The Role of Cannabis within an Emerging Perspective on Schizophrenia
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bartels, S.J.; Clark, R.E.; Peacock, W.J.; Dums, A.R.; Pratt, S.I. Medicare and Medicaid costs for schizophrenia patients by age cohort compared with costs for depression, dementia, and medically ill patients. Am. J. Geriatr. Psychiatry 2003, 11, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Messias, E.; Chen, C.-Y.; Eaton, W.W. Epidemiology of schizophrenia: Review of findings and myths. Psychiatr. Clin. N. Am. 2007, 30, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A Systematic Review of the Prevalence of Schizophrenia. PLoS Med. 2005, 2, e141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, P.R.; Lawson, K.A.; Barner, J.C.; Rascati, K.L. Estimating the direct and indirect costs for community-dwelling patients with schizophrenia. J. Pharm. Health Serv. Res. 2013, 4, 187–194. [Google Scholar] [CrossRef]
- Alam, R.; Abdolmaleky, H.M.; Zhou, J.-R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. Part B 2017, 174B, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Lau, F.S. A review of the epidemiology of schizophrenia. In Modeling the Psychopathological Dimensions of Schizophrenia: From molecules to behavior; Pletnikov, M.V., Waddington, J.L., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2016; pp. 17–30. [Google Scholar]
- Roth, T.L.; Lubin, F.D.; Sodhi, M.; Kleinman, J.E. Epigenetic mechanisms in schizophrenia. Biochim. Biophys. Acta 2009, 1790, 869–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, R.W.; Weiner, E.; Kelly, D.L.; Gold, J.M.; Keller, W.R.; Waltz, J.A.; McMahon, R.P.; Gorelick, D.A. Rasagiline in the Treatment of the Persistent Negative Symptoms of Schizophrenia. Schizophr. Bull. 2015, 41, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Miura, I.; Kanno-Nozaki, K.; Horikoshi, S.; Mashiko, H.; Niwa, S.; Yabe, H. Associations between five-factor model of the Positive and Negative Syndrome Scale and plasma levels of monoamine metabolite in patients with schizophrenia. Psychiatry Res. 2015, 23, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Delgado, P.L. Depression: The case for a monoamine deficiency. J. Clin. Psychiatry 2000, 61, 7–11. [Google Scholar] [PubMed]
- Hirvonen, J.; Hietala, J. Dopamine receptor imaging in schizophrenia: Focus on genetic vulnerability. In Imaging of the Human Brain in Health and Disease; Seeman, P., Madras, B., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2014; pp. 341–360. [Google Scholar]
- Ng, J.; Papandreou, A.; Heales, S.; Kurian, M. Monoamine neurotransmitter disorders—Clinical advances and future perspectives. Nat. Rev. Neurology 2015, 11, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Tahir, R. Metabolic Effects of Atypical Antipsychotics. 19 November 2007. Available online: https://www.uspharmacist.com/article/metabolic-effects-of-atypical-antipsychotics (accessed on 30 June 2018).
- Guzmán, F. First-generation Antipsychotics: An Introduction. 9 November 2016. Available online: https://psychopharmacologyinstitute.com/antipsychotics/first-generation-antipsychotics/ (accessed on 29 June 2018).
- Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 3rd ed.; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Lieberman, J.A.; Stroup, T.S.; McEvoy, J.P.; Swartz, M.S.; Rosenheck, R.A.; Perkins, D.O.; Keefe, R.S.E.; Davis, S.M.; Davis, C.E.; Lebowitz, B.D.; et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 2005, 12, 1209. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.P.; Tajima-Pozo, K.; Lewczuk, A.; Montañes-Rada, F. Atypical antipsychotics and metabolic syndrome. Cardiovasc. Endocrinol. 2015, 4, 132. [Google Scholar] [CrossRef]
- Browne, S.; Roe, M.; Lane, A.; Gervin, M.; Dooher, M.; Kinsella, A.; Larkin, C.; O’Callaghan, E. Quality of life in schizophrenia: Relationship to sociodemographic factors, symptomatology and tardive dyskinesia. Acta Psychiatr. Scand. 1996, 94, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Tay, J.A.; Subramaniam, M.; Pek, E.; Machin, D. Mortality rates among patients with schizophrenia and tardive dyskinesia. J. Clin. Psychopharmacol. 2009, 29, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.; Thuras, P. Mortality and tardive dyskinesia: Long-term study using the US National Death Index. Br. J. Psychiatry 2009, 194, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Minns, A.B.; Clark, R.F. Toxicology and overdose of atypical antipsychotics. J. Emerg. Med. 2012, 43, 906–913. [Google Scholar] [CrossRef] [PubMed]
- West, S.; Rowbotham, D.; Xiong, G.; Kenedi, C. Clozapine induced gastrointestinal hypomotility: A potentially life threatening adverse event. A review of the literature. Gen. Hosp. Psychiatry 2017, 46, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Rubio, J.M.; Inczedy-Farkas, G.; Birnbaum, M.L.; Kane, J.M.; Leucht, S. Efficacy of 42 pharmacologic cotreatment strategies added to antipsychotic monotherapy in schizophrenia. Systematic overview and quality appraisal of the meta-analytic evidence. JAMA Psychiatry 2017, 74, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.C.; Falkai, P.; Fleischhacker, W.W.; Girgis, R.R.; Kahn, R.M.; Uchida, H.; Zhao, J.; Lieberman, J.A. The long-term effects of antipsychotic medication on clinical course in schizophrenia. Am. J. Psychiatry 2017, 174, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Corves, C.; Arbter, D.; Engel, R.R.; Li, C.; Davis, J.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: A meta-analysis. Lancet 2008, 373, 31–41. [Google Scholar] [CrossRef]
- Andrade, C.C. Antipsychotic drugs in schizophrenia: Relative effects in patients with and without treatment resistance. J. Clin. Psychiatry 2016, 77, e1656–e1660. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J. Effectiveness of Antipsychotic Drugs in Patients with Chronic Schizophrenia. NEJM 2005, 353, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Tonin, F.S.; Piazza, T.; Wiens, A.; Fernandez-Llimos, F.; Pontarolo, R. Adverse events and treatment failure leading to discontinuation of recently approved antipsychotic drugs in schizophrenia: A network meta-analysis. Schizophr. Res. 2015, 169, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.B.; Barnes, T.R.E.; Davies, L.; Dunn, G.; Lloyd, H.; Hayhurst, K.P.; Murray, R.M.; Markwick, A.; Lewis, S.W. Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia. Arch. Gen. Psychiatry 2006, 63, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Kane, J.M.; Citrome, L. Epidemiology, Prevention, and Assessment of Tardive Dyskinesia and Advances in Treatment: (Academic Highlights). J. Clin. Psychiatry 2017, 78, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Suzuki, T.; Remington, G.; Uchida, H. Antipsychotic polypharmacy and corrected QT interval: A systematic review. Can. J. Psychiatry 2015, 60, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Su, Y.; You, Y.; Ma, Y.; Yang, G.; Song, Y.; Liu, X.; Wang, M.; Zhang, L.; et al. The metabolic side effects of 12 antipsychotic drugs used for the treatment of schizophrenia on glucose: A network meta-analysis. BMC Psychiatry 2017, 17, 373. [Google Scholar] [CrossRef] [PubMed]
- Borsboom, D.; Cramer, A.; Kalis, A. Brain disorders? Not really… Why network structures block reductionism in psychopathology research. Behav. Brain Sci. 2018, 24, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.N.; Mailman, R.B. Dopamine receptor signaling and current and future antipsychotic drugs. Handb. Exp. Pharmacol. 2012, 212, 53–86. [Google Scholar]
- Foster, D.J.; Jones, C.K.; Conn, P.J. Emerging approaches for treatment of schizophrenia: Modulation of cholinergic signaling. Discov. Med. 2012, 14, 413–420. [Google Scholar] [PubMed]
- Melancon, B.J.; Tarr, J.C.; Panarese, J.D.; Wood, M.R.; Lindsley, C.W. Allosteric modulation of the M1 muscarinic acetylcholine receptor: Improving cognition and a potential treatment for schizophrenia and Alzheimer’s disease. Drug Discov. Today 2013, 18, 1185–1199. [Google Scholar] [CrossRef] [PubMed]
- Menniti, F.S.; Lindsley, C.W.; Conn, P.J.; Pandit, J.; Zagouras, P.; Volkmann, R.A. Allosteric modulators for the treatment of schizophrenia: Targeting glutamatergic networks. Curr. Top. Med. Chem. 2013, 13, 26–54. [Google Scholar] [CrossRef] [PubMed]
- Suddath, R.L.; Christison, G.W.; Torrey, E.F.; Casanova, M.; Weinberger, D.R. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N. Engl. J. Med. 1990, 322, 789–794. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013; pp. 99–105. [Google Scholar]
- Monji, A.; Kato, T.A.; Mizoguchi, Y.; Horikawa, H.; Seki, Y.; Kasai, M.; Yamada, S.; Kanba, S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Progr. Neuropsychopharmacol. Biol. Psychiatry 2013, 42, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Aricioglu, F.; Ozkartal, C.S.; Unal, G.; Dursun, S.; Cetin, M.; Mueller, N. Neuroinflammation in schizophrenia: A critical review and the future. Bull. Clin. Psychopharmacol. 2016, 26, 429–437. [Google Scholar] [CrossRef]
- Müller, N.; Weidinger, E.; Leitner, B.; Schwarz, M.J. The role of inflammation in schizophrenia. Front. Neurosci. 2015, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Trépanier, M.O.; Hopperton, K.E.; Mizrahi, R.; Mechawar, N.; Bazinet, R.P. Postmortem evidence of cerebral inflammation in schizophrenia: A systematic review. Mol. Psychiatry 2016, 21, 1009–1026. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, A.C.C.; Matias, D.; Garcia, C.; Amaral, R.; Geraldo, L.H.; Freitas, C.; Lima, F.R.S. The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell Neurosci. 2014, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Schoknecht, K.; Shalev, H. Blood–brain barrier dysfunction in brain diseases: Clinical experience. Epilepsia 2012, 53, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Bogerts, B.; Sarnyai, Z.; Walter, M.; Gos, T.; Bernstein, H.G.; Myint, A.M. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood–brain barrier integrity. World J. Biol. Psychiatry 2012, 13, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Stolp, H.B.; Dziegielewska, K.M.; Ek, C.J.; Potter, A.M.; Saunders, N.R. Long-term changes in blood–brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur. J. Neurosci. 2005, 22, 2805–2816. [Google Scholar] [CrossRef] [PubMed]
- Banjara, M.; Ghosh, C.; Dadas, A.; Mazzone, P.; Janigro, D. Detection of brain-directed autoantibodies in the serum of non-small cell lung cancer patients. PLoS ONE 2017, 12, e0181409. [Google Scholar] [CrossRef] [PubMed]
- Finke, C.; Bartels, F.; Lütt, A.; Prüss, H.; Harms, L. High prevalence of neuronal surface autoantibodies associated with cognitive deficits in cancer patients. J. Neurol. 2017, 264, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Abboud, H.; Rossman, I.; Mealy, M.; Hill, E.; Thompson, N.; Banerjee, A.; Probasco, J.; Levy, M. Neuronal autoantibodies: Differentiating clinically relevant and clinically irrelevant results. J. Neurol. 2017, 264, 2284–2292. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S. Prenatal infection as a risk factor for schizophrenia. Schizophr. Bull. 2006, 32, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.; Prüss, H. Frequencies of neuronal autoantibodies in healthy controls: Estimation of disease specificity. Neurol. Neuroimmunol. Neuroinflammation 2017, 4, e386. [Google Scholar] [CrossRef] [PubMed]
- Arinola, G.; Idonije, B.; Akinlade, K.; Ihenyen, O. Essential trace metals and heavy metals in newly diagnosed schizophrenic patients and those on anti-psychotic medication. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2010, 15, 245–249. [Google Scholar]
- Dean, K.; Murray, R.M. Environmental risk factors for psychosis. Dialogues Clin. Neurosci. 2005, 7, 69–80. [Google Scholar] [PubMed]
- Howes, O.D.; McCutcheon, R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: A reconceptualization. Transl. Psychiatry 2017, 7, e1024. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, N.; Ettinger, U.; Hill, A.; Frenzel, L.; Meyhöfer, I.; Wagner, M.; Kumari, V. Sleep deprivation disrupts prepulse inhibition and induces psychosis-like symptoms in healthy humans. J. Neurosci. 2014, 34, 9134–9140. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Prandovszky, E.; Castiglione, J.; Yolken, R.H. Gastroenterology issues in schizophrenia: Why the gut matters. Curr. Psychiatry Rep. 2015, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Beumer, W.; Drexhage, R.C.; De Wit, H.; Versnel, M.A.; Drexhage, H.A.; Cohen, D. Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 2012, 37, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reale, M.; Patruno, A.; De Lutiis, M.A.; Pesce, M.; Felaco, M.; Di Giannantonio, M.; Di Nicola, M.; Grilli, A. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci. 2011, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.; Weidinger, E.; Leitner, B.; Schwarz, M. The role of inflammation and the immune system in schizophrenia. Neurobiol. Schizophr. 2016, 179–193. [Google Scholar] [CrossRef]
- Riedmüller, R.; Müller, S. Ethical Implications of the Mild Encephalitis Hypothesis of Schizophrenia. Front. Psychiatry 2017, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Walter, M.; Glanz, W.; Sarnyai, Z.; Bernstein, H.-G.; Vielhaber, S.; Kästner, A.; Skalej, M.; Jordan, W.; Schiltz, K.; et al. Increased Prevalence of Diverse N-Methyl-d-Aspartate Glutamate Receptor Antibodies in Patients with an Initial Diagnosis of Schizophrenia Specific Relevance of IgG NR1a Antibodies for Distinction from N-Methyl-d-Aspartate Glutamate Receptor Encephalitis. JAMA Psychiatry 2013, 70, 271–278. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Health Effects of Marijuana. An Evidence Review and Research Agenda; National Academies Press (US): Washington, DC, USA, 2017. [Google Scholar]
- Proal, A.C.; Fleming, J.; Galvez-Buccollini, J.A.; DeLisi, L.E. A controlled family study of cannabis users with and without psychosis. Schizophr. Res. 2014, 15, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Di Forti, M.; Marconi, A.; Carra, E.; Fraietta, S.; Trotta, A.; Bonomo, M.; Bianconi, F.; Gardner-Sood, P.; O’Connor, J.; Russo, M.; et al. Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: A case-control study. Lancet Psychiatry 2015, 2, 233–238. [Google Scholar] [CrossRef]
- Gage, S.H.; Jones, H.J.; Burgess, S.; Bowden, J.; Davey Smith, G.; Zammit, S.; Munafo, M.R. Assessing causality in associations between cannabis use and schizophrenia risk: A two-sample Mendelian randomization study. Psychol. Med. 2017, 47, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M. Could cannabidiol be used as an alternative to antipsychotics? J. Psychiatr. Res. 2016, 80, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Gururajan, A.; Malone, D.T. Does cannabidiol have a role in the treatment of schizophrenia? Schizophr. Res. 2016, 176, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signaling and the deteriorating brain. Nat. Rev. Neurosci. 2015, 16, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Karhson, D.S.; Hardan, A.Y.; Parker, K.J. Endocannabinoid signaling in social functioning: An RDoC perspective. Transl. Psychiatry 2016, 6, e905. [Google Scholar] [CrossRef] [PubMed]
- Russo, E. Clinical Endocannabinoid Deficiency (CECD): Can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol. Lett. 2018, 29, 192–200. [Google Scholar]
- Smith, S.C.; Wagner, M.S. Clinical endocannabinoid deficiency (CECD) revisited: Can this concept explain the therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol. Lett. 2014, 35, 198–201. [Google Scholar] [PubMed]
- Acharya, N.; Penukonda, S.; Shcheglova, T.; Hagymasi, A.T.; Basu, S.; Srivastava, P.K. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc. Natl. Acad. Sci. USA 2017, 114, 5005–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermudez-Silva, F.J.; Viveros, M.P.; McPartland, J.M.; Rodriguez de Fonseca, F. The endocannabinoid system, eating behavior and energy homeostasis: The end or a new beginning? Pharmacol. Biochem. Behav. 2010, 95, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, C.; Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Androvicova, R.; Horace, J.; Stark, T.; Drago, F.; Micale, V. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon? Pharmacol. Res. 2017, 115, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Crosstalk between the gut microbiota and the endocannabinoid system: Impact on the gut barrier function and the adipose tissue. Clin. Microbiol. Infect. 2012, 18, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, S.S.; Agarwal, A.; Syriac, A. Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility. J. Assist. Reprod. Genet. 2015, 32, 1575–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muccioli, G.G.; Naslain, D.; Bäckhed, F.; Reigstad, C.S.; Lambert, D.M.; Delzenne, N.M.; Cani, P.D. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 2010, 6, 392. [Google Scholar] [CrossRef] [PubMed]
- Pava, M.J.; Makriyannis, A.; Lovinger, D.M. Endocannabinoid signaling regulates sleep stability. PLoS ONE 2016, 11, e0152473. [Google Scholar] [CrossRef] [PubMed]
- Sierra, S.; Luquin, N.; Navarro-Otano, J. The endocannabinoid system in cardiovascular function: Novel insights and clinical implications. Clin. Auton. Res. 2018, 1, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Tegeder, I. Endocannabinoids as guardians of metastasis. Int. J. Mol. Sci. 2016, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Page, E.; Schaefer, C.; Chatten, K.; Manocha, A.; Gulati, S.; Brandner, B.; Leweke, F. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br. J. Psychiatry 2013, 202, 381–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuffrida, A.; Leweke, F.M.; Gerth, C.; Schreiber, D.; Koethe, D.; Faulhaber, J.; Klosterkötter, J.; Piomelli, D. Cerebrospinal Anandamide Levels are Elevated in Acute Schizophrenia and are Inversely Correlated with Psychotic Symptoms. Neuropsychopharmacology 2004, 29, 2108–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethem, D. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [PubMed]
- Graeber, M.B.; Li, W.; Rodriguez, M.L. Role of microglia in CNS inflammation. FEBS Lett. 2011, 585, 3798–3805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Joh, T.H. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med. 2006, 38, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 1995, 232, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Maresz, K.; Carrier, E.J.; Ponomarev, E.D.; Hillard, C.J.; Dittel, B.N. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J. Neurochem. 2005, 95, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.A.; Griffin-Thomas, L. Emerging role of the CB2 cannabinoid receptor in immune regulation and therapeutic prospects. Expert Rev. Mol. Med. 2009, 11, e3. [Google Scholar] [CrossRef] [PubMed]
- Karmaus, P.W.F.; Chen, W.; Crawford, R.B.; Harkema, J.R.; Kaplan, B.L.F.; Kaminski, N.E. Deletion of cannabinoid receptors 1 and 2 exacerbates APC function to increase inflammation and cellular immunity during influenza infection. J. Leukoc. Biol. 2011, 90, 983–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 2015, 172, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, C.; Blanchet, M.; Laviolette, M.; Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 2016, 73, 4449–4470. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S. Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Curr. Opin. Psychiatry 2014, 27, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Liencres, C.; Tas, C.; Brown, E.C.; Erdin, S.; Onur, E.; Cubukcoglu, Z.; Aydemir, O.; Esen-Danaci, A.; Brüne, M. Oxidative stress in schizophrenia: A case-control study on the effects on social cognition and neurocognition. BMC Psychiatry 2014, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, S.; Jaquet, V.; Trabace, L.; Krause, K.-H. Severe life stress and oxidative stress in the brain: From animal models to human pathology. Antioxid. Redox Signal. 2013, 18, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Lipina, C.; Hundal, H.S. Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol. 2016, 6, 150276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Salam, O.M.E.; El-Shamarka, M.E.-S.; Salem, N.A.; El-Din MGaafar, A. Effects of Cannabis sativa extract on haloperidol-induced catalepsy and oxidative stress in the mice. EXCLI J. 2012, 11, 45–58. [Google Scholar] [PubMed]
- Valvassori, S.S.; Elias, G.; de Souza, B.; Petronilho, F.; Dal-Pizzol, F.; Kapczinski, F.; Trzesniak, C.; Tumas, V.; Dursun, S.; Nisihara Chagas, M.H.; et al. Effects of cannabidiol on amphetamine-induced oxidative stress generation in an animal model of mania. J. Psychopharmacol. 2009, 25, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Ferrer, I. CB2 Cannabinoid Receptor ss Potential Target against Alzheimer’s Disease. Front. Neurosci. 2016, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Koppel, J.; Davies, P. Targeting the endocannabinoid system in Alzheimer’s disease. J. Alzheimer’s Disease 2008, 15, 495–504. [Google Scholar] [CrossRef]
- Mcguire, P.; Robson, P.; Cubala, W.J.; Vasile, D.; Morrison, P.D.; Barron, R.; Taylor, A.; Wright, S. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: A multicenter randomized controlled trial. Am. J. Psychiatry 2017, 175, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Blazquez, P.; Rodriguez-Munoz, M.; Sanchez-Blazquez, P.; Rodriguez-Munoz, M.; Garzon, J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: Implications in psychosis and schizophrenia. Front. Pharmacol. 2014, 4, 169. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.; Sundram, S.; Bradbury, R.; Scarr, E.; Copolov, D. Studies on [3H]CP-55940 binding in the human central nervous system: Regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 2001, 103, 9–15. [Google Scholar] [CrossRef]
- Voruganti, L.N.; Slomka, P.; Zabel, P.; Mattar, A.; Awad, A.G. Case report: Cannabis induced dopamine release: An in-vivo SPECT study. Psychiatry Res. Neuroimaging 2001, 107, 173–177. [Google Scholar] [CrossRef]
- Bloomfield, M.A.; Ashok, A.H.; Volkow, N.D.; Howes, O.D. The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature 2016, 7629, 369. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Morrison, P.D.; Fusar-Poli, P.; Martín-Santos, R.; Borgwardt, S.J.; Winton-Brown, T.; Nosarti, C.; O’Carroll, C.M.; Seal, M.; Allen, P.; et al. Opposite effects of Δ-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 2010, 35, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.M.; Denovan-Wright, E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015, 172, 4790–4805. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Rohleder, C.; Müller, J.K.; Lange, B.; Leweke, F.M. Cannabidiol as a potential new type of an antipsychotic. A critical review of the evidence. Front. Pharmacol. 2016, 7, 422. [Google Scholar] [CrossRef] [PubMed]
- Alhouayek, M.; Bottemanne, P.; Muccioli, G.G.; Makriyannis, A. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2017, 1862, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Alhouayek, M.; Muccioli, G.G. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov. Today 2014, 19, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Stith, S.S.; Vigil, J.M.V. Federal barriers to Cannabis research. Science 2016, 352, 1182. [Google Scholar] [CrossRef] [PubMed]
- Griswold, K.S.; Regno, P.A.; Berger, R.C. Recognition and Differential Diagnosis of Psychosis in Primary Care. Am. Fam. Phys. 2015, 91, 856–863. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diviant, J.P.; Vigil, J.M.; Stith, S.S. The Role of Cannabis within an Emerging Perspective on Schizophrenia. Medicines 2018, 5, 86. https://doi.org/10.3390/medicines5030086
Diviant JP, Vigil JM, Stith SS. The Role of Cannabis within an Emerging Perspective on Schizophrenia. Medicines. 2018; 5(3):86. https://doi.org/10.3390/medicines5030086
Chicago/Turabian StyleDiviant, Jegason P., Jacob M. Vigil, and Sarah S. Stith. 2018. "The Role of Cannabis within an Emerging Perspective on Schizophrenia" Medicines 5, no. 3: 86. https://doi.org/10.3390/medicines5030086
APA StyleDiviant, J. P., Vigil, J. M., & Stith, S. S. (2018). The Role of Cannabis within an Emerging Perspective on Schizophrenia. Medicines, 5(3), 86. https://doi.org/10.3390/medicines5030086