Comparison between the Effects of Normal Rain and Acid Rain on Calcareous Stones under Laboratory Simulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Normal Rain on Natural Samples
3.2. Normal Rain on Coated Samples
3.3. Acid Rain on Natural Samples
3.4. Acid Rain on Coated Samples
4. Discussion
4.1. Comparison between Natural Samples and Coated Samples
4.2. Comparison between Normal and Acid Rain
5. Conclusions
- The use of a rain simulator that allows raindrops to reach terminal velocity combined with extreme thermal changes in different cycles is an excellent approach for aging tests on rock materials.
- This study has demonstrated the protection that graphene oxide provides to calcareous rocks, both under normal rain and acid rain conditions.
- However, the coating’s effectiveness is highly determined by the presence of clays and cracks that represent a weakness in the rock.
- No major difference was observed in the effectiveness of two-layer and three-layer graphene oxide coatings.
- Although the effects of roughness and exposure to ultraviolet radiation were not considered, it was shown that under extreme conditions of rain and thermal changes, graphene oxide protects the surfaces of the samples.
- With this work we managed to reinforce a basic pillar in the mitigation of climate change in the cultural heritage sector, which is to provide scientific solutions to reduce the carbon footprint. Graphene oxide has proven to be an effective product that reduces the degradation of rocks with the passage of time, and which is further accelerated by the conditions imposed by climate change. The use of this product will reduce surface interventions and the travel involved for the application of products. In addition, avoiding the replacement of degraded parts also reduces the consumption of raw materials and their transportation. In order to have more complete information, future studies will work with other geologies and with different climatic conditions by varying the amount of simulated rainfall and thermal conditions and adding the effect of ultraviolet radiation.
- Future projects will build scale prototypes of buildings, with samples aged before the application of graphene oxide, to examine the results that the coating would achieve on actual monuments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westley, K.; Andreou, G.; Safadi, C.; Huigens, H.; Nikolaus, J.; Ortiz-Vazquez, R.; Ray, N.; Smith, A.; Tews, S.; Blue, L.; et al. Climate Change and Coastal Archaeology in the Middle East and North Africa: Assessing Past Impacts and Future Threats. J. Isl. Coast. Archaeol. 2021, 16, 1–33. [Google Scholar] [CrossRef]
- Cardell, C.; Delalieux, F.; Roumpopoulos, K.; Moropoulou, A.; Auger, F.; Van Grieken, R. Salt-Induced Decay in Calcareous Stone Monuments and Buildings in a Marine Environment in SW France. Constr. Build. Mater. 2003, 17, 165–179. [Google Scholar] [CrossRef]
- Collete, A. Climate Change and World Heritage: Report on Predicting and Managing the Impacts of Climate Change on World Heritage and Strategy to Assist States Parties to Implement Appropriate Management Responses—UNESCO Biblioteca Digital. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000160019 (accessed on 21 February 2023).
- Gentilini, C.; Franzoni, E.; Bandini, S.; Nobile, L. Effect of Salt Crystallisation on the Shear Behaviour of Masonry Walls: An Experimental Study. Constr. Build. Mater. 2012, 37, 181–189. [Google Scholar] [CrossRef]
- Sesana, E.; Bertolin, C.; Gagnon, A.S.; Hughes, J.J. Mitigating Climate Change in the Cultural Built Heritage Sector. Climate 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Lankester, P.; Brimblecombe, P. The Impact of Future Climate on Historic Interiors. Sci. Total Environ. 2012, 417–418, 248–254. [Google Scholar] [CrossRef]
- Anaf, W.; Leyva Pernia, D.; Schalm, O. Standardized Indoor Air Quality Assessments as a Tool to Prepare Heritage Guardians for Changing Preservation Conditions Due to Climate Change. Geosciences 2018, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Loli, A.; Bertolin, C. Indoor Multi-Risk Scenarios of Climate Change Effects on Building Materials in Scandinavian Countries. Geosciences 2018, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Coelho, G.B.A.; Silva, H.E.; Henriques, F.M.A. Impact of Climate Change in Cultural Heritage: From Energy Consumption to Artefacts’ Conservation and Building Rehabilitation. Energy Build. 2020, 224, 110250. [Google Scholar] [CrossRef]
- González, C.M.M.; Rodríguez, A.L.L.; Medina, R.S.; Jaramillo, J.R. Effects of Future Climate Change on the Preservation of Artworks, Thermal Comfort and Energy Consumption in Historic Buildings. Appl. Energy 2020, 276, 115483. [Google Scholar] [CrossRef]
- Hambrecht, G.; Rockman, M. International approaches to climate change and cultural heritage. Am. Antiq. 2017, 82, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Winandy, L.; Schlebusch, O.; Fischer, R. Fungal Hydrophobins Render Stones Impermeable for Water but Keep Them Permeable for Vapor. Sci. Rep. 2019, 9, 6264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, T.; Toniolo, L.; Chiantore, O. The Protection of Different Italian Marbles with Two Partially Flourinated Acrylic Copolymers. Appl. Phys. A 2004, 79, 347–351. [Google Scholar] [CrossRef]
- Alessandrini, G.; Aglietto, M.; Castelvetro, V.; Ciardelli, F.; Peruzzi, R.; Toniolo, L. Comparative Evaluation of Fluorinated and Unfluorinated Acrylic Copolymers as Water-Repellent Coating Materials for Stone. J. Appl. Polym. Sci. 2000, 76, 962–977. [Google Scholar] [CrossRef]
- Likens, G.E.; Wright, R.F.; Galloway, J.N.; Butler, T.J. Acid Rain. Sci. Am. 1979, 241, 43–51. [Google Scholar] [CrossRef]
- Bogan, R.; Ohde, S.; Arakaki, T.; Mori, I.; Mcleod, C. Changes in Rainwater PH Associated with Increasing Atmospheric Carbon Dioxide after the Industrial Revolution. Water Air Soil Pollut. 2009, 196, 263–271. [Google Scholar] [CrossRef]
- Mohajan, H. Acid Rain Is a Local Environment Pollution but Global Concern. Open Sci. J. Anal. Chem. 2019, 3, 47–55. [Google Scholar]
- McHale, M.R.; Ludtke, A.S.; Wetherbee, G.A.; Burns, D.A.; Nilles, M.A.; Finkelstein, J.S. Trends in Precipitation Chemistry across the U.S. 1985–2017: Quantifying the Benefits from 30 Years of Clean Air Act Amendment Regulation. Atmos. Environ. 2021, 247, 118219. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, X.; Li, K.; Zhao, X.; Liu, H.; Li, X.; Luo, G. Influence of Acid Rain on Slope Instability Mechanism—A Case Study in Sichuan Provincial Highway, China. Bull. Eng. Geol. Environ. 2021, 80, 3659–3673. [Google Scholar] [CrossRef]
- Gibeaux, S.; Thomachot-Schneider, C.; Schneider, A.; Cnudde, V.; De Kock, T.; Barbin, V.; Vazquez, P. Experimental Study of the Ageing of Building Stones Exposed to Sulfurous and Nitric Acid Atmospheres. In Science and Art: A Future for Stone: Proceedings of the 13th International Congress on the Deterioration and Conservation of Stone; University of the West of Scotland: Paisley, UK, 2016; pp. 99–106. [Google Scholar]
- Gibeaux, S.; Thomachot-Schneider, C.; Eyssautier-Chuine, S.; Marin, B.; Vazquez, P. Simulation of Acid Weathering on Natural and Artificial Building Stones According to the Current Atmospheric SO2/NOxrate. Environ. Earth Sci. 2018, 77, 327. [Google Scholar] [CrossRef]
- Vergès-Belmin, V. Towards a Definition of Common Evaluation Criteria for the Cleaning of Porous Building Materials: A Review. Sci. Technol. Cult. Herit. 1996, 5, 69–83. [Google Scholar]
- Topal, T.; Doyuran, V. Engineering Geological Properties and Durability Assessment of the Cappadocian Tuff. Eng. Geol. 1997, 47, 175–187. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the Impact of Climate Change on Surface Recession of Carbonate Buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yang, H. Research on Carbon Source Effect of Guangxi Typical Carbonate Rock Area by Acid Rain. Appl. Mech. Mater. 2013, 295–298, 314–321. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Rodríguez, I.; Caldevilla, P.; Búrdalo, G.; Ortiz, A.; Martínez-García, R. Optimization of a Laboratory Rainfall Simulator to Be Representative of Natural Rainfall. Water 2022, 14, 3831. [Google Scholar] [CrossRef]
- Gunn, R.; Kinzer, G.D. The Terminal Velocity of Fall for Water Droplets in Stagnant Air. J. Meteorol. 1949, 8, 249–253. [Google Scholar] [CrossRef]
- Beard, K.V.; Prupacher, H.R. A Determination of the Terminal Velocity and Drag of Small Water Drops by Means of a Wind Tunnel. J. Atmos. Sci. 1969, 26, 1066–1072. [Google Scholar] [CrossRef]
- Van Boxel, J. Numerical Model for the Fall Speed of Rain Drops in a Rain Fall Simulator; Faculty of Environmental Sciences: Ghent, Belgium, 1998; pp. 77–85. [Google Scholar]
- Fernández-Raga, M.; Castro, A.; Palencia, C.; Calvo, A.; Fraile, R. Rain Events on 22 October 2006 in León (Spain): Drop Size Spectra. Atmos. Res. 2009, 93, 619–635. [Google Scholar] [CrossRef]
- Fernandez-Raga, M.; Castro, A.; Marcos, E.; Palencia, C.; Fraile, R. Weather Types and Rainfall Microstructure in Leon, Spain. Int. J. Climatol. 2017, 37, 1834–1842. [Google Scholar] [CrossRef]
- Laboratorio Oficial de Ensayos de Materiales de la Construcción (LOMECO) Estudio de Procesos de Envejecimiento de Monumentos de Piedra. Estudio de Materiales Para Restauración. 1991.
- Martínez-Pellitero, S.; Cuesta, E.; Giganto, S.; Barreiro, J. New Procedure for Qualification of Structured Light 3D Scanners Using an Optical Feature-Based Gauge. Opt. Lasers Eng. 2018, 110, 193–206. [Google Scholar] [CrossRef]
- González-Campelo, D.; Fernández-Raga, M.; Gómez-Gutiérrez, Á.; Guerra-Romero, M.I.; González-Domínguez, J.M. Extraordinary Protective Efficacy of Graphene Oxide over the Stone-Based Cultural Heritage. Adv. Mater. Interfaces 2021, 8, 2101012. [Google Scholar] [CrossRef]
- Antolín-Rodríguez, A.; Merino-Maldonado, D.; Rodríguez-González, Á.; Fernández-Raga, M.; González-Domínguez, J.M.; Juan-Valdés, A.; García-González, J. Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection. Coatings 2023, 13, 213. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.I.; Blanco-Alegre, C.; Castro, A.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; Fernández-González, D.; Fraile, R. Links between Recent Trends in Airborne Pollen Concentration, Meteorological Parameters and Air Pollutants. Agric. For. Meteorol. 2019, 264, 16–26. [Google Scholar] [CrossRef]
- Andriani, G.; Germinario, L. Thermal Decay of Carbonate Dimension Stones: Fabric, Physical and Mechanical Changes. Environ. Earth Sci. 2014, 72, 2523–2539. [Google Scholar] [CrossRef]
- Gomez-Heras, M. Procesos y Formas de Deterioro Termico En Piedra Natural Del Patrimonio Arquitectonico; Universidad Complutense de Madrid: Madrid, Spain, 2006. [Google Scholar]
- Sitzia, F.; Lisci, C.; Mirão, J. The Interaction between Rainwater and Polished Building Stones for Flooring and Cladding—Implications in Architecture. J. Build. Eng. 2022, 52, 104495. [Google Scholar] [CrossRef]
NORMAL RAIN | |||
Class | RANGE (mm) | Color * | |
Min. | Max. | ||
I′ | −0.0350 | −0.0298 | |
II′ | −0.0298 | −0.0245 | |
I′ | −0.0245 | −0.0193 | |
IV′ | −0.0193 | −0.0140 | |
V′ | −0.0140 | −0.0088 | |
VI′ | −0.0088 | −0.0035 | |
VII′ | −0.0035 | 0.0035 | |
VIII′ | 0.0035 | 0.0087 | |
IX′ | 0.0087 | 0.0140 | |
X′ | 0.0140 | 0.0193 | |
XI′ | 0.0193 | 0.0245 | |
XII′ | 0.0245 | 0.0298 | |
ACID RAIN | |||
Class | RANGE (mm) | Color * | |
Min. | Max. | ||
I′ | −0.0500 | −0.0425 | |
II′ | −0.0425 | −0.0350 | |
III′ | −0.0350 | −0.0275 | |
IV′ | −0.0275 | −0.0200 | |
V′ | −0.0200 | −0.0125 | |
VI′ | −0.0125 | −0.0050 | |
VII′ | −0.0050 | 0.0050 | |
VIII′ | 0.0050 | 0.0125 | |
IX′ | 0.0125 | 0.0200 | |
X′ | 0.0200 | 0.0275 | |
XI′ | 0.0275 | 0.0350 | |
XII′ | 0.0350 | 0.0425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, I.; Ortiz, A.; Caldevilla, P.; Giganto, S.; Búrdalo, G.; Fernández-Raga, M. Comparison between the Effects of Normal Rain and Acid Rain on Calcareous Stones under Laboratory Simulation. Hydrology 2023, 10, 79. https://doi.org/10.3390/hydrology10040079
Rodríguez I, Ortiz A, Caldevilla P, Giganto S, Búrdalo G, Fernández-Raga M. Comparison between the Effects of Normal Rain and Acid Rain on Calcareous Stones under Laboratory Simulation. Hydrology. 2023; 10(4):79. https://doi.org/10.3390/hydrology10040079
Chicago/Turabian StyleRodríguez, Indira, Almudena Ortiz, Pablo Caldevilla, Sara Giganto, Gabriel Búrdalo, and María Fernández-Raga. 2023. "Comparison between the Effects of Normal Rain and Acid Rain on Calcareous Stones under Laboratory Simulation" Hydrology 10, no. 4: 79. https://doi.org/10.3390/hydrology10040079
APA StyleRodríguez, I., Ortiz, A., Caldevilla, P., Giganto, S., Búrdalo, G., & Fernández-Raga, M. (2023). Comparison between the Effects of Normal Rain and Acid Rain on Calcareous Stones under Laboratory Simulation. Hydrology, 10(4), 79. https://doi.org/10.3390/hydrology10040079