Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Physical and Mathematical Models
2.1. Physical Problem Description
2.2. Gas Transport
2.3. Liquid Water Transport
2.4. Cell Performance
2.5. Boundary Conditions
3. Results and Discussion
3.1. Operating Pressure
3.2. Oxygen Stoichiometry Ratio
3.3. Thickness of CL and Membrane
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | water activity |
A | geometric area of the fuel cell, |
c | mole concentration, |
d | diameter, m |
D | diffusion coefficient, |
Nernst voltage, V | |
F | Faraday’s constant, 96487.0 |
I | current density, or |
limiting current density, | |
K | permeability, |
L | length of channel |
M | relative mole mass, |
n | electron number |
electroosmosis coefficient | |
p | pressure, Pa |
Popt | operating pressure, Pa |
Q | liquid water flux, |
R | ideal gas constant, 8.314 |
R | internal resistance, |
r | pore diameter |
RH | relative humidity |
s | volume fraction |
S | source terms of phase change |
Sh | Sherwood number |
ST | stoichiometric ratio |
T | temperature, K |
u | flow velocity, |
V | voltage, V |
W | width of channel |
Greek symbols | |
transfer coefficient | |
thickness, m | |
porosity | |
voltage loss, V | |
water content in membrane | |
rate, | |
density, | |
dynamic viscosity, | |
conductivity, | |
Subscript and superscripts | |
0 | standard condition |
act | activation loss parameter |
ano | anode |
BP | bipolar plate |
c | capillary |
cat | cathode |
ch | flow channel |
ch-GDL | interface between the flow channel and gas diffusion layer |
CL | catalyst layer |
CL-MEM | interface between the CL and membrane |
conc | concentration |
cond | condensation |
eff | effective parameter |
GDL | gas diffusion layer |
GDL-CL | interface between the GDL and CL |
h | hydraulic |
i | composition of the gas mixture |
in | inlet |
k | electrode |
lq | liquid water |
MEM | membrane |
ohm | ohmic |
out | outlet |
rea | reaction |
ref | reference |
sat | saturation |
vap | water vapor |
vap-lq | vapor water transformation into liquid water |
References
- Barbir, F. PEM Fuel Cells: Theory and Practice, 2nd ed.; Elsevier: Laguna Hills, CA, USA, 2013; pp. 1–4. [Google Scholar]
- Bernardi, D.M.; Verbrugge, M.W. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J. 1991, 37, 1151–1163. [Google Scholar] [CrossRef]
- Gao, F.; Blunier, B.; Miraoui, A.; Moudni, A.E. A Multiphysic Dynamic 1-D Model of a Proton-Exchange-Membrane Fuel-Cell Stack for Real-Time Simulation. IEEE Trans. Ind. Electron. 2010, 57, 1853–1864. [Google Scholar] [CrossRef]
- Fontes, G.; Turpin, C.; Astier, S. A Large-Signal and Dynamic Circuit Model of a H2/O2 PEM Fuel Cell: Description, Parameter Identification, and Exploitation. IEEE Trans. Ind. Electron. 2010, 57, 1874–1881. [Google Scholar] [CrossRef]
- Weber, A.Z.; Newman, J. Coupled Thermal and Water Management in Polymer-Electrolyte FuelCells. J. Electrochem. Soc. 2006, 153, A2205–A2214. [Google Scholar] [CrossRef]
- Wang, C.; Nehrir, M.H. A Physically Based Dynamic Model for Solid Oxide Fuel Cells. IEEE Trans. Energy Convers. 2007, 22, 887–897. [Google Scholar] [CrossRef]
- Wang, C.; Nehrir, M.H.; Shaw, S.R. Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans. Energy Convers. 2005, 20, 442–451. [Google Scholar] [CrossRef]
- Fuller, T.F.; Newman, J. Water and Thermal Management in Solid-Polymer-Electrolyte Fuel-Cells. J. Electrochem. Soc. 1993, 140, 1218–1225. [Google Scholar] [CrossRef]
- Jung, S.Y.; Nguyen, T.V. An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 1998, 145, 1149–1159. [Google Scholar]
- Dannenberg, K.; Ekdunge, P.; Lindbergh, G. Mathematical model of the PEMFC. J. Appl. Electrochem. 2000, 30, 1377–1387. [Google Scholar] [CrossRef]
- Wen, X.F.; Xiao, J.S.; Zhan, Z.G. Thermal modeling of proton exchange membrane fuel cell. Chin. J. Power Sources 2006, 30, 461–465. [Google Scholar]
- Berning, T.; Lu, D.M.; Djilali, N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources 2002, 106, 284–294. [Google Scholar] [CrossRef]
- Berning, T.; Djilali, N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—A parametric study. J. Power Sources 2003, 124, 440–452. [Google Scholar] [CrossRef]
- Berning, T.; Djilali, N. A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J. Electrochem. Soc. 2003, 150, A1589–A1598. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, Z.; Wang, C.; Zhuge, W.; Zhang, Y. Numerical simulation of a mini PEMFC stack. J. Power Sources 2006, 160, 1111–1121. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Coelho, L.D.S. A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model. Int. J. Hydrog. Energy 2014, 39, 11165–11174. [Google Scholar] [CrossRef]
- Chakraborty, U.K.; Abbott, T.E.; Das, S.K. PEM fuel cell modeling using differential evolution. Energy 2012, 40, 387–399. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Knobbe, M.W. A liquid water management strategy for PEM fuel cell stacks. J. Power Sources 2003, 114, 70–79. [Google Scholar] [CrossRef]
- Qin, Y.; Li, X.; Jiao, K.; Du, Q.; Yan, Y. Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate. Appl. Energy 2014, 113, 116–126. [Google Scholar] [CrossRef]
- Liu, H.C.; Yan, W.M.; Soong, C.Y.; Chen, F. Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell. J. Power Sources 2005, 142, 125–133. [Google Scholar] [CrossRef]
- Jung, U.H.; Jeong, S.U.; Park, K.T.; Lee, H.M.; Chun, K.; Dong, W.C.; Kim, S.H. Improvement of water management in air-breathing and air-blowing PEMFC at low temperature using hydrophilic silica nano-particles. Int. J. Hydrogen Energy 2007, 32, 4459–4465. [Google Scholar] [CrossRef]
- Li, X.; Sabir, I.; Park, J. A flow channel design procedure for PEM fuel cells with effective water removal. J. Power Sources 2007, 163, 933–942. [Google Scholar] [CrossRef]
- Nguyen, T.V. A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 1996, 143, L103–L105. [Google Scholar] [CrossRef]
- Al-Baghdadi, M.A.R.S. A simple mathematical model of performance for proton exchange membrane fuel cells. Int. J. Sol. Energy 2007, 26, 79–90. [Google Scholar] [CrossRef]
- Falcão, D.S.; Oliveira, V.B.; Rangel, C.M.; Pinho, C.; Pinto, A.M.F.R. Water transport through a PEM fuel cell: A one-dimensional model with heat transfer effects. Chem. Eng. Sci. 2009, 64, 2216–2225. [Google Scholar] [CrossRef]
- Casalegno, A.; Marchesi, R.; Parenti, D. Two-Phase 1D+1D Model of a DMFC: Development and Validation on Extensive Operating Conditions Range. Fuel Cells 2010, 8, 37–44. [Google Scholar] [CrossRef]
- Salva, J.A.; Iranzo, A.; Rosa, F.; Tapia, E. Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions. Energy 2016, 101, 100–112. [Google Scholar] [CrossRef]
- Das, P.K.; Li, X.; Liu, Z.S. Analytical approach to polymer electrolyte membrane fuel cell performance and optimization. J. Electroanal. Chem. 2007, 604, 72–90. [Google Scholar] [CrossRef]
- Jiao, K.; Huo, S.; Zu, M.; Jiao, D.; Chen, J.; Du, Q. An analytical model for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 3300–3312. [Google Scholar] [CrossRef]
- Huo, S.; Park, J.W.; He, P.; Wang, D.; Jiao, K. Analytical modeling of liquid saturation jump effect for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Heat Mass Transf. 2017, 112, 891–902. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, Q.; Du, Q.; Yin, Y.; Jiao, K. Analysis of cold start processes in proton exchange membrane fuel cell stacks. J. Power Sources 2013, 224, 99–114. [Google Scholar] [CrossRef]
- Natarajan, D.; Nguyen, T.V. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J. Power Sources 2003, 115, 66–80. [Google Scholar] [CrossRef]
- Ye, Q.; Van Nguyen, T. Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions. J. Electrochem. Soc. 2007, 154, B1242–B1251. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer Electrolyte Fuel Cell Model. J. Electrochem. Soc. 1991, 138, 2334–2342. [Google Scholar] [CrossRef]
- Miansari, M.; Sedighi, K.; Amidpour, M.; Alizadeh, E.; Miansari, M. Experimental and thermodynamic approach on proton exchange membrane fuel cell performance. J. Power Sources 2009, 190, 356–361. [Google Scholar] [CrossRef]
- Haji, S. Analytical modeling of PEM fuel cell i–V curve. Renew. Energy 2011, 36, 451–458. [Google Scholar] [CrossRef]
- Spiegel, C. PEM Fuel Cell Modeling and Simulation Using Matlab; Elsevier: Laguna Hills, CA, USA, 2008; pp. 49–76. [Google Scholar]
- Chakraborty, U.K. Reversible and irrecersible potential and an inaccuracy in popular models in the fuel cell literature. Energies 2018, 11, 1851. [Google Scholar] [CrossRef]
- Mohiuddin, A.K.M.; Basran, N.; Khan, A.A. Modeling and validation of Proton exchange membrane fuel cell (PEMFC). IOP Conf. Ser. Mater. Sci. Eng. 2018, 290, 012026. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, Y.; Yu, S.; Jiao, K. Modeling of cold start processes and performance optimization forproton exchange membrane fuel cell stacks. J. Power Sources 2014, 247, 738–748. [Google Scholar] [CrossRef]
- Akbari, M.H.; Rismanchi, B. Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance. Renew. Energy 2008, 33, 1775–1783. [Google Scholar] [CrossRef]
- Gurau, V.; Liu, H.; Kakac, S. Two-dimensional model for proton exchange membrane fuel cells. AICHE J. 1998, 44, 2410–2422. [Google Scholar] [CrossRef]
- Fan, L.; Guobing, Z.; Kui, J. The performance study of PEMFC under high current and low humidification condition. In Proceedings of the Chinese Society of Engineering Thermophysics, Suzhou, China, 28 Octorber 2017. [Google Scholar]
- Kim, K.H.; Lee, K.Y.; Lee, S.Y.; Cho, E.A.; Lim, T.H.; Kim, H.J.; Yoon, S.P.; Kim, S.H.; Lim, T.W.; Jang, J.H. The effects of relative humidity on the performances of PEMFC MEAs with various Nafion ionomer contents. Int. J. Hydrogen Energy 2010, 35, 13104–13110. [Google Scholar] [CrossRef]
Species | Species Conservation Equation | Region |
---|---|---|
Hydrogen | Flow channel | |
GDLs | ||
CLs | ||
Oxygen | Flow channel | |
GDLs | ||
CLs | ||
Water Vapor (Cathode) | Flow channel | |
GDLs | ||
CLs |
Species | Liquid Water Conservation Equation | Region |
---|---|---|
Liquid water | Anode GDL | |
Anode CL | ||
Anode side of the membrane | ||
Cathode side of the membrane | ||
Cathode CL | ||
Cathode GDL |
Parameter | Symbol | Value |
---|---|---|
Porosity of GDL | 0.3 | |
Porosity of CL | 0.6 | |
Pore diameter of CL | ||
GDL conductivity | 5000 | |
CL conductivity | 5000 | |
BP conductivity | 20000 | |
Absolute permeability of GDL | ||
Absolute permeability of CL | ||
Membrane density | 1980 | |
Reference exchange current density | ||
Anode/cathode transfer coefficient | 0.5, 0.5 | |
Sherwood number | 2.3 | |
Oxygen reference concentration | 3.39 | |
Electron number of anode reaction | 2 | |
Electron number of cathode reaction | 4 |
Parameter | Symbol | Value |
---|---|---|
GDL thickness | 100 | |
BP thickness | 0.001 m | |
CL thickness | 10 | |
Membrane thickness | 25.4 | |
Cell cross-sectional area | 100 cm2 | |
Flow channel length, width, height | 0.2, 0.001, 0.0005 m | |
Operating temperature | 353.15 K | |
Anode/cathode pressure | 2.5, 2.5 | |
Hydrogen/air stoichiometric flow ratio | 2.0, 2.0 | |
Anode/cathode relative humidity | 1.0, 1.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Qu, Z.; Wang, W.; Ren, G.; Hu, B. Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell. ChemEngineering 2019, 3, 23. https://doi.org/10.3390/chemengineering3010023
Yuan Y, Qu Z, Wang W, Ren G, Hu B. Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell. ChemEngineering. 2019; 3(1):23. https://doi.org/10.3390/chemengineering3010023
Chicago/Turabian StyleYuan, Yuan, Zhiguo Qu, Wenkai Wang, Guofu Ren, and Baobao Hu. 2019. "Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell" ChemEngineering 3, no. 1: 23. https://doi.org/10.3390/chemengineering3010023
APA StyleYuan, Y., Qu, Z., Wang, W., Ren, G., & Hu, B. (2019). Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell. ChemEngineering, 3(1), 23. https://doi.org/10.3390/chemengineering3010023