Chemical Composition of Different Extracts from Echinacea purpurea (L.) Moench Roots and Evaluation of Their Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fractional Extraction of Purple Coneflower Roots
2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.4. Nutritional Indexes Calculation
2.5. Determination of Antimicrobial Activity of Extracts
2.5.1. Test Microorganisms
2.5.2. Culture Media
2.5.3. Antimicrobial Activity Assay
2.6. Isolation of Polysaccharide from Purple Coneflower Roots
2.7. High-Performance Liquid Chromatography Analysis of Polysaccharide
2.8. Spectroscopic Characterization of Polysaccharide
2.9. Molecular Weight Distribution Analysis
2.10. Melting Point and Functional Characterization of Isolated Polysaccharide
2.10.1. Color
2.10.2. Swelling Properties, Water- and Oil-Holding Capacity
2.10.3. Angle of Repose
2.10.4. True, Bulk, Tapped Densities, and Flowability
2.10.5. Wettability
2.11. Statistical Analysis
3. Results
3.1. Characterization of Echinacea Root Extracts
3.1.1. Healthy Indices of Extracts
3.1.2. Antimicrobial Activity of Extracts
3.2. Physicochemical Characteristics of Polysaccharide
3.3. Molecular Weight Distribution Analysis of Polysaccharide
3.4. FT-IR and NMR Spectroscopic Analyses of Polysaccharide
3.5. Functional Properties of Polysaccharides
4. Discussion
4.1. Characterization of Echinacea Root Extracts
4.2. Characterization of Echinacea Root Polysaccharides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlou-Nagy, C.; Banica, F.; Jurca, T.; Vicas, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and pharmacological properties. A review. Plants 2022, 11, 1244. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Heydari, M.; Carbone, K.; Gervasi, F.; Parandi, E.; Rouhi, M.; Rostami, O.; Abedi-Firoozjah, R.; Kolahdouz-Nasiri, A.; Garavand, F.; Mohammadi, R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023, 12, 3181. [Google Scholar] [CrossRef] [PubMed]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and challenges in green extraction techniques for Indonesian natural products: A review. S. Afr. J. Chem. Eng. 2023, 46, 88–98. [Google Scholar] [CrossRef]
- Murray, M.T. 75—Echinacea Species (Narrow-Leafed Purple Coneflower). In Textbook of Natural Medicine, 5th ed.; Pizzorno, J., Murray, M., Eds.; Elsevier: St. Louis, MO, USA, 2020; Volume 1, pp. 566–573.e2. [Google Scholar]
- Bauer, R. Chemistry, analysis and immunological investigations of Echinacea phytopharmaceuticals. In Immunomodulatory Agents from Plants, 1st ed.; Wagner, H., Ed.; Birkhäuser: Basel, Switzerland, 1999; pp. 41–88. [Google Scholar]
- Hall, C., 3rd. Echinacea as a functional food ingredient. Adv. Food Nutr. Res. 2003, 47, 113–173. [Google Scholar]
- Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63–72. [Google Scholar]
- Petkova, N.; Denev, P. Chemical structure and functional properties of fructan isolated from Echinacea purpurea roots by microwave-assisted extraction. In Proceedings of the 14th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 7–9 November 2018. [Google Scholar]
- Wack, M.; Blaschek, W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots. Carbohydr. Res. 2006, 341, 1147–1153. [Google Scholar] [CrossRef]
- Dobrange, E.; Peshev, D.; Loedolff, B.; Van den Ende, W. Fructans as immunomodulatory and antiviral agents: The case of Echinacea. Biomolecules 2019, 9, 615. [Google Scholar] [CrossRef]
- Petkova, N.; Ivanov, I.; Mihaylova, D.; Lante, A. Effect of pressure liquid extraction and ultrasonic irradiation frequency on inulin, phenolic content and antioxidant activity in burdock (Arctium lappa L.) roots. Acta Sci. Pol.-Hortorum Cultus. 2020, 19, 125–133. [Google Scholar] [CrossRef]
- Ivanov, I.; Dincheva, I.; Badjakov, I.; Petkova, N.; Denev, P.; Pavlov, A. GC-MS analysis of unpolar fraction from Ficus carica L. (fig) leaves. Int. Food Res. J. 2018, 25, 282–286. [Google Scholar]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Tumbarski, Y.; Deseva, I.; Mihaylova, D.; Stoyanova, M.; Krastev, L.; Nikolova, R.; Yanakieva, V.; Ivanov, I. Isolation, characterization and amino acid composition of a bacteriocin produced by Bacillus methylotrophicus strain BM47. Food Technol. Biotechnol. 2018, 56, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Petkova, N.; Vrancheva, R.; Denev, P.; Ivanov, I.; Pavlov, A. HPLC-RID method for determination of inulin and fructooligosacharides. ASN 2014, 1, 99–107. [Google Scholar]
- Barclay, T.; Ginic-Markovic, M.; Johnston, M.; Cooper, P.; Petrovsky, N. Analysis of the hydrolysis of inulin using real-time 1H NMR spectroscopy. Carbohydr. Res. 2012, 352, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Robertson, F.; de Monredon, D.; Dysseler, P.; Guillon, F.; Amado, R.; Thibault, J.-F. Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Sharma, A.; Bhushette, P.R.; Annapure, U.S. Purification and physicochemical characterization of Prunus domestica exudate gum polysaccharide. Carbohydr. Polym. Technol. Appl. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Jinapong, N.; Suphantharika, M.; Jamnong, P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng. 2008, 84, 194–205. [Google Scholar] [CrossRef]
- Sun, K.; Thumthanaruk, B.; Lekhavat, S.; Jumnongpon, R. Effect of spray drying conditions on physical characteristics of coconut sugar powder. Int. Food Res. J. 2016, 23, 1315–1319. [Google Scholar]
- Petrova, A.; Ognyanov, M.; Petkova, N.; Denev, P. Phytochemical characterization of purple coneflower roots (Echinacea purpurea (L.) Moench.) and their extracts. Molecules 2023, 28, 3956. [Google Scholar] [CrossRef]
- Cozzolino, R.; Malvagna, P.; Spina, E.; Giori, A.; Fuzzati, N.; Anelli, A.; Garozzo, D.; Impallomeni, G. Structural analysis of the polysaccharides from Echinacea angustifolia radix. Carbohydr. Polym. 2006, 65, 263–272. [Google Scholar] [CrossRef]
- Yang, G.; Li, K.; Liu, C.; Peng, P.; Bai, M.; Sun, J.; Li, Q.; Yang, Z.; Yang, Y.; Wu, H. A comparison of the immunostimulatory effects of polysaccharides from tetraploid and diploid Echinacea purpurea. BioMed. Res. Int. 2018, 2018, 8628531. [Google Scholar] [CrossRef] [PubMed]
- Grube, M.; Bekers, M.; Upite, D.; Kaminska, E. Infrared spectra of some fructans. Spectroscopy 2002, 16, 289–296. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M.; Rokhin, A.V. Glucofructans from Saussurea lappa roots. Chem. Nat. Compd. 2011, 47, 339–342. [Google Scholar] [CrossRef]
- Tipson, R.S. Infrared Spectroscopy of Carbohydrates. A Review of the Literature; National Bureau of Standards: Washington, DC, USA, 1968; p. 11.
- Caleffi, E.R.; Krausová, G.; Hyršlová, I.; Paredes, L.L.; dos Santos, M.M.; Sassaki, G.L.; Gonçalves, R.A.; de Oliveira, A.J. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots. Int. J. Biol. Macromol. 2015, 80, 392–399. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, L.; Li, Y.; Cui, Y.; Jiang, S.; Tao, N.; Chen, H.; Zhao, Z.; Xu, J.; Dong, C. A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota. Carbohydr. Polym. 2020, 247, 116761. [Google Scholar] [CrossRef]
- Vandyshev, V.V.; Babaeva, E.Y.; Drozdovskaya, D.D. Triacylglycerols of the lipid fraction from fruits of two Echinacea species. Pharm. Chem. J. 2009, 43, 154–156. [Google Scholar] [CrossRef]
- Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J.; Calhelha, R.C.; Santos, P.F.; Ferreira, I.C.F.R. Echinacea purpurea (L.) Moench: Chemical characterization and bioactivity of its extracts and fractions. Pharmaceuticals 2020, 13, 125. [Google Scholar] [CrossRef]
- Tilami, S.K.; Kouřimská, L. Assessment of the nutritional quality of plant lipids using atherogenicity and thrombogenicity indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef]
- Stanisavljević, I.; Stojičević, S.; Veličković, D.; Veljković, V.; Lazić, M. Antioxidant and antimicrobial activities of Echinacea (Echinacea purpurea L.) extracts obtained by classical and ultrasound extraction. Chin. J. Chem. Eng. 2009, 17, 478–483. [Google Scholar] [CrossRef]
- Binns, S.E.; Purgina, B.; Bergeron, C.; Smith, M.L.; Ball, L.; Baum, B.R.; Arnason, J.T. Light-mediated antifungal activity of Echinacea extracts. Planta Med. 2000, 66, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Vohra, S.; Arnason, J.T.; Hudson, J.B. Echinacea extracts contain significant and selective activities against human pathogenic bacteria. Pharm. Biol. 2008, 46, 111–116. [Google Scholar] [CrossRef]
- Bergeron, C.; Gafner, S. Quantitative analysis of the polysaccharide and glycoprotein fractions in Echinacea purpurea and Echinacea angustifolia by HPLC-ELSD for quality control of raw material. Pharm. Biol. 2007, 45, 98–105. [Google Scholar] [CrossRef]
- Mistríková, I.; Vaverková, Š. Echinacea—Chemical composition, immunostimulatory activities and uses. Thaiszia J. Bot. 2006, 16, 11–26. [Google Scholar]
- Nagoor Meeran, M.F.; Javed, H.; Sharma, C.; Goyal, S.N.; Kumar, S.; Jha, N.K.; Ojha, S. Can Echinacea be a potential candidate to target immunity, inflammation, and infection—The trinity of coronavirus disease 2019. Heliyon 2021, 7, e05990. [Google Scholar] [CrossRef]
- Nandi, K.; Sen, D.J.; Patra, F.; Nandy, B.; Bera, K.; Mahanti, B. Angle of repose walks on its two legs: Carr index and Hausner ratio. World J. Pharm. Pharm. Sci. 2020, 9, 1565–1579. [Google Scholar]
- Sherrington, L.A.; Sherrington, A. Guaifenesin. In Analytical Profiles of Drug Substances and Excipients, 1st ed.; Brittain, H.G., Ed.; Academic Press: San Diego, CA, USA, 1998; Volume 25, pp. 121–164. [Google Scholar]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Jirayucharoensak, R.; Khuenpet, K.; Jittanit, W.; Sirisansaneeyakul, S. Physical and chemical properties of powder produced from spray drying of inulin component extracted from Jerusalem artichoke tuber powder. Dry. Technol. 2019, 37, 1215–1227. [Google Scholar] [CrossRef]
- El-Kholy, W.; Bisar, G.; Aamer, R. Impact of inulin extracted, purified from (chicory and globe artichoke) roots and the combination with maltodextrin as prebiotic dietary fiber on the functional properties of stirred bio-yogurt. Food Nutr. Sci. 2023, 14, 70–89. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Rassaoui, R.; Besbes, S. Chemical composition, functional properties, and effect of inulin from Tunisian Agave americana L. leaves on textural qualities of pectin gel. J. Chem. 2014, 2014, 758697. [Google Scholar] [CrossRef]
- Mudannayake, D.C.; Wimalasiri, K.M.; Silva, K.F.; Ajlouni, S. Comparison of properties of new sources of partially purified inulin to those of commercially pure chicory inulin. J. Food Sci. 2015, 80, C950–C960. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Rakha, A.; Butt, M.S.; Asghar, M. Physicochemical and techno-functional characterization of inulin extracted from chicory roots and Jerusalem artichoke tubers and exploring their ability to replace the fat in cakes. Progr. Nutr. 2018, 20, 191–202. [Google Scholar]
№ | Compound | RT | RI | Hexane Fraction | Chloroform Fraction | Ethyl Acetate Fraction |
---|---|---|---|---|---|---|
Alcohols | ||||||
1. | Propylene Glycol | 4.32 | 1011 | ND 1 | ND | 0.46 |
2. | Butane-2,3-diol | 4.84 | 1044 | ND | ND | 1.00 |
3. | Glycerol | 7.22 | 1267 | ND | 0.40 | 6.00 |
4. | Phenylethyl Alcohol | 6.85 | 1185 | ND | ND | 0.17 |
5. | Mannitol | 14.88 | 1904 | ND | ND | 1.80 |
Organic acids | ||||||
6. | β-Hydroxybutyric acid | 6.08 | 1152 | ND | ND | 0.31 |
7. | Benzoic acid | 7.05 | 1241 | ND | ND | 0.22 |
8. | Succinic acid | 7.63 | 1314 | ND | ND | 1.97 |
9. | Fumaric acid | 8.29 | 1365 | ND | ND | 0.60 |
10. | Malic acid | 9.22 | 1460 | ND | ND | 0.49 |
11. | Pyroglutamic acid | 10.72 | 1588 | ND | ND | 1.89 |
Alkanes | ||||||
12. | n-Tetradecane | 8.51 | 1400 | ND | ND | 0.64 |
Sugars | ||||||
13. | Fructose isomer | 13.13 | 1853 | ND | ND | 4.75 |
14. | Fructose isomer | 13.24 | 1859 | ND | ND | 6.66 |
Fatty alcohols | ||||||
15. | n-Eicosanol | 18.95 | 2175 | 1.14 | 0.56 | 0.41 |
16. | n-Heneicosanol | 22.95 | 2489 | 1.95 | 2.67 | 3.86 |
17. | n-Docosanol | 26.00 | 2595 | 1.34 | 1.16 | 1.27 |
Fatty acids | ||||||
18. | Caproic acid C6:0 | 5.16 | 1060 | 0.24 | 0.61 | 0.38 |
19. | Enanthic acid C7:0 | 6.31 | 1163 | 0.33 | 0.96 | 0.50 |
20. | Caprylic acid C8:0 | 7.18 | 1260 | 0.13 | 0.45 | 0.30 |
21. | Pelargonic acid C9:0 | 8.10 | 1357 | 2.57 | 3.17 | 2.85 |
22. | Capric acid C10:0 | 9.19 | 1455 | 0.74 | 0.40 | 0.26 |
23. | n-Undecanoic acid C11:0 | 10.42 | 1551 | 0.46 | 0.83 | 0.50 |
24. | Pimelic acid | 10.68 | 1584 | ND | 0.35 | 0.23 |
25. | Lauric acid C12:0 | 11.63 | 1659 | 0.12 | 1.51 | 0.45 |
26. | Suberic acid | 11.70 | 1730 | ND | 0.92 | 1.98 |
27. | Azelaic acid | 13.08 | 1782 | 0.51 | 2.70 | 3.32 |
28. | Myristic acid C14:0 | 13.89 | 1871 | 0.20 | 0.32 | 0.45 |
29. | Pentadecylic acid C15:0 | 15.43 | 1940 | 0.80 | 0.63 | 0.55 |
30. | Palmitelaidic acid C16:1 | 16.69 | 2018 | 0.32 | 0.28 | 0.83 |
31. | Palmitic acid C16:0 | 17.06 | 2046 | 16.01 | 24.33 | 12.38 |
32. | Margaric acid C17:0 | 18.65 | 2140 | 0.77 | 0.50 | 0.65 |
33. | Ethyl linoleate | 18.80 | 2149 | 2.21 | 1.37 | 0.94 |
34. | Linoleic acid C18:2 | 19.76 | 2206 | 26.11 | 21.18 | 18.02 |
35. | α-Linolenic acid C18:3 | 19.84 | 2217 | 12.05 | 8.52 | 4.84 |
36. | Elaidic acid C18:1 | 19.93 | 2223 | 1.65 | 0.85 | 0.68 |
37. | Stearic acid C18:0 | 20.26 | 2239 | 4.44 | 6.16 | 3.66 |
38. | Arachidic acid C20:0 | 22.47 | 2438 | 3.61 | 0.52 | 1.52 |
39. | n-Heneicosanoic acid C21:0 | 23.60 | 2513 | 1.29 | 2.93 | 0.95 |
40. | Behenic acid C22:0 | 26.38 | 2624 | 0.95 | 2.10 | 1.49 |
41. | Lignoceric acid C24:0 | 28.86 | 2809 | 0.78 | 0.86 | 1.82 |
Phytosterols | ||||||
42. | Campesterol | 34.43 | 3266 | 1.21 | 0.93 | 0.54 |
43. | Stigmasterol | 34.77 | 3287 | 2.02 | 1.29 | 0.85 |
44. | β-Sitosterol | 35.67 | 3339 | 12.13 | 8.37 | 5.22 |
Triterpenes | ||||||
45. | β-Amyrin | 35.85 | 3346 | 0.67 | ND | ND |
46. | Lanosterol | 35.91 | 3351 | 0.83 | 0.61 | ND |
47. | α-Amyrin | 36.00 | 3357 | 0.59 | ND | ND |
48. | Cycloartenyl acetate | 36.74 | 3389 | 0.48 | ND | ND |
49. | Betulin | 37.63 | 3420 | 0.32 | ND | ND |
Total identified | 98.95 | 98.45 | 98.65 | |||
Fatty acid | 76.28 | 82.46 | 59.55 | |||
Saturated fatty acid (SFA) | 33.43 | 46.29 | 28.71 | |||
Unsaturated fatty acid (UFA) | 42.34 | 32.20 | 25.32 | |||
Triterpenes | 2.89 | 0.61 | - | |||
Phytosterols | 15.36 | 10.60 | 6.61 |
Nutritional Indices | Hexane Fraction | Chloroform Fraction | Ethyl Acetate Fraction |
---|---|---|---|
ΣPUFA/ΣSFA | 1.27 | 0.70 | 0.88 |
Index of atherogenicity (IA) | 0.44 | 0.91 | 0.64 |
Index of thrombogenicity (IT) | 0.42 | 0.84 | 0.69 |
Hypocholesterolemic/hypercholesterolemic (HH) ratio | 2.34 | 1.14 | 1.72 |
Health-promoting index (HPI) | 2.50 | 1.19 | 1.73 |
Linoleic acid/α-linolenic acid (LA/ALA) ratio | 2.17 | 2.49 | 3.72 |
Test Microorganism | Hexane Fraction | Chloroform Fraction | Ethyl Acetate Fraction |
---|---|---|---|
Bacillus subtilis ATCC 6633 | 12 ** | 11 | 12 |
Bacillus amyloliquefaciens 4BCL-YT | 10 | 10 | 10 |
Staphylococcus aureus ATCC 25923 | 11 | 9 | 16 |
Listeria monocytogenes ATCC 8632 | 10 | 10 | 10 |
Enterococcus faecalis ATCC 29212 | 9 | 9 | 10 |
Salmonella enteritidis | 10 | 9 | 9 |
Klebsiella sp. | - | - | - |
Escherichia coli ATCC 25922 | 11 | 10 | 15 |
Proteus vulgaris ATCC 6380 | - | - | - |
Pseudomonas aeruginosa ATCC 9027 | 12 | 10 | 17 |
Candida albicans NBIMCC 74 | 8 * | 8 | 8 |
Saccharomyces cerevisiae | 9 | 9 | 9 |
Aspergillus niger ATCC 1015 | - | - | - |
Aspergillus flavus | - | - | - |
Penicillium sp. | 8 | 8 | 8 |
Rhizopus sp. | - | - | - |
Fusarium moniliforme ATCC 38932 | - | - | - |
Mucor sp. | - | - | - |
Characteristics | Classical Extraction | Ultrasound-Assisted Extraction | References |
---|---|---|---|
Yield, % | 18.7 ± 1.2 | 15.4 ± 2.1 | 5.9–12 [10] 8.87 [23] |
Purity, % | 57.7 ± 1.5 | 72.4 ± 0.5 | 82.2 ± 2.5 [10] |
Melting point, °C | 188–190 | 203–205 | 186.5 [10] |
Molecular weight Mw, Da Mn, Da | 3890 | 4050 | 4500 [24] 4378 [10] 5000 [25] |
3740 | 3895 | 4226 [10] | |
Polydispersity index | 1.04 | 1.04 | 1.04 [10] |
Degree of polymerization | 24 | 25 | 24–25 [23] 25–29 (avg DP 27) [10] 33–55 [11] |
Degree of polymerization (NMR) | 13 | 16 | - |
L | 73.07 ± 1.28 | 79.80 ± 5.94 | - |
a | 27.31 ± 1.84 | 29.32 ± 1.70 | - |
b | 7.59 ± 1.54 | 8.82 ± 0.50 | - |
C | 26.18 ± 2.30 | 27.95 ± 1.92 | - |
ΔE | 34.90 | 31.49 | - |
hº | 16.17 | 17.74 | - |
Angle of repose (°) | 23.22 | 23.03 | - |
Wettability, min | 2.03 | 2.46 | - |
True density (g/mL) | 0.63 | 1.25 | - |
Bulk density (g/mL) | 0.37 | 0.27 | - |
Tap density (g/mL) | 0.55 | 0.45 | - |
Carr’s index | 33 | 41 | - |
Hausner ratio | 1.50 | 1.68 | - |
Flowability | Fair | Bad | - |
Cohesiveness | High | High | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, N.; Petrova, A.; Ivanov, I.; Hambarlyiska, I.; Tumbarski, Y.; Dincheva, I.; Ognyanov, M.; Denev, P. Chemical Composition of Different Extracts from Echinacea purpurea (L.) Moench Roots and Evaluation of Their Antimicrobial Activity. ChemEngineering 2023, 7, 94. https://doi.org/10.3390/chemengineering7050094
Petkova N, Petrova A, Ivanov I, Hambarlyiska I, Tumbarski Y, Dincheva I, Ognyanov M, Denev P. Chemical Composition of Different Extracts from Echinacea purpurea (L.) Moench Roots and Evaluation of Their Antimicrobial Activity. ChemEngineering. 2023; 7(5):94. https://doi.org/10.3390/chemengineering7050094
Chicago/Turabian StylePetkova, Nadezhda, Ani Petrova, Ivan Ivanov, Ivanka Hambarlyiska, Yulian Tumbarski, Ivayla Dincheva, Manol Ognyanov, and Petko Denev. 2023. "Chemical Composition of Different Extracts from Echinacea purpurea (L.) Moench Roots and Evaluation of Their Antimicrobial Activity" ChemEngineering 7, no. 5: 94. https://doi.org/10.3390/chemengineering7050094
APA StylePetkova, N., Petrova, A., Ivanov, I., Hambarlyiska, I., Tumbarski, Y., Dincheva, I., Ognyanov, M., & Denev, P. (2023). Chemical Composition of Different Extracts from Echinacea purpurea (L.) Moench Roots and Evaluation of Their Antimicrobial Activity. ChemEngineering, 7(5), 94. https://doi.org/10.3390/chemengineering7050094