muto, F.; Perri, F.; Tripodi, V. Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: Stratigraphic record of the Miocene tectonic evolution. Mar. Petrol. Geol. 2017, 87, 47–59. [Google Scholar] [CrossRef]
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, S.; Paglionico, A.; Perrone, V.; et al. L’arco Calabro-Peloritano nell’orogene appenninico Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60. [Google Scholar]
- Bouwer, H.; Rice, R.C. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 1976, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Zlotnik, V. Interpretation of slug and packer tests in anisotropic aquifers. Groundwater 1994, 32, 761. [Google Scholar] [CrossRef]
- Butler, J.J. The Design, Performance, and Analysis of Slug Tests; Lewis Publisher CRC Press: Lawrence, KS, USA, 1998; ISBN 1566702305. [Google Scholar]
- Pezzotta, G.; Burton, A.N.; Hughes, D.O. Carta Geologica della Calabria: Nota Illustrativa delle Tavolette Appartenenti al Foglio 242 della Carta Topografica D’italia; Cassa del Mezzogiorno: Roma, Italy, 1973. [Google Scholar]
- Repertorio Nazionale dei Dati Territoriali (RNDT). Available online: https://geodati.gov.it/geoportale/geoviewer/ (accessed on 14 September 2022).
- Bear, J. Hydraulics of Groundwater; McGraw-Hill Publishing: New York, NY, USA, 1979. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005: The U.S. Geological Survey modular ground-water model—The ground-water flow process. In Book 6: Modeling Techniques, Section A. Ground-Water; US Geological Survey: Reston, VI, USA, 2005; p. 6-A16. [Google Scholar]
- Poeter, E.P.; Hill, M.C.; Banta, E.R.; Steffen, M.; Steen, C. UCODE-2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API. In U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VI, USA, 2008; p. 6-A11. [Google Scholar]
- De Biase, M.; Chidichimo, F.; Maiolo, M.; Micallef, A. The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands. Water 2021, 13, 3046. [Google Scholar] [CrossRef]
- De Biase, M.; Chidichimo, F.; Micallef, A.; Cohen, D.; Gable, C.; Zwinger, T. Past and future evolution of the onshore-offshore groundwater system of a carbonate archipelago: The case of the Maltese Islands, central Mediterranean Sea. Front. Water 2023, 4, 1068971. [Google Scholar] [CrossRef]
- Haroon, A.; Micallef, A.; Jegen, M.; Schwalenberg, K.; Karstens, J.; Berndt, C.; Garcia, X.; Kühn, M.; Rizzo, E.; Fusi, N.C.; et al. Electrical resistivity anomalies offshore a carbonate coastline: Evidence for freshened groundwater? Geophys. Res. Lett. 2021, 48, e2020GL091909. [Google Scholar] [CrossRef]
- Lemieux, J.M.; Hassaoui, J.; Molson, J.; Therrien, R.; Therrien, P.; Chouteau, M.; Ouellet, M. Simulating the impact of climate change on the groundwater resources of the Magdalen Islands, Québec, Canada. J. Hydrol. Reg. Stud. 2015, 3, 400–423. [Google Scholar] [CrossRef] [Green Version]
- ARPACAL—Centro Funzionale Multirischi. Available online: https://www.cfd.calabria.it/index.php (accessed on 27 February 2023).
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Cronshey, R.; McCuen, R.H.; Miller, N.; Rawls, W.; Robbins, S.; Woodward, D.; Chenoweth, J.; Hamilton, S.; Merkel, W.; Rallison, R.; et al. Urban Hydrology for Small Watersheds—Technical Release 55, 2nd ed.; United States Department of Agriculture (USDA): Washington, DC, USA, 1986; p. 164. [Google Scholar]
Borehole | Diameter (mm) | Borehole Depth (m) | Filter Depth (m) | Water Table Depth (m) |
---|---|---|---|---|
S1a | 220 | 8.00 | 3.00–8.00 | Dry |
S1b | 160 | 38.00 | 33.00–38.00 | Dry |
S1c | 160 | 51.00 | 43.00–50.00 | Dry |
S2a | 160 | 13.00 | 6.00–13.00 | 8.75 |
S2b | 160 | 25.00 | 16.00–25.00 | 8.75 |
S2c | 160 | 42.00 | 30.00–42.00 | 8.75 |
S3a | 160 | 8.00 | 2.00–8.00 | Dry |
S3b | 160 | 30.00 | 14.00–30.00 | 20.30 |
S3c | 160 | 48.00 | 38.00–47.00 | 33.60 |
SITa | 160 | 40.00 | 15.00–25.00 | 11.95 |
SITb | 160 | 40.00 | 0.00–10.00 | Dry |
SITc | 108 | 40.00 | 0.00–40.00 | 10.05 |
SP | 160 | 60.00 | 0.00–60.00 | 32.73 |
Borehole | Lithology | Hydraulic Conductivity (m/s) |
---|---|---|
S1a | Highly weathered metabasites | na (dry) |
S1b | Highly fractured schists | na (dry) |
S1c | Weathered and locally intact metabasites | na (dry) |
S2a | Highly weathered phyllites | 9.90 × 10−8 |
S2b | Highly weathered metabasites | 6.77 × 10−8 |
S2c | Highly weathered serpentinites | 7.51 × 10−8 |
S3a | Highly weathered metabasites | na (dry) |
S3b | Metabasites with quartz vein | 1.80 × 10−7 |
S3c | Weathered metabasites reduced to coarse sands | 7.44 × 10−8 |
Name | Type | Flowrate (L/s) |
---|---|---|
Calvario | S | 1.0 |
SS Maria di Porto | S | 0.1 |
San Giorgio 1 | S | 1.0 |
San Giorgio 2 | S | 2.0 |
Agonia | S | 1.0 |
Iannuli | S | 2.0 |
Locco | S | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chidichimo, F.; De Biase, M.; Muto, F.; Straface, S. Modeling a Metamorphic Aquifer through a Hydro-Geophysical Approach: The Gap between Field Data and System Complexity. Hydrology 2023, 10, 80. https://doi.org/10.3390/hydrology10040080
Chidichimo F, De Biase M, Muto F, Straface S. Modeling a Metamorphic Aquifer through a Hydro-Geophysical Approach: The Gap between Field Data and System Complexity. Hydrology. 2023; 10(4):80. https://doi.org/10.3390/hydrology10040080
Chicago/Turabian StyleChidichimo, Francesco, Michele De Biase, Francesco Muto, and Salvatore Straface. 2023. "Modeling a Metamorphic Aquifer through a Hydro-Geophysical Approach: The Gap between Field Data and System Complexity" Hydrology 10, no. 4: 80. https://doi.org/10.3390/hydrology10040080
APA StyleChidichimo, F., De Biase, M., Muto, F., & Straface, S. (2023). Modeling a Metamorphic Aquifer through a Hydro-Geophysical Approach: The Gap between Field Data and System Complexity. Hydrology, 10(4), 80. https://doi.org/10.3390/hydrology10040080