Profile of the Effectiveness Factor under Optimal Operating Conditions for the Conversion of Ortho-Xylene to Phthalic Anhydride in a Fixed-Bed Tubular Reactor
Abstract
:1. Introduction
2. Reactor Operation
2.1. Reactor Model
2.2. Reactor Simulation
3. Analysis by Design of Experiments
3.1. Factorial Design
3.2. Response Surface Methodology
- Tw = 630.8 K
- Radius = 0.011 m
- Pressure =1.65 atm
- Flow = 4684 kg/m2h
- Tin = 625.15 K
4. Studies on the Catalyst Particle
4.1. Modeling of the Processes
4.2. Simulation for Calculating the Effectiveness Factor in Each Particle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
: | Biot number on the reactor wall (dimensionless) |
: | Molar concentration of the component j (kmol m−3) |
: | Concentration of ortho-xylene (kmol m−3) |
: | Concentration of phthalic anhydride (kmol m−3) |
: | Concentration of reaction by-products (kmol m−3) |
: | Specific heat of gas (kJ kg−1 K−1) |
: | Radial effective diffusion coefficient of the gas mixture in the particle (m2 s−1) |
: | Radial effective diffusion coefficient of the gas mixture in the reactor (m2 s−1) |
: | Parameter of the Arrhenius equation (dimensionless) |
: | Particle diameter (m) |
: | Reactor diameter (m) |
: | Heat generation rate (kJ m−3 s−1) |
: | Mass flow rate (kg m−2 s−1) |
: | Convective heat transfer coefficient (kJ m−2 s−1 K−1) |
: | Effective thermal conductivity in the catalytic particle (kJ m−2 s−1 K−1) |
: | Effective radial conductivity in the catalytic bed (kJ m−1 s−1 K−1) |
: | Thermal conductivity in the tube wall (kJ m−1 s−1 K−1) |
: | Reactor length (m) |
: | Molar flux density based on stationary component coordinates j (kmol m−2 s−1) |
: | Maximum number of subdivisions in the reactor or maximum number of subdivisions in the particle |
: | Number of reactions |
: | Partial pressure of each component j (atm) |
: | Partial pressure of oxygen (atm) |
: | Radial mass transfer Peclet number |
: | Radial heat transfer Peclet number |
: | Radial heat flux density (kJ m−2 s−1) |
: | Universal gas constant (0.082 L atm mol−1 K−1) |
: | Reactor radius or particle radius (m) |
: | Radial coordinate (m) |
: | Reaction velocity per unit volume of catalyst (kmol m−3 cat s−1) |
: | Reaction velocity per unit weight of catalyst (kmol kg−1 cat s−1) |
: | Time (s) |
: | Temperature (K) |
: | Temperature at each placement point (K) |
: | Reactor wall temperature (K) |
: | Gas superficial velocity (m s−1) |
: | Arrhenius equation parameter (K) |
: | Axial coordinate |
: | Reaction enthalpy of i-reaction (kJ kmol−1) |
Greek Letters | |
: | Bed porosity |
: | Particle porosity |
: | Effectiveness factor |
: | Gradient vector (1/m) |
: | Catalyst bed density (kg m−3) |
: | Density of the gas mixture (kg m−3) |
: | Auxiliary variable |
: | Stoichiometric coefficient of component j in reaction i |
Subscripts | |
: | Effective |
: | Number of reactions: i = 1, 2, 3 |
: | Inlet |
: | Component: A, B and C |
: | Number of subdivisions in the reactor or particle: 1, 2, 3, … Np |
: | Catalyst Surface |
: | Wall |
References
- Cinar, A. Design of a Control Scheme for a Catalytic Fixed-Bed Reactor. In Computer Aided Design of Multivariable Technological Systems; Elsevier Ltd.: Amsterdam, The Netherlands, 1983; pp. 303–311. [Google Scholar] [CrossRef]
- Pellegrini, L.; Biardi, G.; Ranzi, E. Dynamic Model of Packed-Bed Tubular Reactors. Comput. Chem. Eng. 1989, 13, 511–518. [Google Scholar] [CrossRef]
- Andrigo, P.; Bagatin, R.; Pagani, G. Fixed Bed Reactors. Catal. Today 1999, 52, 197–221. [Google Scholar] [CrossRef]
- Anastasov, A.; Elenkov, D.; Nikolov, V. A Model Study of a Conventional Fixed Bed Tubular Reactor with a Catalyst Layer on the inside Tube Wall. Chem. Eng. Process. Process Intensif. 1988, 23, 203–211. [Google Scholar] [CrossRef]
- Giarola, S.; Romain, C.; Williams, C.K.; Hallett, J.P.; Shah, N. Techno-Economic Assessment of the Production of Phthalic Anhydride from Corn Stover. Chem. Eng. Res. Des. 2016, 107, 181–194. [Google Scholar] [CrossRef]
- Gütlhuber, F. Reactor for Catalytic Gas-Phase Reactions, Especially Manufacture of Phthalic Acid Anhydride. WO2003022418, 26 August 2002. [Google Scholar]
- Takada, M.; Uhara, H.; Sato, T. Method and Reactor for Vapor Phase Oxidation. DE2830765, 13 July 1978. [Google Scholar]
- Marx, R. Kinetics of the Selective Oxidation of O-Xylene to Phthalic Anhydride. Ph.D. Thesis, Clausthal University of Technology, Dernbach, Germany, 2012. [Google Scholar]
- Ivanovskaya, F.A.; Sembayev, D.K. Routes of Catalytic Oxidation of O-Xylene to Phthalic Anhydride. React. Kinet. Catal. Lett. 1991, 45, 107–110. [Google Scholar] [CrossRef]
- Chandrasekharan, K.; Calderbank, P.H. Kinetics of the Catalytic Air-Oxidation of o-Xylene Measured in a Tube-Wall-Catalytic Reactor. Chem. Eng. Sci. 1980, 35, 1523–1535. [Google Scholar] [CrossRef]
- Gimeno, M.P.; Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. Selective Oxidation of O-Xylene to Phthalic Anhydride over V2O5/TiO2: Kinetic Study in a Fluidized Bed Reactor. Chem. Eng. Process. Process Intensif. 2008, 47, 1844–1852. [Google Scholar] [CrossRef]
- Nikolov, V.A.; Anastasov, A.I. Influence of the Inlet Temperature on the Performance of a Fixed-Bed Reactor for Oxidation of o-Xylene into Phthalic Anhydride. Chem. Eng. Sci. 1992, 47, 1291–1298. [Google Scholar] [CrossRef]
- Papageorgiou, J.N.; Abello, M.C.; Froment, G.F. Kinetic Modeling of the Catalytic Oxidation of O- Xylene over an Industrial V2O5-TiO2 (Anatase) Catalyst. Appl. Catal. A Gen. 1994, 120, 17–43. [Google Scholar] [CrossRef]
- Anastasov, A.I. Deactivation of an Industrial V2O5–TiO2 Catalyst for Oxidation of o-Xylene into Phthalic Anhydride. Chem. Eng. Process. Process Intensif. 2003, 42, 449–460. [Google Scholar] [CrossRef]
- Castillo-Araiza, C.O.; López-Isunza, F. Modeling the Partial Oxidation of O-Xylene in an Industrial Packed-Bed Catalytic Reactor: The Role of Hydrodynamics and Catalyst Activity in the Heat Transport. Ind. Eng. Chem. Res. 2010, 49, 6845–6853. [Google Scholar] [CrossRef]
- Castillo-Araiza, C.O.; López-Isunza, F. The Role of Catalyst Activity on the Steady State and Transient Behavior of an Industrial-Scale Fixed Bed Catalytic Reactor for the Partial Oxidation of o-Xylene on V2O5/TiO2 Catalysts. Chem. Eng. J. 2011, 176, 26–32. [Google Scholar] [CrossRef]
- Sethapokin, P.; Kunatippapong, S.; Lothongkum, A.W. Estimation of Kinetic Parameters for the Reactor Model of the Phthalic Anhydride Production by the Design of Experiments. J. Ind. Eng. Chem. 2015, 24, 51–58. [Google Scholar] [CrossRef]
- Wu, Z.; Tran, A.; Ren, Y.M.; Barnes, C.S.; Chen, S.; Christofides, P.D. Model Predictive Control of Phthalic Anhydride Synthesis in a Fixed-Bed Catalytic Reactor via Machine Learning Modeling. Chem. Eng. Res. Des. 2019, 145, 173–183. [Google Scholar] [CrossRef]
- Dixon, A.G.; Wu, Y. Partial Oxidation of O-Xylene to Phthalic Anhydride in a Fixed Bed Reactor with Axial Thermowells. Chem. Eng. Res. Des. 2020, 159, 125–137. [Google Scholar] [CrossRef]
- Safavi, A.; Richter, C.; Unnthorsson, R. Mathematical Modeling and Experiments on Pyrolysis of Walnut Shells Using a Fixed-Bed Reactor. ChemEngineering 2022, 6, 93. [Google Scholar] [CrossRef]
- Carrasco-Venegas, L.A.; González-Fernández, J.V.; Castañeda-Pérez, L.G.; Medina-Collana, J.T.; Palomino-Hernández, G.; Martínez-Hilario, D.G.; Trujillo-Pérez, S.A. Analysis of the Effectiveness Factor in a Fixed-Bed Tubular Reactor System: Catalytic Dehydrogenation of Cyclohexanol. Catalysts 2023, 13, 585. [Google Scholar] [CrossRef]
- Herten, J.; Froment, G.F. Kinetics and Product Distribution in the Oxidation of O-Xylene on a Vanadium Pentoxide Catalyst. Ind. Eng. Chem. Process Des. Dev. 1968, 7, 516–526. [Google Scholar] [CrossRef]
- Wainwright, M.S.; Foster, N.R. Catalysts, Kinetics and Reactor Design in Phthalic Anhydride Synthesis. Catal. Rev. Sci. Eng. 1979, 19, 211–292. [Google Scholar] [CrossRef]
- Saleh, R.Y.; Wachs, I.E. Reaction Network and Kinetics of O-Xylene Oxidation to Phthalic Anhydride over V2O5/TiO2 (Anatase) Catalysts. Appl. Catal. 1987, 31, 87–98. [Google Scholar] [CrossRef]
- Nikolov, V.; Anastasov, A.; Klissurski, D. Phthalic Anhydride from O-Xylene Catalysis: Science and Engineering. Catal. Rev. 1991, 33, 319–374. [Google Scholar] [CrossRef]
- Ivanov, A.A. O-Xylene Oxidation to Phthalic Anhydride over Unsteady State Catalysts. React. Kinet. Catal. Lett. 1997, 61, 75–82. [Google Scholar] [CrossRef]
- García-Ochoa, F.; Borrachero, C.; Molina, G.; Romero, A. Simulación de Reactores de Lecho Fijo Por El Modelo de Dos Dimensiones: I-Reacciones Simples. An. De Química 1991, 88, 180–190. [Google Scholar]
- Froment, G.F.; Kenneth, B.B.; De Wilde, J. Chemical Reactor, Analysis and Design, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
Reactor | * * | Catalytic Bed | * * |
---|---|---|---|
Feed composition | O-xylene * of dry air | Total pressure of feed gases | P = 1 atm * |
Inlet temperature of reaction gases to the reactor | * | Inner reactor wall temperature | * |
Flow properties and gas phase | * * * | Dimensionless numbers | * * * |
Catalyst | ** | Catalyst particle properties | * ** |
Factor | Name | Level Values | ||
---|---|---|---|---|
1 | 2 | 3 | ||
A | Reactor wall temperature | 600.15 | 625.15 | 645.15 |
B | Radius of the reactor | 0.0105 | 0.0125 | 0.0145 |
C | Pressure | 1 | 1.5 | 2 |
D | Feed Mass Flow | 4484 | 4684 | 4884 |
E | Reactor inlet temperature | 600.15 | 625.15 | 645.15 |
Run | Factors | Response Variable | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | CB | |
1 | 600.15 | 0.0105 | 1 | 4484 | 600.15 | 0.00000626 |
2 | 600.15 | 0.0105 | 1 | 4484 | 625.15 | 0.00000626 |
3 | 600.15 | 0.0105 | 1 | 4484 | 645.14 | 0.00000626 |
4 | 600.15 | 0.0105 | 1 | 4684 | 600.15 | 0.00000634 |
… | … | … | … | … | … | … |
243 | 645.15 | 0.0145 | 2 | 4884 | 645.15 | 0.00000634 |
Source | Degrees of Freedom | F-Value | p-Value |
---|---|---|---|
Model | 50 | 128.60 | 0.000 |
Linear | 10 | 307.43 | 0.000 |
Tw | 2 | 1443.62 | 0.000 |
Radius | 2 | 40.39 | 0.000 |
Pressure | 2 | 53.05 | 0.000 |
Flow | 2 | 0.09 | 0.917 |
Tin | 2 | 0.00 | 1.000 |
2-term interactions | 40 | 83.89 | 0.000 |
Tw × Radius | 4 | 151.06 | 0.000 |
Tw × Pressure | 4 | 638.80 | 0.000 |
Tw × Flow | 4 | 9.20 | 0.000 |
Tw × Tinlet | 4 | 0.00 | 1.000 |
Radius × Pressure | 4 | 37.46 | 0.000 |
Radius × Flow | 4 | 0.57 | 0.685 |
Radius × Tin | 4 | 0.00 | 1.000 |
Pressure × Flow | 4 | 1.82 | 0.127 |
Pressure × Tin | 4 | 0.00 | 1.000 |
Flow × Tin | 4 | 0.00 | 1.000 |
Error | 192 | ||
Total | 242 |
Tw (K) | Radius (m) | Pressure (atm) | Flow (kg m−2 h−1) | Tin (K) |
---|---|---|---|---|
625.15 | 0.0125 | 1.5 | 4684 | 625.15 |
step size | ||||
2.5 | −0.0005 | 0.05 | 0 | 0 |
Steps | Factors | ||||
---|---|---|---|---|---|
Tw (K) | Radius (m) | Pressure (atm) | Flow (kg m−2 h−1) | Tin (K) | |
−5 | 612.65 | 0.015 | 1.25 | 4684 | 625.15 |
−4 | 615.15 | 0.0145 | 1.3 | 4684 | 625.15 |
−3 | 617.65 | 0.014 | 1.35 | 4684 | 625.15 |
−2 | 620.15 | 0.0135 | 1.4 | 4684 | 625.15 |
−1 | 622.65 | 0.013 | 1.45 | 4684 | 625.15 |
0 | 625.15 | 0.0125 | 1.5 | 4684 | 625.15 |
1 | 627.65 | 0.012 | 1.55 | 4684 | 625.15 |
2 | 630.15 | 0.0115 | 1.6 | 4684 | 625.15 |
3 | 632.65 | 0.011 | 1.65 | 4684 | 625.15 |
4 | 635.15 | 0.0105 | 1.7 | 4684 | 625.15 |
5 | 637.65 | 0.01 | 1.75 | 4684 | 625.15 |
Runs | Factors | Response | ||
---|---|---|---|---|
Tw (K) | Radius (m) | Pressure (atm) | CB (kmol/m3) | |
1 | 627.65 | 0.0110 | 1.60 | 0.00013941 |
2 | 632.65 | 0.0110 | 1.60 | 0.00014052 |
3 | 627.65 | 0.0120 | 1.60 | 0.00014022 |
4 | 632.65 | 0.0120 | 1.60 | 0.00013987 |
5 | 627.65 | 0.0115 | 1.55 | 0.00013928 |
6 | 632.65 | 0.0115 | 1.55 | 0.00014035 |
7 | 627.65 | 0.0115 | 1.65 | 0.00014033 |
8 | 632.65 | 0.0115 | 1.65 | 0.00014008 |
9 | 630.15 | 0.0110 | 1.55 | 0.00013997 |
10 | 630.15 | 0.0120 | 1.55 | 0.00014037 |
11 | 630.15 | 0.0110 | 1.65 | 0.00014063 |
12 | 630.15 | 0.0120 | 1.65 | 0.00014032 |
13 | 630.15 | 0.0115 | 1.60 | 0.00014050 |
14 | 630.15 | 0.0115 | 1.60 | 0.00014050 |
15 | 630.15 | 0.0115 | 1.60 | 0.00014050 |
Source | DF | F-Value | p-Value |
---|---|---|---|
Model | 9 | 242.47 | 0.000 |
Linear | 3 | 177.10 | 0.000 |
Tw | 1 | 294.62 | 0.000 |
Radius | 1 | 7.16 | 0.044 |
Pressure | 1 | 229.52 | 0.000 |
Square | 3 | 203.46 | 0.000 |
Tw × Tw | 1 | 587.52 | 0.000 |
Radius * Radius | 1 | 28.96 | 0.003 |
Pressure * Pressure | 1 | 28.37 | 0.003 |
Interaction of 2 factors | 3 | 346.86 | 0.000 |
Tw × Radius | 1 | 504.75 | 0.000 |
Tw × Pressure | 1 | 414.69 | 0.000 |
Radius × Pressure | 1 | 121.13 | 0.000 |
Error | 5 | ||
Lack of fit | 3 | * | * |
Pure mistake | 2 | ||
Total | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco-Venegas, L.A.; Vásquez-Alvarez, E.; González-Fernández, J.V.; Castañeda-Pérez, L.G.; Medina-Collana, J.T.; Palomino-Hernández, G.; Martínez-Hilario, D.G.; Trujillo-Pérez, S.A. Profile of the Effectiveness Factor under Optimal Operating Conditions for the Conversion of Ortho-Xylene to Phthalic Anhydride in a Fixed-Bed Tubular Reactor. ChemEngineering 2024, 8, 35. https://doi.org/10.3390/chemengineering8020035
Carrasco-Venegas LA, Vásquez-Alvarez E, González-Fernández JV, Castañeda-Pérez LG, Medina-Collana JT, Palomino-Hernández G, Martínez-Hilario DG, Trujillo-Pérez SA. Profile of the Effectiveness Factor under Optimal Operating Conditions for the Conversion of Ortho-Xylene to Phthalic Anhydride in a Fixed-Bed Tubular Reactor. ChemEngineering. 2024; 8(2):35. https://doi.org/10.3390/chemengineering8020035
Chicago/Turabian StyleCarrasco-Venegas, Luis Américo, Elsa Vásquez-Alvarez, José Vulfrano González-Fernández, Luz Genara Castañeda-Pérez, Juan Taumaturgo Medina-Collana, Guido Palomino-Hernández, Daril Giovanni Martínez-Hilario, and Salvador Apolinar Trujillo-Pérez. 2024. "Profile of the Effectiveness Factor under Optimal Operating Conditions for the Conversion of Ortho-Xylene to Phthalic Anhydride in a Fixed-Bed Tubular Reactor" ChemEngineering 8, no. 2: 35. https://doi.org/10.3390/chemengineering8020035
APA StyleCarrasco-Venegas, L. A., Vásquez-Alvarez, E., González-Fernández, J. V., Castañeda-Pérez, L. G., Medina-Collana, J. T., Palomino-Hernández, G., Martínez-Hilario, D. G., & Trujillo-Pérez, S. A. (2024). Profile of the Effectiveness Factor under Optimal Operating Conditions for the Conversion of Ortho-Xylene to Phthalic Anhydride in a Fixed-Bed Tubular Reactor. ChemEngineering, 8(2), 35. https://doi.org/10.3390/chemengineering8020035