Introduction and Advancements in Room-Temperature Ferromagnetic Metal Oxide Semiconductors for Enhanced Photocatalytic Performance
Abstract
:1. Introduction
- The amalgamation of these attributes not only extends the functionality of MOS but also stimulates the development of innovative avenues in multifunctional material design;
- The intersection of the ferromagnetic and photocatalytic properties of MOS necessitates sophisticated characterization techniques to unravel the underlying mechanisms and interactions, fostering deeper insights for optimized applications;
- MOS exhibiting dual ferromagnetism and photocatalysis broaden the horizons of pollutant-removal strategies, enabling simultaneous catalytic activity and pollutant adsorption for enhanced purification efficiency [12];
- Further research into the fundamental principles governing the coexistence of these phenomena could pave the way for tailored MOS hybrids with tunable functionalities, offering versatile solutions across fields spanning environmental science to electronics [16].
2. Advancements in Metal Oxide-Based Semiconductor Manipulation
2.1. Tunability of Wide-Bandgap MOS Properties by Defect Engineering
2.2. Harnessing MOS Nanoparticles for Unique Properties
2.2.1. MOS Nanoparticles and Their Multifaceted Attributes
2.2.2. Impact of Sn Doping on MOS Properties
2.3. Unlocking Dual Properties: Ferromagnetism and Photocatalysis
2.4. Elevating Visible-Light Activity via the Co-Doping of MOS
2.4.1. Synergistic Effects of Nonmetal and Nontransition Metal Co-Doping
2.4.2. Unlocking Nitrogen Doping Potential
2.4.3. Advancements in Sn and N Co-Doping
3. Uncover Diluted Magnetic Semiconductors
3.1. Exploring Spintronics Potential
3.2. Augmenting Properties through Innovative Synthesis
3.3. Unveiling Magneto-Optical Frontiers
3.4. Surmounting Challenges
3.5. Exploring Ferromagnetism in DMS Intricacies of Ferromagnetism: Diluted
3.6. Novel Synthesis Unveils Potential
3.7. Unlocking Magnetic-Photocatalyst Synergy
3.8. DMS for Technological Evolution
3.9. Harnessing Defect Engineering for Enhanced Performance
3.10. A Rich Portfolio of Achievements
3.11. Role of Ion Beam Irradiation in Defect Engineering
4. Harnessing Visible Light for Photocatalysis: Progress and Prospects
4.1. Advancements in Photocatalyst Design
4.2. Wide-Ranging and Challenging Applications
4.3. A Vision for a Transformed Landscape
4.4. Advancing Energy Conversion with TiO2-Based Materials
4.5. Pursuit of Efficiency: Noble Metal Doping
4.6. Leveraging Hierarchical Assembly for Superior Performance
4.7. Exploring Fe-Doped TiO2 Mechanics
4.8. Charting the Future: AgCl-Loaded Sn-Doped TiO2
5. Recent Advances in Magnetic TiO2: Expanding Horizons for Ferromagnetic Photocatalysis
5.1. Combining Magnetism and Photocatalysis: Unleashing TiO2’s Potential
5.2. Delving into Sn-Doped TiO2: Amplifying Performance and Potential
5.3. Hierarchical SNT Microspheres: Pioneering Enhanced Photocatalysis and Ferromagnetism
5.4. Advancing Photocatalysis through Hierarchical AgCl in Sn-TiO2 Microspheres
5.5. Correlation between Magnetic and Photocatalytic Properties
6. Advances in Mössbauer Spectroscopy and Ferromagnetic Photocatalytic Studies of Sn and Fe-Doped TiO2 Nanocomposites
7. A Glimpse into the Future: Potential and Prospects
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fischer, D.K.; de Fraga, K.R.; Choi, C.W.S. Ionic liquid/TiO2 nanoparticles doped with non-expensive metals: New active catalyst for phenol photodegradation. RSC Adv. 2022, 12, 2473–2484. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lee, J.D.; Kim, S.K.R. Correlated visible-light absorption and intrinsic magnetism of SrTiO3 due to oxygen deficiency: Bulk or surface effect? Inorg. Chem. 2015, 54, 3759–3765. [Google Scholar]
- Fan, C.M.; Peng, Y.; Zhu, Q.; Lin, L.; Wang, R.X.; Xu, A.W. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2−x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J. Phys. Chem. C 2013, 117, 24157–24166. [Google Scholar] [CrossRef]
- Kan, D.; Terashima, T.; Kanda, R.; Masuno, A.; Tanaka, K.; Chu, S.; Kan, H.; Ishizumi, A.; Kanemitsu, Y.; Shimakawa, Y.; et al. Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 2004, 4, 816–819. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P.; Xing, P. d0 ferromagnetism in undoped n and p-type In2O3 films. Appl. Phys. Lett. 2012, 101, 132417. [Google Scholar] [CrossRef]
- Lou, C.; Lei, G.; Liu, X.; Xie, J.; Li, Z.; Zheng, W.; Goel, N.; Kumar, M.; Zhang, J. Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord. Chem. Rev. 2022, 452, 214280. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Tyagi, S.; Saxena, N.; Khan, Z.H.; Kumar, P. Room temperature ferromagnetism in metal oxides for spintronics: A comprehensive review. Opt. Quantum Electron. 2023, 55, 123. [Google Scholar] [CrossRef]
- Wei, W.; Jiang, C.; Roy, V.A. Recent progress in magnetic iron oxide—Semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 2015, 7, 38–58. [Google Scholar]
- Xiang, Y.; Li, Y.; Zhang, X.; Zhou, A.; Jing, N.; Xu, Q. Hybrid CuxO–TiO2 porous hollow nanospheres: Preparation, characterization and photocatalytic properties. RSC Adv. 2017, 7, 31619–31627. [Google Scholar] [CrossRef]
- Gao, D.; Wu, X.; Wang, P.; Xu, Y.; Yu, H.; Yu, J. Simultaneous realization of direct photoinduced deposition and improved H2-Evolution performance of Sn-Nano particle modified TiO2 Photocatalyst. ACS Sustain. Chem. Eng. 2019, 7, 10084–10094. [Google Scholar] [CrossRef]
- Ehsan, M.F.; Khan, R.; He, T. Visible-Light Photoreduction of CO2 to CH4 over Zn Te-Modifited TiO2 Coral-Like Nanostructures. ChemPhysChem 2017, 18, 3203–3210. [Google Scholar] [CrossRef]
- Han, F.; Kamabala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A Gen. 2009, 359, 25–40. [Google Scholar] [CrossRef]
- Belessiotis, G.V.; Falara, P.P.; Ibrahim, I.; Kontos, A.G. Magnetic Metal Oxide-Based Photocatalysts with Integrated Silver for Water Treatment. Materials 2022, 15, 4629. [Google Scholar] [CrossRef] [PubMed]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Zvesti. 2023, 77, 677–701. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation. Catalysts 2016, 6, 79. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.Z.; Yang, H.G.; Cheng, H.M.; Lu, G.Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831–843. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Medhi, R.; Marquez, M.D.; Lee, T.R. Visible-light-active doped metal oxide nanoparticles: Review of their synthesis, properties, and applications. ACS Appl. Nano Mater. 2020, 3, 6156–6185. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Fu, X.; Wang, C.; Ni, M.; Leung, M.K.H.; Wang, X.; Fu, X. Hydrogen production over titania-based photocatalysts. ChemSusChem 2006, 36, 681–694. [Google Scholar] [CrossRef]
- Alam, M.W.; Khalid, N.R.; Naeem, S.; Niaz, N.A.; Ahmad Mir, T.; Nahvi, I.; Souayeh, B.; Zaidi, N. Novel Nd-N/TiO2 Nanoparticles for Photocatalytic and Antioxidant Applications Using Hydrothermal Approach. Materials 2022, 15, 6658. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Mushtaq, S.; Al Qahtani, H.S.; Sedky, A.; Alam, M.W. Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction. Crystals 2021, 11, 1456. [Google Scholar] [CrossRef]
- Govinda raj, M.; Ganeshraja, A.S.; Kaviyarasan, K.; Hector, V.; Pugazhenthiran, N.; Katayama, K.; Sekhara Theja Vaskuri, C.; John Bosco, A.; Neppolian, B. Enhanced Photocatalytic Efficacy and Stability in Antibiotic Pollution Mitigation Using BiVO4 Nanoballs Encased in Ultrathin Polymeric g-C3N4 Nanocomposites under Visible Light Exposure. J. Phys. Chem. C 2024, 128, 3214–3232. [Google Scholar] [CrossRef]
- Ayyakannu Sundaram, G.; Kuppusamy, M.; Vadivel, G.; Karthikeyan, V.; Emsaeng, K.; Anbalagan, K. Unveiling room temperature ferromagnetism in Zinc(II)-picoline complex modified TiO2 for spintronic applications. J. Solid State Chem. 2023, 327, 124278. [Google Scholar] [CrossRef]
- Pokrajac, L.; Abbas, A.; Chrzanowski, W.; Dias, G.M.; Eggleton, J.B.; Maguire, S.; Maine, E.; Malloy, T.; Nathwani, J.; Nazar, L.; et al. Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano 2021, 15, 18608–18623. [Google Scholar] [CrossRef] [PubMed]
- Hariram, N.P.; Mekha, K.B.; Suganthan, V.; Sudhakar, K. Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability. Sustainability 2023, 15, 10682. [Google Scholar] [CrossRef]
- Hossain, N.; Mobarak, M.-H.; Mimona, M.K.; Islam, M.A.; Hossain, A.; Zohura, F.T.; Chowdhury, M.A. Advances and significances of nanoparticles in semiconductor applications—A review. Results Eng. 2023, 19, 101347. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Norizan, M.N.; Shazleen, S.S.; Alias, A.H.; Sabaruddin, F.A.; Asyraf, M.R.M.; Zainudin, E.S.; Abdullah, N.; Samsudin, M.S.; Kamarudin, S.H.; Norrrahim, M.N.F. Nanocellulose-based nanocomposites for sustainable applications: A review. Nanomaterials 2022, 12, 3483. [Google Scholar] [CrossRef]
- Paudel, H.P.; Syamlal, N.; Crawford, S.; Lee, Y.-L.; Shugayev, R.; Lu, P.; Ohodnicki, P.R.; Mollot, D.; Duan, Y. Quantum computing and simulations for energy applications: Review and perspective. ACS Eng. Au 2022, 2, 151–196. [Google Scholar] [CrossRef]
- Bergmann, M.; Collard, F.; Fabres, J.; Gabrielsen, G.W.; Provencher, J.F.; Rochman, C.M.; van Sebille, E.; Tekman, M.B. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 2022, 3, 323–337. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 13, 95–112. [Google Scholar] [CrossRef]
- O’Neill, S.; Robertson, J.M.C.; Héquet, V.; Chazarenc, F.; Pang, X.; Ralphs, K.; Skillen, N.; Robertson, P.K. Comparison of Titanium Dioxide and Zinc Oxide Photocatalysts for the Inactivation of Escherichia coli in Water Using Slurry and Rotating-Disk Photocatalytic Reactors. Ind. Eng. Chem. Res. 2023, 62, 18952–18959. [Google Scholar] [CrossRef]
- Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020, 10, 804. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, S.; Rehman, S.U.; Rehman, Z.U.; Khatoon, A.; Rha, E.S.; Jamil, M. Synergistic Effects of Zinc Oxide Nanoparticles and Bacteria Reduce Heavy Metals Toxicity in Rice (Oryza sativa L.). Plant. Toxics 2021, 9, 113. [Google Scholar] [CrossRef]
- Wang, S.; Alenius, H.; El-Nezami, H.; Karisola, P. A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials 2022, 12, 1247. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Bhattacharya, A.; Stepanova, D.; Mikhaylov, A.; Grilli, M.L.; Khosravy, M.; Senjyu, T. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. Metals 2020, 10, 1604. [Google Scholar] [CrossRef]
- El-sheikh, S.M.; Zhang, G.; El-hosainy, H.M.; Ismail, A.A.; Shea, K.E.O.; Falaras, P.; Kontos, A.G.; Dionysiou, D.D. High performance sulfur, nitrogen and carbon doped mesoporous anatase—Brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 2014, 280, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, L.; Bouzerar, G.; Srivastava, S.K. d0 Ferromagnetism in Ag-doped monoclinic ZrO2 compounds. Vacuum 2020, 182, 109716. [Google Scholar] [CrossRef]
- Tsurkan, V.; Nidda, H.K.; Deisenhofer, J.; Lunkenheimer, P.; Loidl, A. On the complexity of spinels: Magnetic, electronic, and polar ground states. Phys. Rep. 2021, 926, 1–86. [Google Scholar] [CrossRef]
- Fu, L.; You, S.; Li, G.; Li, X.; Fan, Z. Application of semiconductor metal oxide in chemiresistive methane gas sensor: Recent developments and future perspectives. Molecules 2023, 28, 6710. [Google Scholar] [CrossRef]
- Anbalagan, K. UV-Sensitized generation of phase pure cobalt-doped anatase: CoxTi1-xO2-δ nanocrystals with ferromagnetic behavior using nano-TiO2/cis-[CoIII(en)2(MeNH2)Cl]2+. J. Phys. Chem. C 2011, 115, 3821–3832. [Google Scholar] [CrossRef]
- Spitaler, J.; Estreicher, S.K. Perspectives on the theory of defects. Front. Mater. 2018, 5, 70. [Google Scholar] [CrossRef]
- Girish Kumar, S.; Koteswara Rao, K.S.R. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [Google Scholar] [CrossRef]
- Sowmya, B.; John, A.; Panda, P.K. A review on metal-oxide based p-n and n-n hetero-structured nano-materials for gas sensing applications. Sens. Int. 2021, 2, 100085. [Google Scholar]
- Samriti; Rajput, V.; Raju Kumar, G.; Prakash, J. Engineering metal oxide semiconductor nanostructures for enhanced charge transfer: Fundamentals and emerging SERS applications. J. Mater. Chem. C 2022, 10, 73. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Meng, Y.; Pan, G.; Ni, Z.; Xia, S. Layered double hydroxides-based photocatalysts and visible-light-driven photodegradation of organic pollutants: A review. Chem. Eng. J. 2020, 392, 123684. [Google Scholar] [CrossRef]
- Queraltó, A.; Pérez del Pino, A.; Logofatu, C.; Datcu, A.; Amade, R.; Bertran-Serra, E.; György, E. Reduced graphene oxide/iron oxide nanohybrid flexible electrodes grown by laser-based technique for energy storage applications. Ceram. Int. 2018, 44, 20409–20416. [Google Scholar] [CrossRef]
- Kumar, N.; Chamoli, P.; Misra, M.; Manoj, M.K.; Sharma, A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 2022, 14, 3987. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, M.; Jing, X.; Zhang, P.; Zhu, Y.; Zhang, Z. Electrospun Semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: Opportunities and challenges. Energy Environ. Mater. 2023, 6, e12338. [Google Scholar] [CrossRef]
- Irie, H.; Kamiya, K.; Shibanuma, T.; Miura, S.; Tryk, D.A.; Yokoyama, T.; Hashimoto, K. Visible light-sensitive Cu(II)-grafted TiO2 photocatalysts: Activities and X-ray absorption fine structure analyses. J. Phys. Chem. C 2009, 113, 10761–10766. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Energy-Level Matching of Fe(III) Ions Grafted at Surface and Doped in Bulk for Efficient Visible-Light Photocatalysts. J. Am. Chem. Soc. 2013, 135, 10064–10072. [Google Scholar] [CrossRef] [PubMed]
- Dubey, M.; Kumar, R.; Kumar, S.; Srivastava Joshi, M. Visible light induced photodegradation of chlorinated organic pollutants using highly efficient magnetic Fe3O4/TiO2 nanocomposite. Optik 2021, 243, 167309. [Google Scholar] [CrossRef]
- Abdel-Messih, M.F.; Ahmed, M.A.; El-sayed, A.S. Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. J. Photochem. Photobiol. A Chem. 2013, 260, 1–8. [Google Scholar] [CrossRef]
- Mourão, H.A.J.L.; Avansi, W.J.; Ribeiro, C. Hydrothermal synthesis of Ti oxide nanostructures and TiO2: SnO2 heterostructures applied to the photodegradation of Rhodamine B. Mater. Chem. Phys. 2012, 135, 524–532. [Google Scholar] [CrossRef]
- Cao, Y.; He, T.; Zhao, L.; Wang, E.; Yang, W.; Cao, Y. Structure and Phase Transition Behavior of Sn4+-Doped TiO2 Nanoparticles. J. Phys. Chem. C 2009, 113, 18121–18124. [Google Scholar] [CrossRef]
- Boppana, V.B.R.; Lobo, R.F. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn (II)-doped titania. J. Catal. 2011, 281, 156–168. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Liu, X.; Yu, C.; Yan, D.; Sun, Z.; Pan, L. Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 2016, 679, 454–462. [Google Scholar] [CrossRef]
- Lübke, M.; Johnson, I.; Makwana, N.M.; Brett, D.; Shearing, P.; Liu, Z.; Darr, J.A. High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries. J. Power Source 2015, 294, 94–102. [Google Scholar] [CrossRef]
- Dhanapandian, S.; Arunachalam, A.; Manoharan, C. Highly oriented and physical properties of sprayed anatase Sn-doped TiO2 thin films with an enhanced antibacterial activity. Appl. Nanosci. 2016, 6, 387–397. [Google Scholar] [CrossRef]
- Duan, Y.; Fu, N.; Liu, Q.; Fang, Y.; Zhou, X.; Zhang, J.; Lin, Y. Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 8888–8893. [Google Scholar] [CrossRef]
- Abbas, H.; Nadeem, K.; Hassan, A.; Rahman, S.; Krenn, H. Enhanced Photocatalytic activity of ferromagnetic Fe-doped NiO Nanoparticles. Optik 2020, 20, 163637. [Google Scholar] [CrossRef]
- Joseph, A.; Ayyappan, A.; Subair, T.; Pandibayal, M.; Nair, S.; Ramany, R.; Varma, M.R.; Thomas, S. Pure and Sm doped CeO2 nanoparticles: An insight into the room temperature ferromagnetism and photocatalytic dye degradation. ChemistrySelect 2023, 8, e202301020. [Google Scholar] [CrossRef]
- Hezam, F.A.; Rajesh, A.; Nur, O.; Mustafa, M.A. Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys. B Phys. Condens. Matter. 2020, 596, 412389. [Google Scholar] [CrossRef]
- Shah Saqib, A.N.; Thu Huong, N.T.; Kim, S.-W.; Jung, M.-H.; Lee, Y.H. Structural and magnetic properties of highly Fe-doped ZnO nanoparticles synthesized by one-step solution plasma process. J. Alloys Compd. 2021, 853, 157153. [Google Scholar] [CrossRef]
- Sanchis-Gual, R.; Coronado-Puchau, M.; Mallah, T.; Coronado, E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord. Chem. Rev. 2023, 480, 215025. [Google Scholar] [CrossRef]
- Barad, H.-N.; Kwon, H.; Alarcón-Correa, M.; Fischer, P. Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS Nano 2021, 15, 5861–5875. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Khedher, N.B.; et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022, 12, 1386. [Google Scholar] [CrossRef]
- Harish, V.; Ansari, M.M.; Tewari, D.; Bihari Yadav, A.; Sharma, N.; Bawarig, S.; García-Betancourt, M.-L.; Karatutlu, A.; Bechelany, M.; Barhoum, A. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. J. Taiwan Inst. Chem. Eng. 2023, 149, 105010. [Google Scholar] [CrossRef]
- Dippong, T.; Levei, E.A.; Deac, I.G.; Petean, I.; Borodi, G.; Cadar, O. Sol-Gel Synthesis, Structure, Morphology and Magnetic Properties of Ni0.6Mn0.4Fe2O4 Nanoparticles Embedded in SiO2 Matrix. Nanomaterials 2021, 11, 3455. [Google Scholar] [CrossRef]
- Murzin, S.P.; Kazanskiy, N.L. Creation of One- and Two-Dimensional Copper and Zinc Oxides Semiconductor Structures. Appl. Sci. 2023, 13, 11459. [Google Scholar] [CrossRef]
- Huseien, G.F. Potential Applications of Core-Shell Nanoparticles in Construction Industry Revisited. Appl. Nano 2023, 4, 75–114. [Google Scholar] [CrossRef]
- Yadav, A.; Follink, B.; Funston, A.M. Anion-Directed Synthesis of Core–Shell and Janus Hybrid Nanostructures. Chem. Mater. 2022, 34, 8987–8998. [Google Scholar] [CrossRef]
- Xu, M.; Da, P.; Wu, H.; Zhao, D.; Zheng, G. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett. 2012, 12, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Asefa, B.A.A.; Pan, C.J.; Su, W.N.; Chen, H.M.; Rick, J.; Hwang, B.J. Facile one-pot controlled synthesis of Sn and C co-doped single crystal TiO2 nanowire arrays for highly efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2015, 163, 478–486. [Google Scholar]
- Chang, S.; Chen, S.; Huang, Y. Synthesis, structural correlations, and photocatalytic properties of TiO2 nanotube/SnO2–Pd nanoparticle heterostructures. J. Phys. Chem. C 2011, 115, 1600–1607. [Google Scholar] [CrossRef]
- Dalapati, G.; Sharma, H.; Guchhait, A.; Chakrabarty, N.; Bamola, P.; Liu, Q.; Saianand, G.; Sai Krishna, A.M.; Mukhopadhyay, S.; Dey, A.; et al. Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. J. Mater. Chem. A 2021, 9, 16621. [Google Scholar] [CrossRef]
- Cho, S.; Jang, J.W.; Kong, K.J.; Sun Kim, E.; Lee, K.H.; Sung Lee, J. Anion-doped mixed metal oxide nanostructures derived from layered double hydroxide as visible light photocatalysts. Adv. Funct. Mater. 2013, 23, 2348–2356. [Google Scholar] [CrossRef]
- Martha, S.; Chandra Sahoo, P.; Parida, K.M. An overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production. RSC Adv. 2015, 5, 61535. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Jiang, F.; Wang, X. Enhanced visible-light photocatalytic nitrogen fixation over semi crystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation. J. Colloid Interface Sci. 2018, 509, 298–306. [Google Scholar] [CrossRef]
- Nair, R.V.; Siva Gummaluri, V.; Vadakke Matham, M.; Vijayan, C. A review on optical bandgap engineering in TiO2 nanostructures via doping and intrinsic vacancy modulation towards visible light applications. J. Phys. D Appl. Phys. 2022, 55, 313003. [Google Scholar] [CrossRef]
- Banerjee, S.; Dionysiou, D.D.; Pillai, S. Self-cleaning applications of TiO2 by photoinduced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 2015, 176, 396–428. [Google Scholar] [CrossRef]
- Ayyakannu Sundaram, G.; Samy, A.; Rajkumar, K.; Wang, Y.; Wang, Y.; Wang, J.; Anbalagan, K. Simple hydrothermal synthesis of metal oxides coupled nanocomposites: Structural, optical, magnetic and photocatalytic studies. Appl. Surf. Sci. 2015, 353, 553–563. [Google Scholar]
- Ganeshraja, A.S.; Thirumurugan, S.; Rajkumar, K.; Zhu, K.; Wang, Y.; Anbalagan, K.; Wang, J. Effects of structural, optical and ferromagnetic states on the photocatalytic activities of Sn–TiO2 nanocrystals. RSC Adv. 2016, 6, 409–421. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yu, F.; Jin, C.; Liu, X.; Ma, J.; Wang, Y.; Huang, Y.; Wang, J. Correlation investigation on the visible-light-driven photocatalytic activity and coordination structure of rutile Sn-Fe-TiO2 nanocrystallites for methylene blue degradation. Catal. Today 2015, 258, 112–119. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Mao, Y.; Xing, M.; Zhang, J. Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl. Catal. B Environ. 2015, 164, 352–359. [Google Scholar] [CrossRef]
- Pu, X.; Hu, Y.; Cui, S.; Cheng, L.; Jiao, Z. Preparation of N-doped and oxygen-deficient TiO2 microspheres via a novel electron beam-assisted method. Solid State Sci. 2017, 70, 66–73. [Google Scholar] [CrossRef]
- Xu, H.; Ouyang, S.; Liu, L.; Reunchan, P.; Umezawa, N.; Ye, J. Recent advances in TiO2-based photocatalysis. J. Mater. Chem. A 2014, 2, 12642–12661. [Google Scholar] [CrossRef]
- Lim, J.; Murugan, P.; Lakshminarasimhan, N.; Kim, J.Y.; Lee, J.S.; Lee, S.H.; Choi, W. Synergic photocatalytic effects of nitrogen and niobium co-doping in TiO2 for the redox conversion of aquatic pollutants under visible light. J. Catal. 2014, 310, 91–99. [Google Scholar] [CrossRef]
- Pal, A.; Zhang, S.; Chavan, T.; Agashiwala, K.; Yeh, C.-H.; Cao, W.; Banerjee, K. Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv. Mater. 2023, 35, 2109894. [Google Scholar] [CrossRef]
- Zhao, G.; Deng, Z.; Jin, C. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J. Semicond. 2019, 40, 081505. [Google Scholar] [CrossRef]
- Zou, B.; Tian, Y.; Shi, L.; Liu, R.; Zhang, Y.; Zhong, H. Excitonic magnetic polarons in II-VI diluted magnetic semiconductor nanostructures. J. Lumin. 2022, 252, 119334. [Google Scholar] [CrossRef]
- Dieny, B.; Prejbeanu, I.L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S.O.; Akerman, J.; et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459. [Google Scholar] [CrossRef]
- Goel, S.; Duy Khang, N.H.; Osada, Y.; Anh, L.D.; Hai, P.N.; Tanaka, M. Room-temperature spin injection from a ferromagnetic semiconductor. Sci. Rep. 2023, 13, 2181. [Google Scholar] [CrossRef]
- Dusanowski, Ł.; Nawrath, C.; Portalupi, S.L.; Jetter, M.; Huber, T.; Klembt, S.; Michler, P.; Höfling, S. Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nat. Commun. 2022, 13, 748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mizukami, S.; Kubota, T.; Ma, Q.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T. Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat. Commun. 2013, 4, 1392. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-C.; Wu, W.-H.; Wu, M.-T.; Chuang, C.; Pai, C.-F.; Hsieh, Y.-P.; Hofmann, M. Realizing High-Quality Interfaces in Two-Dimensional Material Spin Valves. ACS Mater. Lett. 2024, 6, 94–99. [Google Scholar] [CrossRef]
- Malavolti, L.; McMurtrie, G.; Rolf-Pissarczyk, S.; Yan, S.; Burgess, J.A.J.; Loth, S. Minimally invasive spin sensing with scanning tunneling microscopy. Nanoscale 2020, 12, 11619–11626. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Shigidi, I.; Otaibi, S.A.; Althubeiti, K.; Abdullaev, S.S.; Rahman, N.; Sohail, M.; Khan, A.; Iqbal, S.; Rosso, T.D.; et al. Room temperature dilute magnetic semiconductor response in (Gd, Co) co-doped ZnO for efficient spintronics applications. RSC Adv. 2022, 12, 36126–36137. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Zhang, R.; Kumar, P.; Kumar, V.; Kumar, A. Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry 2020, 6, 15. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Kim, H.; Lee, H.; Ryu, C.; Lee, J.Y.; Yoon, J. Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method. Nanomaterials 2019, 9, 1176. [Google Scholar] [CrossRef]
- Kanwal, S.; Tahir Khan, M.; Tirth, V.; Algahtani, A.; Al-Mughanam, T.; Zaman, A. Room-Temperature Ferromagnetism in Mn-Doped ZnO Nanoparticles Synthesized by the Sol–Gel Method. ACS Omega 2023, 8, 28749–28757. [Google Scholar] [CrossRef]
- Ayyakannu Sundaram, G.; Kanniah, R.; Anbalagan, K.; Kulandaivelu, K.; Valdés, H. Impact of Copper(II)-Imidazole Complex Modification on Polycrystalline TiO2: Insights into Formation, Characterization, and Photocatalytic Performance. Catalysts 2024, 14, 169. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, S.; Nizam Ansari, M.M. Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 2018, 44, 15972–15980. [Google Scholar] [CrossRef]
- Yao, C.; Ismail, M.; Hao, A.; Thatikonda, S.K.; Huang, W.; Qin, N.; Bao, D. Annealing atmosphere effect on the resistive switching and magnetic properties of spinel Co3O4 thin films prepared by a sol-gel technique. RSC Adv. 2019, 9, 12615–12625. [Google Scholar] [CrossRef]
- Tadic, M.; Kralj, S.; Jagodic, M.; Hanzel, D.; Makovec, D. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl. Surf. Sci. 2014, 322, 255–264. [Google Scholar] [CrossRef]
- Aleinawi, M.H.; Uddin Ammar, A.; Buldu-Akturk, M.; Selin Turhan, N.; Nadupalli, S.; Erdem, E. Spectroscopic Probing of Mn-Doped ZnO Nanowires Synthesized via a Microwave-Assisted Route. J. Phys. Chem. C 2022, 126, 4229–4240. [Google Scholar] [CrossRef]
- Talebian, N.; Jafarinezhad, F. Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceram. Int. 2013, 39, 8311–8317. [Google Scholar] [CrossRef]
- Carofiglio, M.; Barui, S.; Cauda, V.; Laurenti, M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Appl. Sci. 2020, 10, 5194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Dai, J.Y.; Ong, H.C. Hydrothermal Synthesis and Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Nanowires. Open J. Phys. Chem. 2011, 1, 6–10. [Google Scholar] [CrossRef]
- Di, M.; Fu, L.; Zhou, Y.; Pan, H.; Xu, Y.; Du, Y.; Tang, N. Comprehensive mechanism of ferromagnetism enhancement in nitrogen-doped graphene. New J. Phys. 2021, 23, 103003. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Ying, M.; Li, M.; Wang, X.; Nan, C.-W. Room-temperature ferromagnetic and ferroelectric behavior in polycrystalline ZnO-based thin films. Appl. Phys. Lett. 2007, 90, 222110. [Google Scholar] [CrossRef]
- Vargas-Ortiz, J.R.; Gonzalez, C.; Esquivel, K. Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes 2022, 10, 2282. [Google Scholar] [CrossRef]
- Kumari, S.; Raturi, S.; Kulshrestha, S.; Chauhan, K.; Dhingra, S.; András, K.; Thu, K.; Khargotra, R.; Singh, T. A comprehensive review on various techniques used for synthesizing nanoparticle. J. Mater. Res. Technol. 2023, 27, 1739–1763. [Google Scholar] [CrossRef]
- Dong, Y.X.; Wang, X.L.; Jin, E.M.; Jeong, S.M.; Jin, B.; Lee, S.H. One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for dye-sensitized solar cell application. Renew. Energy 2019, 135, 1207–1212. [Google Scholar] [CrossRef]
- Samy, O.; Zeng, S.; Birowosuto, M.D.; El Moutaouakil, A. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11, 355. [Google Scholar] [CrossRef]
- Trpkov, D.; Panjan, M.; Kopanja, L.; Tadić, M. Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures. Appl. Surf. Sci. 2018, 457, 427–438. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; Molnár, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, L.; Wang, C.; Wang, J.; Guo, J.; Tang, R.; Zhu, J.; Zou, G. Seed engineering toward layer-regulated growth of magnetic semiconductor VS2. Adv. Funct. Mater. 2023, 33, 2213295. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mondal, P.; Makkar, M.; Moretti, L.; Cerullo, G.; Viswanatha, R. Transition metal doping in CdS quantum dots: Diffusion, magnetism, and ultrafast charge carrier dynamics. Chem. Mater. 2023, 35, 2146–2154. [Google Scholar] [CrossRef]
- Pawar, S.; Duadi, H.; Fixler, D. Recent advances in the spintronic application of carbon-based nanomaterials. Nanomaterials 2023, 13, 598. [Google Scholar] [CrossRef]
- Haider, T. A Review of Magneto-Optic Effects and Its Application. Int. J. Electromagn. Appl. 2017, 7, 17–24. [Google Scholar]
- Ando, K. Magneto-Optics of Diluted Magnetic Semiconductors: New Materials and Applications. In Magneto-Optics; Sugano, S., Kojima, N., Eds.; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2000; Volume 128. [Google Scholar] [CrossRef]
- Rudno-Rudziński, W.; Burakowski, M.; Reithmaier, J.P.; Musiał, A.; Benyoucef, M. Magneto-Optical Characterization of Trions in Symmetric InP-Based Quantum Dots for Quantum Communication Applications. Materials 2021, 14, 942. [Google Scholar] [CrossRef]
- Telegin, A.; Sukhorukov, Y. Magnetic Semiconductors as Materials for Spintronics. Magnetochemistry 2022, 8, 173. [Google Scholar] [CrossRef]
- Tatzenko, O.M.; Markevsev, I.M.; Pavlovskii, A.I.; Platonov, V.V.; Sosnin, P.V.; Druzhinin, V.V.; Lugutin, A.S.; Nikitin, P.I.; Savchuk, A.I. The Faraday Effect in Dilute Magnetic Semiconductors in Ultrahigh Magnetic Field. In Proceedings of the 1993 IEEE International Magnetics Conference (INTERMAG), Stockhom, Sweden, 13–16 April 1993. [Google Scholar] [CrossRef]
- Portugall, O.; Krämer, S.; Skourski, Y. Magnetic Fields and Measurements. In Handbook of Magnetism and Magnetic Materials; Coey, M., Parkin, S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.O.; Cao, G.; Xiao, M.; Guo, G.C.; Guo, G.P. Semiconductor quantum computation. Natl. Sci. Rev. 2019, 6, 32–54. [Google Scholar] [CrossRef] [PubMed]
- Young, D.K.; Gupta, J.A.; Johnston-Halperin, E.; Epstein, Y.; Awschalom, K.D.D. Optical, electrical and magnetic manipulation of spins in semiconductors. Semicond. Sci. Technol. 2002, 17, 275. [Google Scholar] [CrossRef]
- Eills, J.; Budker, D.; Cavagnero, S.; Chekmenev, E.Y.; Elliott, S.J.; Jannin, S.; Lesage, A.; Matysik, J.; Meersmann, T.; Prisner, T.; et al. Spin Hyperpolarization in Modern Magnetic Resonance. Chem. Rev. 2023, 123, 1417–1551. [Google Scholar] [CrossRef] [PubMed]
- Da, H.; Song, Q.; Dai, H.; Dong, P.; Bao, Q.; Ye, H.; An, Y.; Chen, J.; Guo, J.; Wang, X.; et al. Electrically controllable magneto-optic effects in a two-dimensional hexagonal organometallic lattice. Phys. Rev. B 2020, 101, 035423. [Google Scholar] [CrossRef]
- Pham, Y.T.; Liu, M.; Jimenez, V.O.; Yu, Z.; Kalappattil, V.; Zhang, F.; Wang, K.; Williams, T.; Terrones, M.; Phan, M.-H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv. Mater. 2020, 32, 2003607. [Google Scholar] [CrossRef]
- Anbuselvan, D.; Nilavazhagan, S.; Santhanam, A.; Chidhambaram, N.; Gunavathy, K.V.; Ahamad, T.; Alshehri, S.M. Room temperature ferromagnetic behavior of nickel-doped zinc oxide dilute magnetic semiconductor for spintronics applications. Phys. E Low-Dimens. 2021, 129, 114665. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, C.; Fu, L.; Gu, Y.; Zhi, G.; Dong, J.; Zhao, X.; Xie, L.; Zhang, H.; Cao, C.; et al. Manipulation of the ferromagnetic ordering in magnetic semiconductor (La,Ca)(Zn,Mn)AsO by chemical pressure. J. Magn. Magn. Mater. 2022, 554, 169276. [Google Scholar] [CrossRef]
- Feng, S.; Duan, H.; Tan, H.; Hu, F.; Liu, C.; Wang, Y.; Li, Z.; Cai, L.; Cao, Y.; Wang, C.; et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nat. Commun. 2023, 14, 7063. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Sathish, C.I.; Geng, X.; Guan, X.; Liu, Y.; Wang, L.; Qiao, L.; Vinu, A.; Yi, J. Manipulation of ferromagnetism in intrinsic two-dimensional magnetic and nonmagnetic materials. Matter 2022, 5, 4212–4273. [Google Scholar] [CrossRef]
- Wang, H.; Lu, H.; Guo, Z.; Li, A.; Wu, P.; Li, J.; Xie, W.; Sun, Z.; Li, P.; Damas, H.; et al. Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature. Nat. Commun. 2023, 29, 2483. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.H.; Kumar Yadav, V.; Singh, J.K. Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective. ACS Omega 2020, 5, 14203–14211. [Google Scholar] [CrossRef] [PubMed]
- Tuček, J.; Holá, K.; Bourlinos, A.; Błoński, P.; Bakandritsos, A.; Ugolotti, J.; Dubecký, M.; Karlický, F.; Ranc, V.; Čépe, K.; et al. Room temperature organic magnets derived from sp3 functionalized graphene. Nat. Commun. 2017, 8, 14525. [Google Scholar] [CrossRef]
- Hanson, R.; Awschalom, D. Coherent manipulation of single spins in semiconductors. Nature 2008, 453, 1043–1049. [Google Scholar] [CrossRef]
- Fursina, A.A.; Sinitskii, A. Toward Molecular Spin Qubit Devices: Integration of Magnetic Molecules into Solid-State Devices. ACS Appl. Electron. Mater. 2023, 5, 3531–3545. [Google Scholar] [CrossRef]
- Wu, J.; Guo, R.; Wu, D.; Li, X.; Wu, X. Turning Nonmagnetic Two-Dimensional Molybdenum Disulfides into Room-Temperature Ferromagnets by the Synergistic Effect of Lattice Stretching and Charge Injection. J. Phys. Chem. Lett. 2024, 15, 2293–2300. [Google Scholar] [CrossRef]
- Papavasileiou, A.V.; Menelaou, M.; Sarkar, K.J.; Sofer, Z.; Polavarapu, L.; Mourdikoudis, S. Ferromagnetic Elements in Two-Dimensional Materials: 2DMagnets and Beyond. Adv. Funct. Mater. 2024, 34, 2309046. [Google Scholar] [CrossRef]
- Dung, D.D.; Lam, N.H.; Nguyen, A.D.; Trung, N.N.; Van Duc, N.; Hung, N.T.; Kim, Y.S.; Odkhuu, D. Experimental and theoretical studies on induced ferromagnetism of new (1 − x)Na0.5Bi0.5TiO3 + xBaFeO3−δ solid solution. Sci. Rep. 2021, 11, 8908. [Google Scholar] [CrossRef]
- He, W.; Kong, L.; Zhao, W.; Yu, P. Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications. Coatings 2022, 12, 122. [Google Scholar] [CrossRef]
- Scott, J. Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 2013, 5, e72. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Sun, H.; Wang, N.; He, J.; Wang, N.; Long, Y.; Huang, C.; Li, Y. Induced Ferromagnetic Order of Graphdiyne Semiconductors by Introducing a heteroatom. ACS Cent. Sci. 2020, 6, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Dhamodaran, M.; Yadav, R.K.; Karuppannan, R.; Ramaswamy, M.; Boukhvalov, D.W.; Yadav, A.K.; Gupta, R. Dopant-activated magnetism and local structure properties of cubic shape Co, Mn:In2O3. Mater. Sci. Semicond. Process. 2023, 168, 107818. [Google Scholar] [CrossRef]
- Seema, K.; Kumar, R. Effect of Dopant Concentration on Electronic and Magnetic Properties of Transition Metal-Doped ZrO2. J. Supercond. Nov. Magn. 2015, 28, 2735–2742. [Google Scholar] [CrossRef]
- Nan, T.; Quintela, C.X.; Irwin, J.G.; Gurung, D.F.; Shao, J.; Gibbons, N.; Campbell, K.; Song, S.-Y.; Choi, L.; Guo, R.D.; et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 2020, 11, 4671. [Google Scholar] [CrossRef]
- Gu, X.; Guo, L.; Qin, Y.; Yang, T.; Meng, K.; Hu, S.; Sun, X. Challenges and Prospects of Molecular Spintronics. Precis. Chem. 2024, 2, 1–13. [Google Scholar] [CrossRef]
- Ahn, E.C. 2D materials for spintronic devices. npj 2d Mater. Appl. 2020, 4, 17. [Google Scholar] [CrossRef]
- Salinas, R.I.; Chen, P.-C.; Yang, C.-Y.; Lai, C.-H. Spintronic materials and devices towards an artificial neural network: Accomplishments and the last mile. Mater. Res. Lett. 2023, 11, 305–326. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Cao, Y.; Kamra, A.; Duine, R.; Yan, P. Quantum magnonics: When magnon spintronics meets quantum information science. Phys. Rep. 2022, 965, 1–74. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, X.; Zhang, T.; Yu, X.; Ma, Y.; Santos, E.C.; White, J.; Liu, H.; Sang, Y. Construction of diluted magnetic semiconductor to endow nonmagnetic semiconductor with spin-regulated photocatalytic performance. Nano Energy 2023, 110, 108381. [Google Scholar] [CrossRef]
- Tang, J.; Wang, C.-Y.; Chang, L.; Fan, Y.; Nie, T.; Chan, M.; Jiang, W.; Chen, Y.; Yang, H.; Tuan, H.; et al. Electrical Spin Injection and Detection in Mn5Ge3/Ge/Mn5Ge3 nanowire transistors. Nano Lett. 2013, 13, 4036–4043. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Zhao, Y.; Burda, C. TiO2 nanoparticles as functional building blocks. Chem. Rev. 2014, 114, 9283–9318. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Cui, X.; Yao, W.; Duan, T. One-step hydrothermal synthesis of iron and nitrogen co-doped TiO2 nanotubes with enhanced visible-light photocatalytic activity. CrystEngComm 2015, 17, 8368–8376. [Google Scholar] [CrossRef]
- Irie, H.; Washizuka, S.; Yoshino, N.; Hashimoto, K.Y. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chemcomm 2003, 11, 1298–1299. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–272. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci. 2018, 92, 33–63. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhang, Y.; Chu, Z.; Long, J.; An, X.; Zhang, H.; Lin, H.; Zhang, Z.; Wang, X. Synergy of metal and nonmetal dopants for visible-light photocatalysis: A case-study of Sn and N co-doped TiO2. Phys. Chem. Chem. Phys. 2016, 18, 9636–9644. [Google Scholar] [CrossRef] [PubMed]
- Phokha, S.; Pinitsoontorn, S.; Maensiri, S. Structure and Magnetic Properties of Monodisperse Fe3+ -doped CeO2 Nanospheres. Nano-Micro Lett. 2013, 3, 223–233. [Google Scholar] [CrossRef]
- Dakhel, A.A. Microstructural, optical and magnetic properties of TiO2:Fe:M (M = Ga, Zn) dilute magnetic semiconductor nanoparticles: A comparative study. Appl. Phys. A 2021, 127, 440. [Google Scholar] [CrossRef]
- Lu, A.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, L.; Song, J.; Mi, W.; Zou, J.; Wang, L.; Zhang, X. Titanium-defected undoped anatase TiO2 with p-Type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983. [Google Scholar] [CrossRef] [PubMed]
- Charles Cao, Y. Impurities enhance semiconductor nanocrystal performance. Science 2011, 332, 48–49. [Google Scholar]
- Chetri, P.; Basyach, P.; Choudhury, A. Exploring the structural and magnetic properties of TiO2/SnO2 core/shell nanocomposite: An experimental and density functional study. J. Solid. State Chem. 2014, 220, 124–131. [Google Scholar] [CrossRef]
- Cheng, C.; Amini, A.; Zhu, C.; Xu, Z.; Song, H.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 2014, 4, 4181. [Google Scholar] [CrossRef]
- Charanpahari, A.; Ghugal, S.G.; Umare, S.S.; Sasikala, R. Mineralization of malachite green dye over visible light responsive bismuth doped TiO2-ZrO2 ferromagnetic nanocomposites. New J. Chem. 2015, 39, 3629–3638. [Google Scholar] [CrossRef]
- Khang, N.C.; Khanh, N.; Anh, N.H.; Nga, D.; Minh, N. The origin of visible light photocatalytic activity of N-doped and weak ferromagnetism of Fe-doped TiO2 anatase. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015008. [Google Scholar] [CrossRef]
- Na, C.; Park, S.; Kim, S.J.; Woo, H.; Kim, H.J.; Chung, J.; Lee, J. Chemical synthesis of CoO–ZnO:Co hetero-nanostructures and their ferromagnetism at room temperature. CrystEngComm 2012, 14, 5390–5393. [Google Scholar] [CrossRef]
- Alivov, Y.; Singh, V.; Ding, Y.; Cerkovnik, L.J.; Nagpal, P. Doping of wide-bandgap titanium-dioxide nanotubes: Optical, electronic and magnetic properties. Nanoscale 2014, 6, 10839–10849. [Google Scholar] [CrossRef]
- Thakare, V.P.; Game, O.S.; Ogale, S.B. Ferromagnetism in metal oxide systems: Interfaces, dopants, and defects. J. Mater. Chem. C 2013, 1, 1545–1557. [Google Scholar] [CrossRef]
- Rahman, G. Nitrogen-induced ferromagnetism in BaO. RSC Adv. 2015, 5, 33674–33680. [Google Scholar] [CrossRef]
- Liu, G.; Yang, H.G.; Pan, J.; Yang, Y.Q.; Lu, G.Q.; Cheng, H. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612. [Google Scholar] [CrossRef]
- Choudhury, B.; Verma, R.; Choudhury, A. Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv. 2014, 4, 29314–29323. [Google Scholar] [CrossRef]
- Neogi, S.K.; Midya, N.; Pramanik, P.; Banerjee, A.; Bhattacharyya, A.; Taki, G.S.; Krishna, J.B.M.; Bandyopadhyay, S. Correlation between defect and magnetism of low energy Ar+9 implanted and un-implanted Zn0.95Mn0.05O thin films suitable for electronic application. J. Magn. Magn. Mater. 2016, 408, 217–227. [Google Scholar] [CrossRef]
- Kumar, S.; Asokan, K.; Singh, R.; Chatterjee, S.; Kanjilal, D.; Ghosh, A.K. Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. RSC Adv. 2014, 4, 62123–62131. [Google Scholar] [CrossRef]
- Borges, R.; Silva, R.; Magalhaes, S.; Cruz, M.; Godinho, M. Magnetism in Ar-implanted ZnO. J. Phys. Condens. Matter 2007, 19, 476207. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Ganeshraja, A.S.; Rajkumar, K.; Zhu, K.; Li, X.; Thirumurugan, S.; Xu, W.; Zhang, J.; Yang, M.; Anbalagan, K.; Wang, J. Facile synthesis of iron oxide coupled and doped titania nanocomposites: Tuning of physicochemical and photocatalytic properties. RSC Adv. 2016, 6, 72791–72802. [Google Scholar] [CrossRef]
- Ganeshraja, A.S.; Thirumurugan, S.; Rajkumar, K.; Wang, J.; Anbalagan, K. Ferromagnetic nickel(II) imidazole-anatase framework: An enhanced photocatalytic performance. J. Alloys Compd. 2017, 706, 485–494. [Google Scholar] [CrossRef]
- Ganeshraja, A.S.; Yang, M.; Nomura, K.; Maniarasu, S.; Veerappan, G.; Liu, T.; Wang, J. 119Sn Mössbauer and ferromagnetic studies on hierarchical Tin- and nitrogen-codoped TiO2 microspheres with efficient photocatalytic performance. J. Phys. Chem. C 2017, 121, 6662–6673. [Google Scholar]
- Ganeshraja, A.S.; Zhu, K.; Nomura, K.; Wang, J. Hierarchical assembly of AgCl@Sn-TiO2 microspheres with enhanced visible light photocatalytic performance. Appl. Surf. Sci. 2018, 441, 678–687. [Google Scholar] [CrossRef]
- Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L.; et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites. J. Am. Chem. Soc. 2017, 139, 4486–4492. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, N.; Schmuki, P. Photocatalysis with TiO2 Nanotubes: “Colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 2017, 7, 3210–3235. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Xu, S.; Yaowen Ruan, Y. Carbon quantum dot-sensitized hollow TiO2 spheres for high-performance visible light photocatalysis. New J. Chem. 2021, 45, 8693–8700. [Google Scholar] [CrossRef]
- Araújo, E.S.; Pereira, M.F.G.; da Silva, G.M.G.; Tavares, G.F.; Oliveira, C.Y.B.; Faia, P.M. The role of environmental contamination in the spread of COVID-19; A Review. Toxics 2023, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Jamjoum, H.A.A.; Umar, K.; Adnan, R.; Razali, M.R.; Mohamad Ibrahim, M.N. Synthesis, characterization, and photocatalytic activities of graphene oxide/metal oxides nanocomposites: A Review. Front. Chem. 2021, 9, 752276. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.E. State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: Photocatalysis. Nanoscale Adv. 2021, 3, 1887–1900. [Google Scholar] [CrossRef]
- Rani, M.; Murtaza, M.; Amjad, A.; Zahra, M.; Waseem, A.; Alhodaib, A. NiSe2/Ag3PO4 nanocomposites for enhanced Visible light photocatalysts for environmental remediation applications. Catalysts 2023, 13, 929. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Xu, T.; Ji, W.; Zong, X. Recent advances on small band gap semiconductor materials (≤2.1 eV) for solar water splitting. Catalysts 2023, 13, 728. [Google Scholar] [CrossRef]
- Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, G.; Bonapasta, A.A.; Bovi, D.; Giannozzi, P. Photocatalytic and photovoltaic properties of TiO2 nanoparticles investigated by Ab Initio simulations. J. Phys. Chem. C 2014, 118, 29928–29942. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Shen, S.; Zhu, J.; Liu, Y.; Mao, X. Understanding photo (electro)catalysts for energy conversion via operando functional imaging. Chem. Biomed. Imaging 2023, 1, 522–536. [Google Scholar] [CrossRef]
- Goodarzi, N.; Ashrafi-Peyman, Z.; Khani, E.; Moshfegh, A.Z. Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 2023, 13, 1102. [Google Scholar] [CrossRef]
- Ganeshraja, A.S.; Yang, M.; Xu, W.; Anbalagan, K.; Wang, J. Photoinduced interfacial electron transfer in 2,2′-bipyridyl iron(III) complex-TiO2 nanoparticles in aqueous medium. ChemistrySelect 2017, 2, 10648–10653. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Lawes, D.J.; Ball, G.E.; Zhou, C.; Liu, Z.; Amal, R. Analysis of the promoted activity and molecular mechanism of hydrogen production over Fine Au–Pt Alloyed TiO2 photocatalysts. ACS Catal. 2015, 5, 3924–3931. [Google Scholar] [CrossRef]
- Seh, Z.W.; Liu, S.; Low, M.; Zhang, S.; Liu, Z.; Milayah, A.; Han, M. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314. [Google Scholar] [CrossRef]
- Pattanayak, P.; Singh, P.; Bansal, N.; Paul, M.; Dixit, H.; Porwal, S.; Mishra, S.; Singh, T. Recent progress in perovskite transition metal oxide-based photocatalyst and photoelectrode materials for solar-driven water splitting. J. Environ. Chem. Eng. 2022, 10, 108429. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects. J. Mater. Sci. Technol. 2022, 114, 143–164. [Google Scholar] [CrossRef]
- Hendi, A.; Alanazi, M.; Alharbi, W.; Ali, T.; Awad, M.; Ortashi, K.; Aldosari, H.; Alfaifi, F.; Qindeel, R.; Naz, G.; et al. Significance of ternary hybrid nanoparticles on the dynamics of nanofluids over a stretched surface subject to gravity modulation. J. King Saud. Univ. Sci. 2023, 35, 102555. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, A.A.; Martínez-Montemayor, S.; Leyva-Porras, C.C.; Longoria-Rodríguez, F.E.; Martínez-Guerra, E.; Sánchez-Domínguez, M. CoFe2O4-TiO2 Hybrid Nanomaterials: Synthesis Approaches Based on the Oil-in-Water Microemulsion Reaction Method. J. Nanomater. 2017, 2017, 2367856. [Google Scholar] [CrossRef]
- Yao, H.; Fan, M.; Wang, Y.; Luo, G.; Fei, W. Magnetic titanium dioxide based nanomaterials: Synthesis, characteristics, and photocatalytic application in pollutant degradation. J. Mater. Chem. A 2015, 3, 17511. [Google Scholar] [CrossRef]
- Cheng, C.; Saeed, R.; Lei, G.; Zitao, L.; Junfeng, D.; Asfandyar, S. Review of the sol–gel method in preparing nano TiO2 for advanced oxidation process. Nanotechnol. Rev. 2023, 12, 20230150. [Google Scholar] [CrossRef]
- Bokov, D.; Jalil, A.T.; Chupradit, S.; Suksatan, W.; Ansari, M.J.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 21, 5102014. [Google Scholar] [CrossRef]
- Hameed, H.G.; Abdulrahman, N.A. Synthesis of TiO2 Nanoparticles by Hydrothermal Method and Characterization of their Antibacterial Activity: Investigation of the Impact of Magnetism on the Photocatalytic Properties of the Nanoparticles. Phys. Chem. Res. 2023, 11, 771–782. [Google Scholar]
- Byun, D.; Jin, Y.; Kim, B.; Kee Lee, J.; Park, D. Photocatalytic TiO2 deposition by chemical vapor deposition. J. Hazard. Mater. 2000, 73, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Shi, M.; Liu, J.; Han, X.; Lan, Z.; Gu, H.; Wang, X.; Sun, H.; Zhang, Q.; Li, H.; et al. A novel approach to enhance the photocatalytic activity of g-C3N4 by constructing a Z-scheme heterojunction with Bi2WO6. J. Hazard. Mater. 2020, 394, 122540. [Google Scholar] [CrossRef]
- Ramli, Z.; Pasupuleti, J.; Tengku Saharuddin, T.; Yusoff, Y.; Roslam Wan Isahak, W.; Baharudin, L.; Yaw, C.; Koh, S.P.; Tiong Kiong, S. Electrocatalytic activities of platinum and palladium catalysts for enhancement of direct formic acid fuel cells: An updated progress. Alex. Eng. J. 2023, 76, 701–733. [Google Scholar] [CrossRef]
- Okatenko, V.; Loiudice, A.; Newton, M.; Stoian, D.; Blokhina, A.; Chen, A.; Rossi, K.; Buonsanti, R. Alloying as a strategy to boost the stability of copper nano-catalysts during the electrochemical CO2 reduction reaction. J. Am. Chem. Soc. 2023, 145, 5370–5383. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ou, L.; Mao, L.; Wu, X.; Liu, Y.; Lu, H. Advances in noble metal-decorated metal oxide nanomaterials for Chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Fontelles-carceller, O.; Muñoz-batista, M.J.; Rodríguez-castellón, E.; Conesa, J.C.; Fernández-garcía, M.; Kubacka, A. Measuring and interpreting quantum efficiency for hydrogen photo-production using Pt-titania catalysts. J. Catal. 2017, 347, 157–169. [Google Scholar] [CrossRef]
- Hayashido, Y.; Naya, S.; Tada, H. Local Electric Field-enhanced plasmonic photocatalyst: Formation of Ag cluster-incorporated AgBr nanoparticles on TiO2. J. Phys. Chem. C 2016, 120, 19663–19669. [Google Scholar] [CrossRef]
- Méndez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.; Colbeau-Justin, C.; Rodreguez-Lopez, J.L.; Remita, H. Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J. Phys. Chem. C 2016, 120, 5143–5154. [Google Scholar] [CrossRef]
- Dette, C.; Pérez-Osorio, M.; Kley, C.; Punke, P.; Patrick, C.; Jacobson, P.; Giustino, F.; Jung Jung, S.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Kweon, D.; Jae Jang, B.; Jong Ju, M.; Baek, J. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 2020, 4, 2000197. [Google Scholar]
- Yang, L.; Wang, F.; Shu, C.; Liu, P.; Zhang, W.; Hu, S. An in-situ synthesis of Ag/AgCl/TiO2/hierarchical porous magnesian material and its photocatalytic performance. Sci. Rep. 2016, 6, 21617. [Google Scholar] [CrossRef]
- Shah, Z.H.; Wang, J.; Ge, Y.; Wang, C.; Mao, W.; Zhang, S.; Lu, R. Highly enhanced plasmonic photocatalytic activity of Ag/Agcl/TiO2 by CuO co-catalyst. J. Mater. Chem. 2015, 3, 3568–3575. [Google Scholar] [CrossRef]
- Zhu, L.; Hong, M.; Ho, G.W. Hierarchical assembly of SnO2/ZnO nanostructures for enhanced photocatalytic performance. Sci. Rep. 2015, 5, 11609. [Google Scholar] [CrossRef]
- Yalçın, Y.; Kılıç, M.; Çınar, Z. Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Appl. Catal. B Environ. 2010, 99, 469–477. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Y.; Wang, W.; Wang, Y.; Gong, X.; Geng, C.; Tang, J. Self-healing nanocomposites with carbon nanotube/graphene/Fe3O4 nanoparticle tri-continuous networks for electromagnetic radiation shielding. ACS Appl. Nano Mater. 2022, 5, 16423–16439. [Google Scholar]
- Her, Y.; Yeh, B.; Huang, S. Vapor–solid growth of p Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 9150–9159. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.B.; Christopher, P.; Bauer, J.L.; Linic, S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 2011, 1, 1441–1447. [Google Scholar] [CrossRef]
- Sirivallop, A.; Areerob, T.; Chiarakorn, S. Enhanced visible light photocatalytic activity of N and Ag doped and Co-doped TiO2 synthesized by using an in-situ solvothermal method for gas phase ammonia removal. Catalysts 2020, 10, 251. [Google Scholar] [CrossRef]
- Kallel, W.; Chaabene, S.; Bouattour, S. Novel (Ag,Y) doped TiO2 plasmonic photocatalyst with enhanced photocatalytic activity under visible light. Physicochem. Probl. Miner. Process. 2019, 55, 745–759. [Google Scholar]
- Kabir Suhan, M.B.; Al-Mamun, M.R.; Farzana, N.; Munira Aishee, S.; Islam, M.S.; Marwani, H.; Hasan, M.M.; Asiri, A.M.; Rahman, M.M.; Islam, A.; et al. Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review. Nano-Struct. Nano-Objects 2023, 36, 101050. [Google Scholar] [CrossRef]
- Saliba, M.; Zhang, W.; Burlakov, V.M.; Stranks, S.D.; Sun, Y.; Ball, J.M.; Johnston, M.B.; Goriely, A.; Wiesner, U.; Snaith, H.J. Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 2015, 25, 5038–5046. [Google Scholar] [CrossRef]
- Ganeshraja, A.S.; Kiyoshi, G.; Wang, J. 119Sn Mossbauer studies on ferromagnetic and photocatalytic Sn–TiO2 nanocrystals. Hyperfine Interact. 2016, 237, 139. [Google Scholar] [CrossRef]
- Vázquez-Robaina, O.; Cabrera, A.F.; Cruz, A.F.; Torres, C.E.R. Observation of room-temperature ferromagnetism induced by high-pressure hydrogenation of Anatase TiO2. J. Phys. Chem. C 2021, 125, 14366–14377. [Google Scholar] [CrossRef]
- Sakar, M.; Mithun Prakash, R.; Do, T.-O. Insights into the TiO2-based photocatalytic systems and their mechanisms. Catalysts 2019, 9, 680. [Google Scholar] [CrossRef]
- Hu, P.; Hu, P.; Duc Vu, T.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium oxide: Phase diagrams, structures, synthesis, and applications. Chem. Rev. 2023, 123, 4353–4415. [Google Scholar] [CrossRef]
- Sundaram, A.G.; Maniarsu, S.; Vijendra, R.P.; Ganapathy, V.; Karthikeyan, V.; Nomura, K.; Wang, J. Hierarchical Sn and AgCl co-doped TiO2 microspheres as electron transport layer for enhanced perovskite solar cell performance. Catal. Today 2020, 355, 333–339. [Google Scholar] [CrossRef]
- Birajdar, S.D.; Saraf, A.; Maharolkar, A.P.; Gattu, K.P.; Patil, N.G.; Chavan, R.B.; Jamkar, M.V.; Mundhe, Y.S.; Kambale, R.N.; Alange, R.C.; et al. Intrinsic defect-induced magnetism and enhanced photocatalytic activity in Zn1−xZrxO (0.0 ≤ x ≤ 0.07) nanoparticles for spintronic device and photocatalytic application. J. Alloys Compd. 2022, 929, 167272. [Google Scholar] [CrossRef]
- Pascariu, P.; Gherasim, C.; Airinei, A. Metal oxide nanostructures (MONs) as photocatalysts for ciprofloxacin degradation. Int. J. Mol. Sci. 2023, 24, 9564. [Google Scholar] [CrossRef] [PubMed]
- Lizeth Katherine, T.N.; Vendula, B.; Jaroslav, K.; Jaroslav, C. Structure and photocatalytic properties of Ni-, Co-, Cu-, and Fe-doped TiO2 Aerogels. Gels 2023, 9, 357. [Google Scholar] [CrossRef]
- Liton, M.N.H.; Roknuzzaman, M.; Helal, M.A.; Kamruzzaman, M.; Islam, A.K.M.F.U.; Ostrikov, K.; Khan, M.K.R. Electronic, mechanical, optical and photocatalytic properties of perovskite RbSr2Nb3O10 compound. J. Alloys Compd. 2021, 867, 159077. [Google Scholar] [CrossRef]
- Huang, M.; Lian, J.; Si, R.; Wang, L.; Pan, X.; Liu, P. Spatial separation of electrons and holes among ZnO polar {0001} and {1010} facets for enhanced photocatalytic performance. ACS Omega 2022, 7, 26844–26852. [Google Scholar] [CrossRef]
- Feng, H.; Du, Y.; Wang, C.; Hao, W. Efficient visible-light photocatalysts by constructing dispersive energy band with anisotropic p and s-p hybridization states. Curr. Opin. Green. Sustain. Chem. 2017, 6, 93–100. [Google Scholar] [CrossRef]
- Raizada, P.; Soni, V.; Kumar, A.; Singh, P.; Parwaz Khan, A.; Asiri, A.M.; Thakur, V.; Nguyen, V. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J. Mater. 2021, 7, 388–418. [Google Scholar] [CrossRef]
- Sun, S.; Yu, X.; Yang, Q.; Yang, Z.; Liang, S. Mesocrystals for photocatalysis: A comprehensive review on synthesis engineering and functional modifications. Nanoscale Adv. 2019, 1, 34–63. [Google Scholar] [CrossRef]
- Siriwong, C.; Wetchakun, N.; Inceesungvorn, B.; Channei, D.; Samerjai, T.; Phanichphant, S. Doped-metal oxide nanoparticles for use as photocatalysts. Prog. Cryst. Growth Charact. Mater. 2012, 58, 145–163. [Google Scholar] [CrossRef]
- Sultana, S.; Mansingh, S.; Parida, K.M. Crystal facet and surface defect engineered low dimensional CeO2 (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Mater. Adv. 2021, 2, 6942–6983. [Google Scholar] [CrossRef]
- Davidson, A.; Amin, V.; Aljuaid, W.; Haney, P.; Fan, X. Perspectives of electrically generated spin currents in ferromagnetic materials. Phys. Lett. A 2020, 384, 126228. [Google Scholar] [CrossRef]
- Hoffmann, A. Spin transport modified by magnetic order. J. Magn. Magn. Mater 2022, 563, 169896. [Google Scholar] [CrossRef]
- Cervera-Gabalda, L.; Zielińska-Jurek, A.; Gómez-Polo, C. Tuning the photocatalytic performance through magnetization in Co-Zn ferrite nanoparticles. J. Magn. Magn. Mater 2022, 560, 169617. [Google Scholar] [CrossRef]
- Ghozza, M.H.; Yahia, I.S.; Hussien, M.S.A. Structure, magnetic, and photocatalysis of La0.7Sr0.3MO3 (M = Mn, Co, and Fe) perovskite nanoparticles: Novel photocatalytic materials. Environ. Sci. Pollut. Res. Int. 2023, 30, 61106–61122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gong, W.; Wang, J.; Ning, X.; Wang, Z.; Zhao, X.; Ren, X.; Zhang, Z. Size-dependent magnetic, photo-absorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals. J. Phys. Chem. C 2011, 115, 25241–25246. [Google Scholar] [CrossRef]
- Lv, S.; Du, Y.; Wu, F.; Cai, Y.; Zhou, T. Review on LSPR assisted photocatalysis: Effects of physical fields and opportunities in multifield decoupling. Nanoscale Adv. 2022, 28, 2608–2631. [Google Scholar] [CrossRef]
- Duan, K.; Que, T.; Koppala, S.; Balan, R.; Lokesh, B.; Pillai, R.; David, S.; Karthikeyan, P.; Ramamoorthy, S.; Lekshmi, I.C.; et al. A facile route to synthesize n-SnO2/p-CuFe2O4 to rapidly degrade toxic methylene blue dye under natural sunlight. RSC Adv. 2022, 12, 16544–16553. [Google Scholar] [CrossRef]
- Stiadi, Y.; Wendari, T.P. Tuning the structural, magnetic, and optical properties of ZnO/NiFe2O4 heterojunction photocatalyst for simultaneous photodegradation of Rhodamine B and Methylene Blue under natural sunlight. Environ. Eng. Res. 2023, 28, 220074. [Google Scholar] [CrossRef]
- Hezam, F.A.; Nur, O.; Mustafa, M.A. Synthesis, structural, optical and magnetic properties of NiFe2O4/MWCNTs/ZnO hybrid nanocomposite for solar radiation driven photocatalytic degradation and magnetic separation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124586. [Google Scholar] [CrossRef]
- Supin, K.K.; George, A.; Kumar, Y.R.; Thejas, K.K.; Mandal, G.; Chanda, A.; Vasundhara, M. Structural, optical and magnetic properties of pure and 3d metal dopant-incorporated SnO2 nanoparticles. RSC Adv. 2022, 12, 26712–26726. [Google Scholar]
- Schmidbauer, E.; Keller, M. Magnetic properties and rotational hysteresis of Fe3O4 and γ-Fe2O3 particles ∼ 250 nm in diameter. J. Magn. Magn. Mater. 2006, 297, 107–117. [Google Scholar] [CrossRef]
- Li, X.; Zhu, K.; Pang, J.; Tian, M.; Liu, J.; Rykov, A.; Zheng, M.; Wang, X.; Zhu, X.; Huang, Y.; et al. Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Appl. Catal. B 2018, 224, 518–532. [Google Scholar] [CrossRef]
- Gütlich, P. Fifty Years of Mössbauer spectroscopy in solid state research—Remarkable achievements, future perspectives. J. Inorg. Chem. Gen. Chem. 2012, 638, 15–43. [Google Scholar] [CrossRef]
- Moon, S.; Shim, I.; Kim, C. Crystallographic and magnetic properties of KFeO. IEEE Trans. Magn. 2006, 42, 2879–2881. [Google Scholar] [CrossRef]
- Locovei, C.; Radu, C.; Kuncser, A.; Iacob, N.; Schinteie, G.; Stanciu, A.; Iftimie, S.; Kuncser, V. Relationship between the formation of magnetic clusters and hexagonal phase of gold matrix in AuxFe1−x nanophase thin films. Nanomaterials 2022, 12, 1176. [Google Scholar] [CrossRef]
- Balamurugan, K.; Harish Kumar, N.; Arout Chelvane, J.; Santhosh, P.N. Room temperature ferromagnetism in Fe-doped BaSnO3. J. Alloys Compd. 2009, 472, 9–12. [Google Scholar] [CrossRef]
- Melchionna, M.; Fornasiero, P. Updates on the roadmap for photocatalysis. ACS Catal. 2020, 10, 5493–5501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundaram, G.A.; Muniyandi, G.r.; Ethiraj, J.; Parimelazhagan, V.; Kumar, A.S.K. Introduction and Advancements in Room-Temperature Ferromagnetic Metal Oxide Semiconductors for Enhanced Photocatalytic Performance. ChemEngineering 2024, 8, 36. https://doi.org/10.3390/chemengineering8020036
Sundaram GA, Muniyandi Gr, Ethiraj J, Parimelazhagan V, Kumar ASK. Introduction and Advancements in Room-Temperature Ferromagnetic Metal Oxide Semiconductors for Enhanced Photocatalytic Performance. ChemEngineering. 2024; 8(2):36. https://doi.org/10.3390/chemengineering8020036
Chicago/Turabian StyleSundaram, Ganeshraja Ayyakannu, Govinda raj Muniyandi, Jayashree Ethiraj, Vairavel Parimelazhagan, and Alagarsamy Santhana Krishna Kumar. 2024. "Introduction and Advancements in Room-Temperature Ferromagnetic Metal Oxide Semiconductors for Enhanced Photocatalytic Performance" ChemEngineering 8, no. 2: 36. https://doi.org/10.3390/chemengineering8020036
APA StyleSundaram, G. A., Muniyandi, G. r., Ethiraj, J., Parimelazhagan, V., & Kumar, A. S. K. (2024). Introduction and Advancements in Room-Temperature Ferromagnetic Metal Oxide Semiconductors for Enhanced Photocatalytic Performance. ChemEngineering, 8(2), 36. https://doi.org/10.3390/chemengineering8020036