Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part II: Visualization of the Turbulent Droplet Breakup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup
2.2. Materials and Experimental Conditions
2.3. Droplet Visualization
2.3.1. Macro Scale (M50)
2.3.2. Micro and Meso Scale (M1 and M5)
2.4. Measurement of the Resulting Droplet Size Distribution
3. Results
3.1. Break-Up Visualization
3.1.1. Time Resolved Investigation at the Macro Scale
3.1.2. Comparison of the Droplet Trajectory
3.1.3. Influence of the Reynolds Number
3.1.4. Scale Comparison
3.1.5. Influence of Viscosity Ratio
3.2. Droplet Size Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Floury, J.; Desrumaux, A.; Lardières, J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol. 2000, 1, 127–134. [Google Scholar] [CrossRef]
- Kostoglou, M.; Karabelas, A.J. Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chem. Eng. Sci. 2005, 60, 6584–6595. [Google Scholar] [CrossRef]
- Sugiura, S.; Nakajima, M.; Seki, M. Prediction of Droplet Diameter for Microchannel Emulsification. Langmuir 2002, 18, 3854–3859. [Google Scholar] [CrossRef]
- Karbstein, H.; Schubert, H. Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Process. Process. Intensif. 1995, 34, 205–211. [Google Scholar] [CrossRef]
- Stang, M.; Schuchmann, H.; Schubert, H. Emulsification in High-Pressure Homogenizers. Eng. Life Sci. 2001, 1, 151. [Google Scholar] [CrossRef]
- Bisten, A.; Schuchmann, H.P. Optical Measuring Methods for the Investigation of High-Pressure Homogenisation. Processes 2016, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.I. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 1934, 146, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X. Drop breakup in dilute Newtonian emulsions in simple shear flow: New drop breakup mechanisms. J. Rheol. 2007, 51, 367–392. [Google Scholar] [CrossRef]
- Urban, K.; Wagner, G.; Schaffner, D.; Röglin, D.; Ulrich, J. Rotor-Stator and Disc Systems for Emulsification Processes. Chem. Eng. Technol. 2006, 29, 24–31. [Google Scholar] [CrossRef]
- Håkansson, A.; Mortensen, H.H.; Andersson, R.; Innings, F. Experimental investigations of turbulent fragmenting stresses in a rotor-stator mixer. Part 1. Estimation of turbulent stresses and comparison to breakup visualizations. Chem. Eng. Sci. 2017, 171, 625–637. [Google Scholar] [CrossRef]
- Phipps, L.W. The fragmentation of oil drops in emulsions by a high-pressure homogenizer. J. Phys. D: Appl. Phys. 1975, 8, 448–462. [Google Scholar] [CrossRef]
- Kolmogorov, A.C. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 1941, 30, 301–305. [Google Scholar]
- Hinze, J.O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1955, 1, 289–295. [Google Scholar] [CrossRef]
- Calabrese, R.V.; Chang, T.P.K.; Dang, P.T. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE J. 1986, 32, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.T. A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils. Chem. Eng. Sci. 1987, 42, 1671–1676. [Google Scholar] [CrossRef]
- Vankova, N.; Tcholakova, S.; Denkov, N.D.; Ivanov, I.B.; Vulchev, V.D.; Danner, T. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes. J. Coll. Interface Sci. 2007, 312, 363–380. [Google Scholar] [CrossRef]
- Innings, F.; Trägårdh, C. Analysis of the flow field in a high-pressure homogenizer. Exp. Therm. Fluid Sci. 2007, 32, 345–354. [Google Scholar] [CrossRef]
- Håkansson, A.; Fuchs, L.; Innings, F.; Revstedt, J.; Trägårdh, C.; Bergenståhl, B. High resolution experimental measurement of turbulent flow field in a high pressure homogenizer model and its implications on turbulent drop fragmentation. Chem. Eng. Sci. 2011, 66, 1790–1801. [Google Scholar] [CrossRef]
- Kelemen, K.; Crowther, F.E.; Cierpka, C.; Hecht, L.L.; Kähler, C.J.; Schuchmann, H.P. Investigations on the characterization of laminar and transitional flow conditions after high pressure homogenization orifices. Microfluid Nanofluid 2015, 18, 599–612. [Google Scholar] [CrossRef]
- Kollhoff, R.T.; Kelemen, K.; Schuchmann, H.P. Local Multiphase Flow Characterization with Micro Particle Image Velocimetry Using Refractive Index Matching. Chem. Eng. Technol. 2015, 38, 1774–1782. [Google Scholar] [CrossRef]
- Stevenson, M.J.; Chen, X.D. Visualization of the flow patterns in a high-pressure homogenizing valve using a CFD package. J. Food Eng. 1997, 33, 151–165. [Google Scholar] [CrossRef]
- Håkansson, A.; Innings, F.; Trägårdh, C.; Bergenståhl, B. A high-pressure homogenization emulsification model—Improved emulsifier transport and hydrodynamic coupling. Chem. Eng. Sci. 2013, 91, 44–53. [Google Scholar] [CrossRef]
- Wieth, L.; Kelemen, K.; Braun, S.; Koch, R.; Bauer, H.-J.; Schuchmann, H.P. Smoothed Particle Hydrodynamics (SPH) simulation of a high-pressure homogenization process. Microfluid. Nanofluid 2016, 20, 5011. [Google Scholar] [CrossRef]
- Håkansson, A.; Trägårdh, C.; Bergenståhl, B. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model. Food Hydrocoll. 2009, 23, 1177–1183. [Google Scholar] [CrossRef]
- Swartz, J.E.; Kessler, D.P. Single drop breakup in developing turbulent pipe flow. AIChE J. 1970, 16, 254–260. [Google Scholar] [CrossRef]
- Hesketh, R.P.; Etchells, A.W.; Russel, T.W.F. Experimental Observations of Bubble Breakage in Turbulent Flow. Ind. Eng. Chem. Res. 1991, 30, 835–841. [Google Scholar] [CrossRef]
- Kolb, G.; Wagner, G.; Ulrich, J. Untersuchungen zum Aufbruch von Einzeltropfen in Dispergiereinheiten zur Emulsionsherstellung. Chem. Ing. Tech. 2001, 73, 80–83. [Google Scholar] [CrossRef]
- Galinat, S.; Masbernat, O.; Guiraud, P.; Dalmazzone, C.; Noïk, C. Drop break-up in turbulent pipe flow downstream of a restriction. Chem. Eng. Sci. 2005, 60, 6511–6528. [Google Scholar] [CrossRef]
- Galinat, S.; Garrido Torres, L.; Masbernat, O.; Guiraud, P.; Risso, F.; Dalmazzone, C.; Noik, C. Breakup of a drop in a liquid–liquid pipe flow through an orifice. AIChE J. 2007, 53, 56–68. [Google Scholar] [CrossRef]
- Innings, F.; Trägårdh, C. Visualization of the Drop Deformation and Break-Up Process in a High Pressure Homogenizer. Chem. Eng. Technol. 2005, 28, 882–891. [Google Scholar] [CrossRef]
- Innings, F.; Fuchs, L.; Trägårdh, C. Theoretical and experimental analyses of drop deformation and break-up in a scale model of a high-pressure homogenizer. J. Food Eng. 2011, 103, 21–28. [Google Scholar] [CrossRef]
- Kelemen, K.; Gepperth, S.; Koch, R.; Bauer, H.-J.; Schuchmann, H.P. On the visualization of droplet deformation and breakup during high-pressure homogenization. Microfluid Nanofluid 2015, 19, 1139–1158. [Google Scholar] [CrossRef]
- Cristini, V.; Blawzdziewicz, J.; Loewenberg, M.; Collins, L.R. Breakup in stochastic Stokes flows: Sub-Kolmogorov drops in isotropic turbulence. J. Fluid Mech. 2003, 492, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Komrakova, A.E. Single drop breakup in turbulent flow. Can. J. Chem. Eng. 2019, 97, 2727–2739. [Google Scholar] [CrossRef]
- Maniero, R.; Masbernat, O.; Climent, E.; Risso, F. Modeling and simulation of inertial drop break-up in a turbulent pipe flow downstream of a restriction. Int. J. Multiph. Flow 2012, 42, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rayner, M.; Dejmek, P. Engineering Aspects of Food Emulsification and Homogenization; CRC Press: Hoboken, NJ, USA, 2015; ISBN 978-1466580435. [Google Scholar]
- Håkansson, A.; Trägårdh, C.; Bergenståhl, B. Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem. Eng. Sci. 2009, 64, 2915–2925. [Google Scholar] [CrossRef]
- Cierpka, C.; Rossi, M.; Segura, R.; Kähler, C.J. On the calibration of astigmatism particle tracking velocimetry for microflows. Meas. Sci. Technol. 2011, 22, 15401. [Google Scholar] [CrossRef]
- Håkansson, A. Scale-down failed—Dissimilarities between high-pressure homogenizers of different scales due to failed mechanistic matching. J. Food Eng. 2017, 195, 31–39. [Google Scholar] [CrossRef]
- Budde, C.; Schaffner, D.; Walzel, P. Modellversuche zum Tropfenzerfall an Blenden in Flüssig/Flüssig/Dispersionen. Chemie Ingenieur Technik 2002, 74, 101–104. [Google Scholar] [CrossRef]
- Preiss, F.J.; Mutsch, B.; Kähler, C.J.; Karbstein, H.P. Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part I: Comparison of Velocity Profiles in Scaled Coaxial Orifices. ChemEngineering 2021, 5, 7. [Google Scholar] [CrossRef]
- Preiss, F.J.; Dagenbach, T.; Fischer, M.; Karbstein, H.P. Development of a Pressure Stable Inline Droplet Generator with Live Droplet Size Measurement. ChemEngineering 2020, 4, 60. [Google Scholar] [CrossRef]
- Mutsch, B.; Kähler, C.J. Charakterisierung eines Versuchsstands zur Messung der relevanten Strömungsbedingungen für die Deformation und den Aufbruch von Tropfen beim Hochdruckhomogenisieren mit Blenden. 2017. Available online: https://www.gala-ev.org/images/Beitraege/Beitraege%202017/pdf/44.pdf (accessed on 1 June 2021).
- Mutsch, B.; Kähler, C.J. Tomographische Visualisierung des Tropfenaufbruchs beim Hochdruckhomogenisieren mit Blenden in einem skalierten Versuchsstand. 2018. Available online: https://www.gala-ev.org/images/Beitraege/Beitraege%202018/pdf/43.pdf (accessed on 1 June 2021).
- Mutsch, B.; Kähler, C.J. Droplet break-up investigations in scaled high-pressure homogenizers with orifice plates. In Proceedings of the 13th International Symposium on Particle Image Velocimetry—ISPIV 2019, München, Germany, 22–24 July 2019. [Google Scholar]
- Schlender, M.; Spengler, A.; Schuchmann, H.P. High-pressure emulsion formation in cylindrical coaxial orifices: Influence of cavitation induced pattern on oil drop size. Int. J. Multiphase Flow 2015, 74, 84–95. [Google Scholar] [CrossRef]
- Cagney, N.; Balabani, S. Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow. Chem. Eng. Technol. 2019, 126, 385. [Google Scholar] [CrossRef]
- Barnes, H.A. Shear-Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids. J. Rheol. 1989, 33, 329–366. [Google Scholar] [CrossRef]
- Mutsch, B.; Walzel, P.; Kähler, C.J. Comparison of experimental and numerical transient drop de-formation during transition through orifices in high-pressure homogenizers. submitted. ChemEngineering 2020. [Google Scholar]
- Stone, H.A.; Bentley, B.J.; Leal, L.G. An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 1986, 173, 131–158. [Google Scholar] [CrossRef] [Green Version]
- Tjahjadi, M.; Ottino, J.M. Stretching and breakup of droplets in chaotic flows. J. Fluid Mech. 1991, 232, 191. [Google Scholar] [CrossRef]
Scaling Factor | 1 | 5 | 50 |
---|---|---|---|
D | 0.2 mm | 1 mm | 10 mm |
L | 0.4 mm | 2 mm | 20 mm |
2 mm | 10 mm | 100 mm | |
2 mm | 10 mm | 100 mm | |
60 | 60 | - | |
R | - | - | 20 mm |
Scaling Factor | 1 | 5 | 50 |
---|---|---|---|
Validity | original | model | model |
Spatial resolution | O | + | + |
Temporal resolution | − | − | + |
Optical access | − | − | + |
Tomographic measurements | − | − | + |
Easy manufacturing | − | O | + |
Max. disperse phase fraction [%] | 0.0125 | 0.006 | 0.000125 |
PSD analysis | + | O | − |
Cavitation control | + | + | − |
Influence on the droplet trajectory | − | + | + |
Pre-emulsion droplet size distribution | wide | tight | tight |
Parameter | M1 | M5 | M50 | ||
---|---|---|---|---|---|
Reynolds number | 2000/5700 | 2000/5700 | 2000/5700 | ||
Continuous phase viscosity/mPas | 4.25 | 9.42 | 32.5 | ||
Continuous phase density/kg/m3 | 1145.3 | 1148.6 | 1146 | ||
Viscosity variant | medium | low | high | ||
Disperse phase density/kg/m3 | 928 | 920 * | 960 * | 930 | 970 |
Viscosity ratio/- | 3.5 | 3.1 | 3.0 | 0.3 | 10.8 |
Density ratio/- | 0.81 | 0.80 | 0.84 | 0.81 | 0.84 |
Interfacial tension/mN/m | 4.31 | 3.99 | 20 | 17 | 18 |
Drop size ratio/- | 0.16 | 0.186 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutsch, B.; Preiss, F.J.; Dagenbach, T.; Karbstein, H.P.; Kähler, C.J. Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part II: Visualization of the Turbulent Droplet Breakup. ChemEngineering 2021, 5, 31. https://doi.org/10.3390/chemengineering5020031
Mutsch B, Preiss FJ, Dagenbach T, Karbstein HP, Kähler CJ. Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part II: Visualization of the Turbulent Droplet Breakup. ChemEngineering. 2021; 5(2):31. https://doi.org/10.3390/chemengineering5020031
Chicago/Turabian StyleMutsch, Benedikt, Felix Johannes Preiss, Teresa Dagenbach, Heike Petra Karbstein, and Christian J. Kähler. 2021. "Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part II: Visualization of the Turbulent Droplet Breakup" ChemEngineering 5, no. 2: 31. https://doi.org/10.3390/chemengineering5020031
APA StyleMutsch, B., Preiss, F. J., Dagenbach, T., Karbstein, H. P., & Kähler, C. J. (2021). Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part II: Visualization of the Turbulent Droplet Breakup. ChemEngineering, 5(2), 31. https://doi.org/10.3390/chemengineering5020031