Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Landsat Imagery
2.2.2. Precipitation Data
2.2.3. Evapotranspiration Data
2.2.4. Lake Depth Data
2.3. Classification Algorithm and Evaluation Metrics
2.3.1. Supervised Classification
2.3.2. Model Performance Evaluation
2.4. Data Processing Tools and Workflow
3. Results and Discussion
3.1. Assessment of the Machine Learning Method Accuracy
3.2. Spatial-Temporal Evolution of Lake Area
3.3. Influence of Climate Variability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J. Water Sustainability: A Global Perspective; Routledge: London, UK, 2010. [Google Scholar] [CrossRef]
- Cornejo, P.K.; Becker, J.; Pagilla, K.; Mo, W.; Zhang, Q.; Mihelcic, J.R.; Chandran, K.; Sturm, B.; Yeh, D.; Rosso, D. Sustainability metrics for assessing water resource recovery facilities of the future. Water Environ. Res. 2019, 91, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.H.; Pavelsky, T.M. Global extent of rivers and streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornberger, G.M.; Wiberg, P.L.; Raffensperger, J.P.; D’Odorico, P. Elements of Physical Hydrology, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2014; p. 378. [Google Scholar]
- Roberts, N.; Taieb, M.; Barker, P.; Damnati, B.; Icole, M.; Williamson, D. Timing of the Younger Dryas event in East Africa from lake-level changes. Nature 1993, 366, 146–148. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Everard, M. Meeting global drinking water needs. Nat. Sustain. 2019, 2, 360–361. [Google Scholar] [CrossRef]
- Horritt, M.; Mason, D.; Cobby, D.; Davenport, I.; Bates, P. Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sens. Environ. 2003, 85, 271–281. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Wehbe, Y.; Temimi, M. A Remote Sensing-Based Assessment of Water Resources in the Arabian Peninsula. Remote Sens. 2021, 13, 247. [Google Scholar] [CrossRef]
- Abdelkader, M.; Temimi, M.; Colliander, A.; Cosh, M.H.; Kelly, V.R.; Lakhankar, T.; Fares, A. Assessing the Spatiotemporal Variability of SMAP Soil Moisture Accuracy in a Deciduous Forest Region. Remote Sens. 2022, 14, 3329. [Google Scholar] [CrossRef]
- Gebrehiwot, K.A.; Bedie, A.F.; Gebrewahid, M.G.; Hishe, B.K. Analysis of Surface Area Fluctuation of the Haramaya Lake using Remote Sensing Data. Momona Ethiop. J. Sci. 2019, 11, 140. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. Estimating the fluctuation of Lake Hulun, China, during 1975–2015 from satellite altimetry data. Environ. Monit. Assess. 2017, 189, 630. [Google Scholar] [CrossRef] [PubMed]
- Pham-Duc, B.; Sylvestre, F.; Papa, F.; Frappart, F.; Bouchez, C.; Crétaux, J.-F. The Lake Chad hydrology under current climate change. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Seitz, F.; Eicker, A.; Güntner, A. Water Budget Analysis within the Surrounding of Prominent Lakes and Reservoirs from Multi-Sensor Earth Observation Data and Hydrological Models: Case Studies of the Aral Sea and Lake Mead. Remote Sens. 2016, 8, 953. [Google Scholar] [CrossRef] [Green Version]
- Wurtsbaugh, W.; Miller, C.; Null, S.; Wilcock, P.; Hahnenberger, M.; Howe, F. Impacts of Water Development on Great Salt Lake and the Wasatch Front. 2016, p. 9. Available online: https://digitalcommons.usu.edu/wats_facpub/875 (accessed on 20 March 2023). [CrossRef]
- Wurtsbaugh, W.A.; Leavitt, P.R.; Moser, K.A. Effects of a century of mining and industrial production on metal contamination of a model saline ecosystem, Great Salt Lake, Utah. Environ. Pollut. 2020, 266, 115072. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Song, C.; Wang, J.; Sheng, Y.; Quan, J. A Global Assessment of Terrestrial Evapotranspiration Increase Due to Surface Water Area Change. Earth’s Future 2019, 7, 266–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Xue, H.-P.; Wu, S.-J.; Ling, F.; Xiao, F.; Wei, X.-H. Lake area changes in the middle Yangtze region of China over the 20th century. J. Environ. Manag. 2011, 92, 1248–1255. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative water loss of 1.42 million global lakes. Nat. Commun. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Maihemuti, B.; Aishan, T.; Simayi, Z.; Alifujiang, Y.; Yang, S. Temporal Scaling of Water Level Fluctuations in Shallow Lakes and Its Impacts on the Lake Eco-Environments. Sustainability 2020, 12, 3541. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Z. Monitoring Spatial-Temporal Variations of Lake Level in Western China Using ICESat-1 and CryoSat-2 Satellite Altimetry. Remote Sens. 2022, 14, 5709. [Google Scholar] [CrossRef]
- Chen, J.; Liao, J.; Lou, Y.; Ma, S.; Shen, G.; Zhang, L. High-resolution datasets for lake level changes in the Qinghai-Tibetan Plateau from 2002 to 2021 using multi-altimeter data. Earth Syst. Sci. Data Discuss. 2022, 1–18. [Google Scholar] [CrossRef]
- Deus, D.; Gloaguen, R. Remote Sensing Analysis of Lake Dynamics in Semi-Arid Regions: Implication for Water Resource Management. Lake Manyara, East African Rift, Northern Tanzania. Water 2013, 5, 698. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Ryan, J.C.; Pitcher, L.H.; Pavelsky, T.M. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophys. Res. Lett. 2019, 46, 2111–2120. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirscherl, M.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated Mapping of Antarctic Supraglacial Lakes Using a Machine Learning Approach. Remote Sens. 2020, 12, 1203. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Liu, H. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory. Remote Sens. 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Minh, V.-Q. Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int. 2018, 33, 587–601. [Google Scholar] [CrossRef]
- YCC Team. Utah’s Great Salt Lake Is Shrinking, Worsening Risk of Dust Storms. Yale Climate Connections, 8 October 2021. Available online: http://yaleclimateconnections.org/2021/10/utahs-great-salt-lake-is-shrinking-worsening-risk-of-dust-storms/ (accessed on 3 March 2023).
- LaVere, B.M. Utah Lake: A Few Considerations. Nov. 2017. Available online: http://wfwqc.org/wp-content/uploads/2017/11/UL-info-Nov-2017 (accessed on 26 March 2023).
- Buma, W.G.; Lee, S.-I.; Seo, J.Y. Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors 2018, 18, 2082. [Google Scholar] [CrossRef] [Green Version]
- Gritzner, J.A. Lake Chad. Encyclopedia Britannica, 19 December 2019. Available online: https://www.britannica.com/place/Lake-Chad (accessed on 26 March 2023).
- Abbott, M.B.; Anderson, L. Lake-Level Fluctuations. In Encyclopedia of Paleoclimatology and Ancient Environments; Gornitz, V., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 489–492. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Lake Chad Basin Commission (LCBC). Lake Chad-HYCOS, A Component of the World Hydrological Cycle Observing System (WHYCOS); WMO: Geneva, Switzerland, 2015. [Google Scholar]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Metadata for the Rapid Forcing Retrieval (RFR) Web Tool. 2022. Available online: http://www.hydroshare.org/resource/adc37a792a6144c9a1d45e05621e4230 (accessed on 20 March 2023).
- FAO. Terra Net Evapotranspiration 8-Day Global 500m (MOD16A2.006). Food and Agricultural Organization of the United Nations, April 2022. Available online: https://lpdaac.usgs.gov/documents/494/MOD16_User_Guide_V6.pdf (accessed on 26 March 2023).
- Worqlul, A.W.; Ayana, E.K.; Dile, Y.T.; Moges, M.A.; Gitaw, M.G.; Tegegne, G.; Kibret, S. Spatiotemporal Dynamics and Environmental Controlling Factors of the Lake Tana Water Hyacinth in Ethiopia. Remote Sens. 2020, 12, 2706. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Beckley, B.; Doorn, B. From Research to Operations: The USDA Global Reservoir and Lake Monitor. In Satellite Altimetry for Geodesy, Geophysics and Oceanography; Hwang, C., Cheng, Y., Shum, C.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef] [Green Version]
- Sruthi, E.R. Random Forest|Introduction to Random Forest Algorithm. Analytics Vidhya, June 2021. Available online: https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/ (accessed on 16 July 2022).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Druce, D.; Tong, X.; Lei, X.; Guo, T.; Kittel, C.; Grogan, K.; Tottrup, C. An Optical and SAR Based Fusion Approach for Mapping Surface Water Dynamics over Mainland China. Remote Sens. 2021, 13, 1663. [Google Scholar] [CrossRef]
- Swanson, D.K. Thermokarst and precipitation drive changes in the area of lakes and ponds in the National Parks of northwestern Alaska, 1984–2018. Arct. Antarct. Alp. Res. 2019, 51, 265–279. [Google Scholar] [CrossRef] [Green Version]
Properties | Landsat | CHIRPS | MODIS | ETP |
---|---|---|---|---|
Product | Landsat-5 (TM), 7 (ETM+), and 8 (OLI) | CHIRPS Daily | MOD16A2 | Jason-1 and Jason-2 altimetry |
Spectral resolution | 1 to 9 bands | 1 band | 36 bands | 2 bands |
Pixel size | 30 m | 5566 m | 250, 500 or 1000 m | NA |
Scene width | 185 km | 0.05° | 2330 km | 1324 km |
Temporal resolution | 16 days | Day, month, pentad, and year | Twice daily | 10 days |
Reflectance | TOA | Satellite + station data | SR | Satellite + stations |
Time span | 1984 to present | 1981 to present | 1999 to present | 1993 to present |
Target | Earth features (e.g., water bodies) | Precipitation | Evapotranspiration and temperature, etc. | Lake depth, area, and volume |
Year | OA | KOA | TA | KTA | VA | KVA | Images | Total Samples | Train | Test |
---|---|---|---|---|---|---|---|---|---|---|
1999 | 0.991 | 0.989 | 0.945 | 0.935 | 0.97 | 0.964 | 159 | 231 | 70 | 30 |
2000 | 0.987 | 0.984 | 0.95 | 0.942 | 0.956 | 0.948 | 147 | 231 | 70 | 30 |
2001 | 0.982 | 0.979 | 0.921 | 0.908 | 0.923 | 0.909 | 203 | 231 | 70 | 30 |
2002 | 0.995 | 0.994 | 0.97 | 0.965 | 1 | 1 | 187 | 231 | 70 | 30 |
2003 | 0.991 | 0.989 | 0.961 | 0.955 | 0.972 | 0.968 | 256 | 231 | 70 | 30 |
2004 | 0.991 | 0.989 | 0.94 | 0.929 | 0.953 | 0.944 | 229 | 231 | 70 | 30 |
2005 | 0.995 | 0.994 | 0.974 | 0.97 | 0.958 | 0.949 | 188 | 231 | 70 | 30 |
2006 | 0.978 | 0.974 | 0.94 | 0.93 | 0.92 | 0.905 | 165 | 231 | 70 | 30 |
2007 | 0.987 | 0.984 | 0.943 | 0.933 | 0.986 | 0.983 | 338 | 231 | 70 | 30 |
2008 | 1 | 1 | 0.941 | 0.931 | 0.855 | 0.83 | 305 | 231 | 70 | 30 |
2009 | 0.991 | 0.989 | 0.948 | 0.94 | 0.909 | 0.891 | 351 | 231 | 70 | 30 |
2010 | 0.987 | 0.984 | 0.941 | 0.93 | 0.95 | 0.941 | 229 | 231 | 70 | 30 |
2011 | 0.991 | 0.989 | 0.942 | 0.932 | 0.946 | 0.937 | 210 | 231 | 70 | 30 |
2012 | 0.995 | 0.994 | 0.947 | 0.938 | 0.901 | 0.883 | 207 | 231 | 70 | 30 |
2013 | 0.987 | 0.984 | 0.961 | 0.955 | 0.945 | 0.936 | 224 | 231 | 70 | 30 |
2014 | 0.991 | 0.989 | 0.96 | 0.953 | 0.937 | 0.926 | 167 | 231 | 70 | 30 |
2015 | 0.995 | 0.994 | 0.963 | 0.957 | 0.97 | 0.964 | 174 | 231 | 70 | 30 |
2016 | 0.995 | 0.994 | 0.993 | 0.992 | 0.973 | 0.968 | 244 | 231 | 70 | 30 |
2017 | 0.991 | 0.989 | 0.963 | 0.957 | 0.97 | 0.964 | 269 | 231 | 70 | 30 |
2018 | 0.991 | 0.989 | 0.94 | 0.93 | 0.953 | 0.944 | 144 | 231 | 70 | 30 |
2019 | 0.991 | 0.989 | 0.945 | 0.935 | 0.97 | 0.964 | 231 | 231 | 70 | 30 |
2020 | 0.978 | 0.974 | 0.963 | 0.957 | 0.953 | 0.945 | 189 | 231 | 70 | 30 |
2021 | 0.995 | 0.994 | 0.954 | 0.946 | 0.982 | 0.978 | 139 | 231 | 70 | 30 |
0.990 | 0.988 | 0.952 | 0.944 | 0.95 | 0.941 | 4955 | 5313 | 3719 | 1594 |
Year | OA | KOA | TA | KTA | VA (%) | KVA | Images | Total Samples | Train | Test |
---|---|---|---|---|---|---|---|---|---|---|
1999 | 0.97 | 0.96 | 0.903 | 0.886 | 0.789 | 0.753 | 10 | 212 | 70 | 30 |
2000 | 0.981 | 0.977 | 0.9 | 0.882 | 0.951 | 0.943 | 88 | 212 | 70 | 30 |
2001 | 0.981 | 0.977 | 0.952 | 0.944 | 0.939 | 0.929 | 83 | 212 | 70 | 30 |
2002 | 0.976 | 0.972 | 0.925 | 0.912 | 0.942 | 0.931 | 102 | 212 | 70 | 30 |
2003 | 0.985 | 0.983 | 0.931 | 0.919 | 0.91 | 0.894 | 93 | 212 | 70 | 30 |
2004 | 0.971 | 0.966 | 0.916 | 0.901 | 0.877 | 0.854 | 159 | 212 | 70 | 30 |
2005 | 0.962 | 0.955 | 0.91 | 0.895 | 0.924 | 0.91 | 134 | 212 | 70 | 30 |
2006 | 0.981 | 0.977 | 0.893 | 0.875 | 0.915 | 0.9 | 159 | 212 | 70 | 30 |
2007 | 0.99 | 0.988 | 0.895 | 0.877 | 0.898 | 0.88 | 143 | 212 | 70 | 30 |
2008 | 0.976 | 0.972 | 0.931 | 0.919 | 0.903 | 0.886 | 149 | 212 | 70 | 30 |
2009 | 0.966 | 0.961 | 0.915 | 0.9 | 0.949 | 0.939 | 126 | 212 | 70 | 30 |
2010 | 0.966 | 0.961 | 0.925 | 0.913 | 0.89 | 0.868 | 110 | 212 | 70 | 30 |
2011 | 0.99 | 0.988 | 0.904 | 0.888 | 0.927 | 0.914 | 90 | 212 | 70 | 30 |
2012 | 0.976 | 0.972 | 0.894 | 0.876 | 0.901 | 0.884 | 129 | 212 | 70 | 30 |
2013 | 0.99 | 0.988 | 0.937 | 0.927 | 0.97 | 0.965 | 196 | 212 | 70 | 30 |
2014 | 0.99 | 0.988 | 0.936 | 0.925 | 0.943 | 0.933 | 292 | 212 | 70 | 30 |
2015 | 1 | 1 | 0.949 | 0.94 | 0.932 | 0.92 | 305 | 212 | 70 | 30 |
2016 | 0.99 | 0.988 | 0.902 | 0.886 | 0.896 | 0.878 | 313 | 212 | 70 | 30 |
2017 | 0.981 | 0.977 | 0.92 | 0.907 | 0.885 | 0.864 | 312 | 212 | 70 | 30 |
2018 | 0.981 | 0.977 | 0.941 | 0.931 | 0.948 | 0.938 | 308 | 212 | 70 | 30 |
2019 | 0.985 | 0.983 | 0.963 | 0.957 | 0.959 | 0.952 | 301 | 212 | 70 | 30 |
2020 | 1 | 1 | 0.947 | 0.938 | 0.932 | 0.92 | 300 | 212 | 70 | 30 |
2021 | 0.971 | 0.966 | 0.933 | 0.922 | 0.852 | 0.826 | 309 | 212 | 70 | 30 |
0.981 | 0.977 | 0.923 | 0.910 | 0.914 | 0.899 | 4211 | 4876 | 3413 | 1463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekpetere, K.; Abdelkader, M.; Ishaya, S.; Makwe, E.; Ekpetere, P. Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region. Hydrology 2023, 10, 78. https://doi.org/10.3390/hydrology10040078
Ekpetere K, Abdelkader M, Ishaya S, Makwe E, Ekpetere P. Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region. Hydrology. 2023; 10(4):78. https://doi.org/10.3390/hydrology10040078
Chicago/Turabian StyleEkpetere, Kenneth, Mohamed Abdelkader, Sunday Ishaya, Edith Makwe, and Peter Ekpetere. 2023. "Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region" Hydrology 10, no. 4: 78. https://doi.org/10.3390/hydrology10040078
APA StyleEkpetere, K., Abdelkader, M., Ishaya, S., Makwe, E., & Ekpetere, P. (2023). Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region. Hydrology, 10(4), 78. https://doi.org/10.3390/hydrology10040078