Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Synthetic Procedure of New ILs
2.3. Synthesis of New ZILs
2.4. Viscosity Measurement
2.5. Ionic Conductivity Measurement
2.6. Flammability Test
2.7. Fabrication of EDLC Coin Cells and Electrochemical Measurements
3. Results and Discussion
3.1. Synthesis and Properties of Specifically Designed ILs
3.2. Synthesis and Properties of Specifically Designed FILs
3.3. Synthesis and Properties of Specifically Designed DILs
3.4. Synthesis and Properties of Specifically Designed ZILs
3.5. Performance of IL Electrolytes-Based Supercapacitor Cells
Author Contributions
Funding
Conflicts of Interest
References
- Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Montanino, M.; Passerini, S. Ionic Liquids: Science and Applications; Vissser, A.E., Bridges, N.J., Rogers, R.D., Eds.; ACS Symposium Series; Oxford University Press, Inc., American Chemical Society: Washington, DC, USA, 2013. [Google Scholar]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Balakrishnan, P.G.; Ramesh, R.; Prem Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Ji, J.; Zhong, W.-H. Controlled Li+ conduction pathway to achieve enhanced ionic conductivity in polymer electrolytes. J. Power Sources 2014, 247, 452–459. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, W.-H. Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices: A Review. ChemElectroChem 2015, 2, 22–36. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Yang, W. Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries. Electrochim. Acta 2010, 55, 1895–1899. [Google Scholar] [CrossRef]
- Prasanth, R.; Shubha, N.; Hng, H.H.; Srinivasan, M. Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J. Power Sources 2014, 245, 283–291. [Google Scholar] [CrossRef]
- Shubha, N.; Prasanth, R.; Hoon, H.H.; Srinivasan, M. Plastic crystalline-semi crystalline polymer composite electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene) porous membranes for lithium ion batteries. Electrochim. Acta 2014, 125, 362–370. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, T.; Kwon, M.-S.; Mun, J.; Lee, K.T. Room Temperature Ionic Liquid-based Electrolytes as an Alternative to Carbonate-based Electrolytes. Isr. J. Chem. 2015, 55, 586–598. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Zhang, Y.; Chen, Z.; Watanabe, M.; Deng, Y. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80–124. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Fang, S.; Chai, M.; Yang, L.; Tachibana, K.; Hirano, S. Properties and application of ether-functionalized trialkylimidazolium ionic liquid electrolytes for lithium battery. J. Power Sources 2013, 226, 210–218. [Google Scholar] [CrossRef]
- Sun, X.G.; Liao, C.; Shao, N.; Bell, J.R.; Guo, B.; Luo, H.; Jiang, D.E.; Dai, S. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries. J. Power Sources 2013, 237, 5–12. [Google Scholar] [CrossRef]
- Levchuk, I.; Rueda Márquez, J.J.; Sillanpää, M. Removal of natural organic matter (NOM) from water by ion exchange—A review. Chemosphere 2018, 192, 90–104. [Google Scholar] [CrossRef]
- Zhang, J.-N.; Li, Q.; Wang, Y.; Zheng, J.; Yu, X.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Brandt, A.; Pohlmann, S.; Varzi, A.; Balducci, A.; Passerini, S. Ionic liquids in supercapacitors. MRS Bull. 2013, 38, 554–559. [Google Scholar] [CrossRef]
- Varzi, A.; Schütter, C.; Krummacher, J.; Raccichini, R.; Wolff, C.; Kim, G.-T.; Rosler, S.; Blumenroder, B.; Schubert, T.; Passerini, S.; et al. A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2 V (IES prototype). J. Power Sources 2016, 326, 162–169. [Google Scholar] [CrossRef]
- Yuyama, K.; Masuda, G.; Yoshida, H.; Sato, T. Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications. J. Power Sources 2006, 162, 1401–1408. [Google Scholar] [CrossRef]
- Sato, T.; Masuda, G.; Takagi, K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 2004, 49, 3603–3611. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Matsuzawa, Y.; Ozaki, S.; Park, K.C.; Kim, C.; Endo, M.; Yoshida, H.; Masuda, G.; Sato, T.; Dresselhaus, M.S. High Energy-Density Capacitor Based on Ammonium Salt Type Ionic Liquids and Their Mixing Effect by Propylene Carbonate. J. Electrochem. Soc. 2005, 152, A710. [Google Scholar] [CrossRef]
- Sato, T.; Marukane, S.; Morinaga, T.; Kamijo, T.; Arafune, H.; Tsujii, Y. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte. J. Power Sources 2015, 295, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, Y.; Marukane, S.; Morinaga, T.; Honma, S.; Kamijo, T.; Shomura, R.; Sato, T. New design of polyvalent ammonium salts for a high-capacity electric double layer capacitor. J. Power Sources 2019, 412, 18–28. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Sun, X.; Han, B. Synthesis of Functional Nanomaterials in Ionic Liquids. Adv. Mater. 2015, 28, 1011–1030. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Chakravadhanula, V.S.K.; Kübel, C.; Balducci, A.; Passerini, S. Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis. J. Power Sources 2015, 281, 318–325. [Google Scholar] [CrossRef]
- Yue, Z.; Mei, X.; Dunya, H.; Ma, Q.; McGarry, C.; Mandal, B.K. Synthesis and physical properties of new fluoroether sulfones. J. Fluor. Chem. 2018, 216, 118–123. [Google Scholar] [CrossRef]
- McCrary, P.D.; Chatel, G.; Alaniz, S.A.; Cojocaru, O.A.; Beasley, P.A.; Flores, L.A.; Kelley, S.P.; Barber, P.S.; Rogers, R.D. Evaluating Ionic Liquids as Hypergolic Fuels: Exploring Reactivity from Molecular Structure. Energy Fuels 2014, 28, 3460–3473. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Ikeda, Y. Alternative Route to Metal Halide Free Ionic Liquids. Chem. Lett. 2008, 37, 682–683. [Google Scholar] [CrossRef]
- Mei, X.; Yue, Z.; Tufts, J.; Dunya, H.; Mandal, B.K. Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties. J. Fluor. Chem. 2018, 212, 26–37. [Google Scholar] [CrossRef]
- Choi, J.A.; Shim, E.G.; Scrosati, B.; Kim, D.W. Mixed electrolytes of organic solvents and ionic liquid for rechargeable lithium-ion batteries. Bull. Korean Chem. Soc. 2010, 31, 190–3194. [Google Scholar] [CrossRef]
- Lalia, B.S.; Yoshimoto, N.; Egashira, M.; Morita, M. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries. J. Power Sources 2010, 195, 7426–7431. [Google Scholar] [CrossRef]
- Arbizzani, C.; Gabrielli, G.; Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Sources 2011, 196, 4801–4805. [Google Scholar] [CrossRef]
- Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources 2007, 174, 1021–1026. [Google Scholar] [CrossRef]
- Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481. [Google Scholar] [CrossRef]
- Park, M.; Zhang, X.; Chung, M.; Less, G.B.; Sastry, A.M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929. [Google Scholar] [CrossRef]
- Makino, T.; Kanakubo, M.; Umecky, T.; Suzuki, A.; Nishida, T.; Takano, J. Electrical Conductivities, Viscosities, and Densities of N-Methoxymethyl- and N-Butyl-N-methylpyrrolidinium Ionic Liquids with the Bis(fluorosulfonyl)amide Anion. J. Chem. Eng. Data 2012, 57, 751–755. [Google Scholar] [CrossRef]
- Zhou, Z.-B.; Matsumoto, H.; Tatsumi, K. Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chem. A Eur. J. 2006, 12, 2196–2212. [Google Scholar] [CrossRef]
- Orita, A.; Kamijima, K.; Yoshida, M. Allyl-functionalized ionic liquids as electrolytes for electric double-layer capacitors. J. Power Sources 2010, 195, 7471–7479. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Su, S.-G.; Wang, H.P.; Lin, Y.-C.; Gung, S.-T.; Lin, M.-W.; Sun, I.-W. Electrochemical studies and self diffusion coefficients in cyclic ammonium based ionic liquids with allyl substituents. Electrochim. Acta 2011, 56, 3209–3218. [Google Scholar] [CrossRef]
- Fu, S.; Gong, S.; Liu, C.; Zheng, L.; Feng, W.; Nie, J.; Zhou, Z. Ionic liquids based on bis(2,2,2-trifluoroethoxysulfonyl)imide with various oniums. Electrochim. Acta 2013, 94, 229–237. [Google Scholar] [CrossRef]
- Carvalho, P.J.; Regueira, T.; Santos, L.M.N.B.F.; Fernandez, J.; Coutinho, J.A.P. Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure. J. Chem. Eng. Data 2010, 55, 645–652. [Google Scholar] [CrossRef]
- Sánchez, L.G.; Espel, J.R.; Onink, F.; Meindersma, G.W.; de Haan, A.B. Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids. J. Chem. Eng. Data 2009, 54, 2803–2812. [Google Scholar] [CrossRef]
- Zech, O.; Stoppa, A.; Buchner, R.; Kunz, W. The Conductivity of Imidazolium-Based Ionic Liquids from (248 to 468) KB Variation of the Anion. J. Chem. Eng. Data 2010, 55, 1774–1778. [Google Scholar] [CrossRef]
- Bulut, S.; Eiden, P.; Beichel, W.; Slattery, J.M.; Beyersdorff, T.F.; Schubert, T.J.S.; Krossing, I. Temperature dependence of the viscosity and conductivity of mildly functionalized and non-functionalized [Tf2N]-ionic liquids. ChemPhysChem 2011, 12, 2296–2310. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.; Malvaldi, M.; Pitner, W.R.; Chiappe, C. QSPR correlation for conductivities and viscosities of low-temperature melting ionic liquids. J. Phys. Org. Chem. 2008, 21, 622–629. [Google Scholar] [CrossRef]
- Chen, Z.J.; Xue, T.; Lee, J.M. What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Adv. 2012, 2, 10564–10574. [Google Scholar] [CrossRef]
- Nakamura, K.; Shikata, T. Systematic Dielectric and NMR Study of the Ionic Liquid 1-Alkyl-3-Methyl Imidazolium. ChemPhysChem 2010, 11, 285–294. [Google Scholar] [CrossRef]
- Bedrov, D.; Borodin, O.; Li, Z.; Smith, G.D. Influence of Polarization on Structural, Thermodynamic, and Dynamic Properties of Ionic Liquids Obtained from Molecular Dynamics Simulations. J. Phys. Chem. B 2010, 114, 4984–4997. [Google Scholar] [CrossRef] [PubMed]
- Stoppa, A.; Hunger, J.; Buchner, R. Conductivities of Binary Mixtures of Ionic Liquids with Polar Solvents. J. Chem. Eng. Data 2009, 54, 472–479. [Google Scholar] [CrossRef]
- Mei, X.; Yue, Z.; Ma, Q.; Dunya, H.; Mandal, B.K. Synthesis and electrochemical properties of new dicationic ionic liquids. J. Mol. Liq. 2018, 272, 1001–1018. [Google Scholar] [CrossRef]
- Coadou, E.; Goodrich, P.; Neale, A.R.; Timperman, L.; Hardacre, C.; Jacquemin, J.; Anouti, M. Synthesis and Thermophysical Properties of Ether-Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications. ChemPhysChem 2016, 17, 3992–4002. [Google Scholar] [CrossRef]
- Rennie, A.J.R.; Martins, V.L.; Torresi, R.M.; Hall, P.J. Ionic Liquids Containing Sulfonium Cations as Electrolytes for Electrochemical Double Layer Capacitors. J. Phys. Chem. C 2015, 119, 23865–23874. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, D.; Alpaslan, S.C.; Gores, H.J.; Uerdingen, M.; Wasserscheid, P. Trialkylsulfonium dicyanamides—A new family of ionic liquids with very low viscosities. Chem. Commun. 2005, 40, 5080–5082. [Google Scholar] [CrossRef]
- Gerhard, D.; Alpaslan, S.C.; Gores, H.J.; Uerdingen, M.; Wasserscheid, P. Imidazolium-Based Ionic Liquids Formed with Dicyanamide Anion: Influence of Cationic Structure on Ionic Conductivity. J. Phys. Chem. B 2007, 111, 12204–12210. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.; Li, Z.; Li, J.; Chen, Z.; Wang, R.; Lu, L.; Deng, Y. Novel Cyclic Sulfonium-Based Ionic Liquids: Synthesis, Characterization, and Physicochemical Properties. Chem. A Eur. J. 2009, 15, 765–778. [Google Scholar] [CrossRef]
- Zhao, D.; Fei, Z.; Ang, W.; Dyson, P. Sulfonium-based Ionic Liquids Incorporating the Allyl Functionality. Int. J. Mol. Sci. 2007, 8, 304–315. [Google Scholar] [CrossRef] [Green Version]
- MacFarlane, D.R.; Golding, J.; Forsyth, S.; Forsyth, M.; Deacon, G.B. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun. 2001, 16, 1430–1431. [Google Scholar] [CrossRef]
- Marcilla, A.; Ruiz, F.; García, A.N. Liquid-liquid-solid equilibria of the quaternary system water-ethanol-acetone-sodium chloride at 25 °C. Fluid Phase Equilib. 1995, 112, 273–289. [Google Scholar] [CrossRef]
- Xue, H.; Shreeve, J.M. Ionic liquids with fluorine-containing cations. Eur. J. Inorg. Chem. 2005, 13, 2573–2580. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Araújo, J.M.M.; Martinho, S.; Alves, F.; Nunes, S.; Matias, A.; Duarte, C.M.M.; Rebelo, L.P.N.; Marrucho, I.M. Fluorinated ionic liquids: Properties and applications. ACS Sustain. Chem. Eng. 2013, 1, 427–439. [Google Scholar] [CrossRef]
- Davis, J.H.; Forrester, K.J.; Merrigan, T. Novel organic ionic liquids (OILS) incorporating cations derived from the antifungal drug miconazole. Tetrahedron Lett. 1998, 39, 8955–8958. [Google Scholar] [CrossRef]
- Vanhoutte, G.; Hojniak, S.D.; Bardé, F.; Binnemans, K.; Fransaer, J. Fluorine-functionalized ionic liquids with high oxygen solubility. RSC Adv. 2018, 8, 4525–4530. [Google Scholar] [CrossRef] [Green Version]
- Bonhôte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem. 1996, 35, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, T.L.; Bates, E.D.; Dorman, S.C.; Davis, J.H., Jr. New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids. Chem. Commun. 2000, 2051–2052. [Google Scholar] [CrossRef]
- Tindale, J.J.; Mouland, K.L.; Ragogna, P.J. Thiol appended, fluorinated phosphonium ionic liquids as covalent superhydrophobic coatings. J. Mol. Liq. 2010, 152, 14–18. [Google Scholar] [CrossRef]
- McMillan, R.; Slegr, H.; Shu, Z.; Wang, W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81–82, 20–26. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, S.; Allen, J.L.; Jow, T.R. Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate. J. Electrochem. Soc. 2002, 149, A1079. [Google Scholar] [CrossRef]
- Banks, R.E.; Smart, B.E.; Tatlow, J.C. (Eds.) Organofluorine Chemistry: Principles and Commercial Applications, 1st ed.; Springer: Boston, MA, USA, 1994. [Google Scholar]
- Yoon, H.; Lane, G.H.; Shekibi, Y.; Howlett, P.C.; Forsyth, M.; Best, A.S.; MacFarlane, D.R. Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions. Energy Environ. Sci. 2013, 6, 979. [Google Scholar] [CrossRef]
- Lee, J.S.; Quan, N.D.; Hwang, J.M.; Bae, J.Y.; Kim, H.; Cho, B.W.; Kim, H.S.; Lee, H. Ionic liquids containing an ester group as potential electrolytes. Electrochem. Commun. 2006, 8, 460–464. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Filler, R.; Mandal, B.K. Synthesis and properties of a new class of fluorine-containing dilithium salts for lithium-ion batteries. Solid State Ion. 2010, 180, 1640–1645. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, H.; Yang, L.; Tachibana, K.; Kamijima, K.; Xu, J. Asymmetrical dicationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries. Electrochim. Acta 2008, 53, 4833–4838. [Google Scholar] [CrossRef]
- Tadesse, H.; Blake, A.J.; Champness, N.R.; Warren, J.E.; Rizkallah, P.J.; Licence, P. Supramolecular architectures of symmetrical dicationic ionic liquid based systems. CrystEngComm 2012, 14, 4886. [Google Scholar] [CrossRef]
- Anderson, J.L.; Ding, R.; Ellern, A.; Armstrong, D.W. Structure and Properties of High Stability Geminal Dicationic Ionic Liquids. J. Am. Chem. Soc. 2005, 127, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Kubisa, P.; Biedroń, T. Poly(oxyethylene)s terminated at both ends with phosphonium ion end groups, 2. Properties. Macromol. Chem. Phys. 1996, 197, 31–40. [Google Scholar] [CrossRef]
- Suematsu, M.; Yoshizawa-Fujita, M.; Tamura, T.; Takeoka, Y.; Rikukawa, M. Dependence of transport properties of concentrated lithium salt solutions on temperature and composition in an imidazolium-based liquid zwitterion containing an oligo(ethylene oxide) unit. Int. J. Electrochem. Sci. 2015, 10, 248–258. [Google Scholar]
- Horiuchi, S.; Zhu, H.; Forsyth, M.; Takeoka, Y.; Rikukawa, M.; Yoshizawa-Fujita, M. Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain for ionic liquid electrolytes in high-voltage lithium-ion batteries. Electrochim. Acta 2017, 241, 272–280. [Google Scholar] [CrossRef]
- Yoshizawa-Fujita, M.; Tamura, T.; Takeoka, Y.; Rikukawa, M. Low-melting zwitterion: Effect of oxyethylene units on thermal properties and conductivity. Chem. Commun. 2011, 47, 2345–2347. [Google Scholar] [CrossRef]
- Ma, Q.; Mandal, B.K. Highly Conductive Electrolytes Derived from Nitrile Solvents. J. Electrochem. Soc. 2015, 162, A1276–A1281. [Google Scholar] [CrossRef]
- Lane, G.H.; Best, A.S.; MacFarlane, D.R.; Forsyth, M.; Bayley, P.M.; Hollenkamp, A.F. The electrochemistry of lithium in ionic liquid/organic diluent mixtures. Electrochim. Acta 2010, 55, 8947–8952. [Google Scholar] [CrossRef]
- Hofmann, A.; Schulz, M.; Hanemann, T. Effect of conducting salts in ionic liquid based electrolytes: Viscosity, conductivity, and li-ion cell studies. Int. J. Electrochem. Sci. 2013, 8, 10170–10189. [Google Scholar]
- Wu, F.; Zhu, Q.; Chen, R.; Chen, N.; Chen, Y.; Li, L. Ring-chain synergy in ionic liquid electrolytes for lithium batteries. Chem. Sci. 2015, 6, 7274–7283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, L.T.M.; Vo, T.D.; Ngo, K.H.P.; Okada, S.; Alloin, F.; Garg, A.; Le, P.M.L. Mixing ionic liquids and ethylene carbonate as safe electrolytes for lithium-ion batteries. J. Mol. Liq. 2018, 271, 769–777. [Google Scholar] [CrossRef]
- Väli, R.; Jänes, A.; Lust, E. Vinylene Carbonate as Co-Solvent for Low-Temperature Mixed Electrolyte Based Supercapacitors. J. Electrochem. Soc. 2016, 163, A851–A857. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, A.; Lobkovsky, E.; Collum, D.B. Hemilabile Ligands in Organolithium Chemistry: Substituent Effects on Lithium Ion Chelation. J. Am. Chem. Soc. 2003, 125, 15376–15387. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, M.; Yoshizawa-Fujita, M.; Zhu, H.; Forsyth, M.; Takeoka, Y.; Rikukawa, M. Effect of zwitterions on electrochemical properties of oligoether-based electrolytes. Electrochim. Acta 2015, 175, 209–213. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshizawa-Fujita, M.; Zhu, H.; Forsyth, M.; Takeoka, Y.; Rikukawa, M. Improvement of charge/discharge properties of oligoether electrolytes by zwitterions with an attached cyano group for use in lithium-ion secondary batteries. Electrochim. Acta 2015, 186, 471–477. [Google Scholar] [CrossRef]
- Lu, W.; Xie, K.; Chen, Z.; Xiong, S.; Pan, Y.; Zheng, C. A new co-solvent for wide temperature lithium ion battery electrolytes: 2,2,2-Trifluoroethyl n-caproate. J. Power Sources 2015, 274, 676–684. [Google Scholar] [CrossRef]
- Suda, Y.; Mizutani, A.; Harigai, T.; Takikawa, H.; Ue, H.; Umeda, Y. Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2017; p. 020022. [Google Scholar]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, N.-S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 424–473. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, L.; Yan, J.; Zhang, X. Materials Design and System Construction for Conventional and New-Concept Supercapacitors. Adv. Sci. 2017, 4, 1600382. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J. Power Sources 2010, 195, 5814–5819. [Google Scholar] [CrossRef]
- Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and Electrolytes for Advanced Supercapacitors. Adv. Mater. 2014, 26, 2219–2251. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-Y.; Lin, R.; Murali, S.; Zhang, L.L.; McDonough, J.K.; Ruoff, R.S.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2013, 2, 403–411. [Google Scholar] [CrossRef]
- Van Aken, K.L.; Beidaghi, M.; Gogotsi, Y. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 4806–4809. [Google Scholar] [CrossRef]
- Biso, M.; Mastragostino, M.; Montanino, M.; Passerini, S.; Soavi, F. Electropolymerization of poly(3-methylthiophene) in pyrrolidinium-based ionic liquids for hybrid supercapacitors. Electrochim. Acta 2008, 53, 7967–7971. [Google Scholar] [CrossRef]
- Mousavi, M.P.S.; Wilson, B.E.; Kashefolgheta, S.; Anderson, E.L.; He, S.; Bühlmann, P.; Stein, A. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. ACS Appl. Mater. Interfaces 2016, 8, 3396–3406. [Google Scholar] [CrossRef] [PubMed]
- Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Structure | Molecular Weight (g mol−1) | Viscosity (cP) | Ionic Conductivity (mS cm−1) (25 °C) | Comments |
---|---|---|---|---|---|
Py11O1 FSI | 310.34 | 25.5 (28.5) | 11.5 (10.3) | Not commercially available [40] | |
Py11O1 TFSI | 410.04 | 37.8 (40) | 5.4 (5.5) | Not commercially available [41] | |
Py11O1 BF4 | 217.01 | 62.3 (100) | 7.9 (6.8) | Not commercially available [41] | |
Py1P TFSI | 404.35 | 91.1 | 2.6 | New compound | |
Py1A TFSI | 406.37 | 48.7 (52) | 5.1 (3.7) | Not commercially available [42,43] | |
Py13 TFSI | 408.38 | 60 | 3.8 | Not commercially available [44,45] |
Abbreviation | Structure | Molecular Weight (g mol−1) | Viscosity (cP) | Ionic Conductivity (mS cm−1) (25 °C) | Comments |
---|---|---|---|---|---|
Im14 DCA | 205.26 | 31.8 | 10.5 | Commercially available [45,46,47] | |
Im11O2 TFSI | 407.31 | 48.5 | 3.6 | Not commercially available [48,49] | |
Im12O2 TFSI | 421.34 | 45.1 | 3.3 | Not commercially available [49,50] | |
Im12 TFSI | 391.31 | 33.3 | 7.1 | Commercially available [48,51] | |
Im12 BF4 | 198.10 | 36.0 | 15.2 | Commercially available [51,52,53] | |
Im12 DCA | 177.21 | 14.8 | 26.3 | Not commercially available [54] |
Abbreviation | Structure | Molecular Weight (g mol−1) | Viscosity (cP) | Ionic Conductivity (mS cm−1) (25 °C) | Comments |
---|---|---|---|---|---|
S131O2 TFSI | 429.42 | 38.9 | 2.7 | New compound | |
S111O2 TFSI | 401.37 | 47 (46.8) | 3.8 (3.9) | Not commercially available [55] | |
S123 TFSI | 399.40 | 39.3 | 4.4 | New compound | |
S221O2 TFSI | 429.42 | 33.0 | 4.1 | New compound | |
S222 TFSI | 399.40 | 30.5 (33.7) | 5.6 (7.3) | Commercially available [56] | |
S121O2 TFSI | 415.40 | 34.5 (30.8) | 3.9 (4.9) | Not commercially available [56] | |
S111O2 DCA | 187.26 | 41.8 | 5.0 | New compound | |
S221O2 DCA | 215.31 | 25.3 | 11.6 | New compound | |
S222 DCA | 185.29 | 14.4 | 26.9 | Not commercially available [57] |
Abbreviation | Structure | Molecular Weight (g mol−1) | Viscosity (cP) | Ionic Conductivity (mS cm−1) (25 °C) | Comments |
---|---|---|---|---|---|
Py1TFO2 DCA | 278.27 | 60.6 | 1.2 | New compound [33] | |
Py1TFO2 TFSI | 492.38 | 78.9 | 2.3 | New compound [33] | |
Im1TFO2 DCA | 274.34 | 17.32 | 3.6 | New compound [33] | |
Im1TFO2 TFSI | 488.35 | 49.8 | 5.3 | New compound [33] | |
S22TFO2 DCA | 283.31 | 27.6 | 5.2 | New compound [33] | |
S22TFO2 TFSI | 497.42 | 39.0 | 2.2 | New compound [33] |
Electrolyte | FIL | Component Weight (g) | Ionic Conductivity (mS cm−1) | |||
---|---|---|---|---|---|---|
FIL | Im12 DCA | LiTFSI | 25 °C | 70 °C | ||
Ea1 | Py1TFO2 DCA | 0.1002 | 0.1007 | 0.0233 | 10.0 | 29.6 |
Ea3 | Py1TFO2 TFSI | 0.0999 | 0.1001 | 0.0216 | 9.7 | 24.6 |
Eb1 | Im1TFO2 DCA | 0.1014 | 0.1007 | 0.0236 | 9.1 | 30.8 |
Eb3 | Im1TFO2 TFSI | 0.1007 | 0.1005 | 0.0215 | 10.5 | 29.3 |
Ec1 | S22TFO2 DCA | 0.1012 | 0.1010 | 0.0245 | 9.1 | 25.0 |
Ec3 | S22TFO2 TFSI | 0.1008 | 0.1006 | 0.0227 | 7.9 | 22.8 |
Abbreviation | Structure | Molecular Weight (g mol−1) | Viscosity (cP) | Ionic Conductivity (mS cm−1) (25 °C) | Comments |
---|---|---|---|---|---|
DPy14O DCA | 506.64 | 49.5 | 1.5 | New compound [54] | |
DPy14O TFSI | 934.85 | 189.6 | 1.0 | New compound [54] | |
DIm44O DCA | 584.71 | 75.3 | 1.4 | New compound [54] | |
DIm44O TFSI | 1012.92 | 298.6 | 0.7 | New compound [54] | |
DS224O DCA | 516.72 | 85.2 | 3.4 | New compound [54] | |
DS224O TFSI | 944.93 | 110.4 | 2.4 | New compound [54] |
Electrolyte | DIL | Component Weight (g) | Ionic Conductivity (mS cm−1) | |||
---|---|---|---|---|---|---|
DIL | Im12 DCA | LiTFSI | 25 °C | 70 °C | ||
E4a | DPy14O DCA | 0.0995 | 0.1002 | 0.0240 | 3.7 | 15.2 |
E8a | DPy14O TFSI | 0.1022 | 0.1002 | 0.0215 | 4.7 | 16.4 |
E4b | DIm44O DCA | 0.1020 | 0.1002 | 0.0244 | 4.8 | 17.0 |
E8b | DIm44O TFSI | 0.1024 | 0.1006 | 0.0218 | 8.4 | 20.8 |
E4c | DS224O DCA | 0.1017 | 0.1001 | 0.0242 | 8.2 | 22.7 |
E8c | DS224O TFSI | 0.1012 | 0.1003 | 0.0219 | 6.8 | 24.3 |
Weight Ratio of ZIL:2-NP | LiTFSI Concentration (mol L−1) | ||||
---|---|---|---|---|---|
DAEE-ZIL | NMDE-ZIL | TBAE-ZIL | TEA-ZIL | 2-NP | |
1:1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.40 | 1.40 | 1.40 | 1.40 | - | |
1.80 | 1.80 | 1.80 | 1.80 | - | |
2.20 | - | - | - | - | |
1:1.5 | 1.80 | - | - | - | - |
1.5:1 | 1.80 | - | - | - | - |
NMDE-ZIL | DAEE-ZIL | TBAE-ZIL | TEA-ZIL | |
---|---|---|---|---|
The best ionic conductivity vs. LiTFSI concentration (mol L−1) | 1.40 | 1.80 | 1.00 | 1.00 |
Ionic conductivity at 298 K (mS cm−1) | 7.61 | 10.3 | 15.9 | 3.40 |
ZIL Electrolyte Compositions | Ionic Conductivity (mS cm−1) | References |
---|---|---|
[Py1,1O1][FSA]/LiFSA/OE2pyps | 4.2 (313 K) | [81] |
G5/LiFSA/ImZ2 | 3.0 (298 K) | [90] |
PEGDME/LiTFSA/CZ | 0.24 (298 K) | [91] |
DAEE-ZIL/2-NP/LiTFSI | 10.3 (298 K) | Present work |
TBAE/2-NP/LiTFSI | 15.9 (298 K) | Present work |
Electrolyte | Electrolyte Formulation a | χ (25 °C) (mS cm−1) | |
---|---|---|---|
Our Measurement | Literature Value | ||
#1 | EMIM-BF4/DME = 6/4 | 24.7 | 24.21 |
#2 | EMIM-BF4/DME = 4/6 | Not miscible | |
#3 | EMIM-BF4/EC/DME = 4/1/5 | 25.8 | |
#4 | EMIM-BF4/EC/DME = 4/3/3 | 26.8 | |
#5 | 1M TEA-BF4 in DME | Not miscible | |
#6 | 1M TEA-BF4 in EC/DME = 1/4 | Not miscible | |
#7 | 1M TEA-BF4 in EC/DME = 1/1 | 13.7 |
Electrolyte #1 | Electrolyte #7 | |
---|---|---|
Electrolyte formulation | EMIM-BF4/DME = 6/4 v/v | 1M TEA-BF4 in EC/DME = 1/1 v/v |
Maximum OPV, (V) | 2.5–2.75 | 3.25–3.5 |
Internal resistance, (Ohm) | ~1.6 | ~3.7 |
Coulombic efficiency a Cd/Cc (%) | 96.5 | 92.2 |
Initial specific discharge capacitance a, C (F g−1) | 112.7 | 87.9 |
Initial energy density a, E (Wh kg−1) | 29.6 | 37.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Z.; Ma, Q.; Mei, X.; Schulz, A.; Dunya, H.; Alramahi, D.; McGarry, C.; Tufts, J.; Chakrabarti, A.; Saha, R.; et al. Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. ChemEngineering 2019, 3, 58. https://doi.org/10.3390/chemengineering3020058
Yue Z, Ma Q, Mei X, Schulz A, Dunya H, Alramahi D, McGarry C, Tufts J, Chakrabarti A, Saha R, et al. Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. ChemEngineering. 2019; 3(2):58. https://doi.org/10.3390/chemengineering3020058
Chicago/Turabian StyleYue, Zheng, Qiang Ma, Xinyi Mei, Abigail Schulz, Hamza Dunya, Dana Alramahi, Christopher McGarry, Jim Tufts, Amartya Chakrabarti, Rituparna Saha, and et al. 2019. "Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior" ChemEngineering 3, no. 2: 58. https://doi.org/10.3390/chemengineering3020058
APA StyleYue, Z., Ma, Q., Mei, X., Schulz, A., Dunya, H., Alramahi, D., McGarry, C., Tufts, J., Chakrabarti, A., Saha, R., & Mandal, B. K. (2019). Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. ChemEngineering, 3(2), 58. https://doi.org/10.3390/chemengineering3020058