Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer
Abstract
:1. Introduction
2. Anticancer Effects of Green Tea Polyphenols
2.1. Anticancer Effects Shown in Epidemiological Studies
2.2. Mechanisms Underlying the Anticancer Effects of Green Tea
2.3. Cancer Treatment Strategies Based on Green Tea Consumption
3. Bladder Cancer and Green Tea
3.1. Epidemiological Studies on Bladder Cancer
3.1.1. Case-Control and Cohort Studies
3.1.2. Meta-Analyses
3.2. Mechanisms Underlying the Anticancer Effects of Green Tea in Bladder Cancer
3.2.1. Cancer Cell Proliferation and Cell Death
3.2.2. Other Cancer-Related Mechanisms
3.2.3. Cancer-Related Potential Molecular Targets of Green Tea Polyphenols
3.2.4. Correlation with Genetic Polymorphisms
3.3. Anticancer Effects of Green Tea in Animal Models
3.4. Bladder Cancer Treatment and Prevention Strategies Based on Green Tea Consumption
3.5. Safety
4. Future Direction
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, R.; Morré, D.J.; Morré, D.M. Medicinal benefits of green tea: Part I. Review of noncancer health benefits. J. Altern. Complement. Med. 2005, 11, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Bedrood, Z.; Rameshrad, M.; Hosseinzadeh, H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother. Res. 2018, 32, 1163–1180. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Bag, A.; Bag, N. Tea polyphenols and prevention of epigenetic aberrations in cancer. J. Nat. Sci. Biol. Med. 2018, 9, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, H.; Li, G.X.; Yang, Z.; Guan, F.; Jin, H. Cancer prevention by tea: Evidence from laboratory studies. Pharmacol. Res. 2011, 64, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Mizusawa, J.; Kasuga, Y.; Yokoyama, S.; Onuma, H.; Nishimura, H.; Kusama, R.; Tsugane, S. Green tea consumption and breast cancer risk in Japanese women: A case-control study. Nutr. Cancer 2014, 66, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sawada, N.; Iwasaki, M.; Budhathoki, S.; Hidaka, A.; Yamaji, T.; Shimazu, T.; Sasazuki, S.; Narita, Y.; Tsugane, S. Coffee and green tea consumption in relation to brain tumor risk in a Japanese population. Int. J. Cancer 2016, 139, 2714–2721. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.L.; Li, Z.H.; Wang, Z.C.; Zhang, H.L. Green tea consumption and risk of pancreatic cancer: A meta-analysis. Nutrients 2014, 6, 4640–4650. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Yuan, J.M.; Koh, W.P.; Lee, H.P.; Yu, M.C. Green tea and black tea consumption in relation to colorectal cancer risk: The Singapore Chinese Health Study. Carcinogenesis 2007, 28, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Oze, I.; Matsuo, K.; Kawakita, D.; Hosono, S.; Ito, H.; Watanabe, M.; Hatooka, S.; Hasegawa, Y.; Shinoda, M.; Tajima, K.; et al. Coffee and green tea consumption is associated with upper aerodigestive tract cancer in Japan. Int. J. Cancer 2014, 135, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Boehm, K.; Borrelli, F.; Ernst, E.; Habacher, G.; Hung, S.K.; Milazzo, S.; Horneber, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2009, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, Y.W.; Wang, S.; Wu, J.; Mao, Q.Q.; Zheng, X.Y.; Xie, L.P. A meta-analysis of tea consumption and the risk of bladder cancer. Urol. Int. 2013, 90, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Tsao, A.S.; Liu, D.; Martin, J.; Tang, X.M.; Lee, J.J.; El-Naggar, A.K.; Wistuba, I.; Culotta, K.S.; Mao, L.; Gillenwater, A.; et al. Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev. Res. 2009, 2, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget 2016, 7, 16158–16171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol. Cells 2018, 41, 73–82. [Google Scholar] [PubMed]
- Shi, J.; Liu, F.; Zhang, W.; Liu, X.; Lin, B.; Tang, X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol. Rep. 2015, 33, 2972–2980. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Guo, X.; Wang, H.; Zhou, T.; Wang, X. Differences in the Effects of EGCG on Chromosomal Stability and Cell Growth between Normal and Colon Cancer Cells. Molecules 2018, 23, 788. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Suga, K.; Nakachi, K. Cancer-preventive effects of drinking green tea among a Japanese population. Prev. Med. 1997, 26, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Nakachi, K.; Matsuyama, S.; Miyake, S.; Suganuma, M.; Imai, K. Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 2000, 13, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bettuzzi, S.; Brausi, M.; Rizzi, F.; Castagnetti, G.; Peracchia, G.; Corti, A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res. 2006, 66, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Nakachi, K.; Suemasu, K.; Suga, K.; Takeo, T.; Imai, K.; Higashi, Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn. J. Cancer Res. 1998, 89, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Tajima, K.; Mizutani, M.; Iwata, H.; Iwase, T.; Miura, S.; Hirose, K.; Hamajima, N.; Tominaga, S. Regular consumption of green tea and the risk of breast cancer recurrence: Follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett. 2001, 167, 175–182. [Google Scholar] [CrossRef]
- Shimizu, M.; Fukutomi, Y.; Ninomiya, M.; Nagura, K.; Kato, T.; Araki, H.; Suganuma, M.; Fujiki, H.; Moriwaki, H. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 3020–3025. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Fujiki, H.; Kobayashi, H.; Go, H.; Miyado, K.; Sadano, H.; Shimokawa, R. Effect of (−)-epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines. Cancer Lett. 1992, 65, 51–54. [Google Scholar] [CrossRef]
- Luo, K.W.; Wei, C.; Lung, W.Y.; Wei, X.Y.; Cheng, B.H.; Cai, Z.M.; Huang, W.R. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J. Nutr. Biochem. 2017, 41, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, Y.; Hu, J.; Ma, Q.; Xu, Y.; Zhang, Y.; Zhang, F.; Liu, Y. Tea polyphenols induce S phase arrest and apoptosis in gallbladder cancer cells. Braz. J. Med. Biol. Res. 2018, 51, 6891. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hou, L.; Gu, S.; Zuo, X.; Meng, D.; Luo, M.; Zhang, X.; Huang, S.; Zhao, X. Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncol. Rep. 2015, 33, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; et al. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun. 2017, 482, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Komori, A.; Yatsunami, J.; Okabe, S.; Abe, S.; Hara, K.; Suganuma, M.; Kim, S.J.; Fujiki, H. Anticarcinogenic activity of green tea polyphenols. Jpn. J. Clin. Oncol. 1993, 23, 186–190. [Google Scholar] [PubMed]
- Lecumberri, E.; Dupertuis, Y.M.; Miralbell, R.; Pichard, C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr. 2013, 32, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ye, H.L.; Zhang, G.; Yao, W.M.; Chen, X.Z.; Zhang, F.C.; Liang, G. Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PLoS ONE 2014, 9, 85771. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.A. Combination of siRNA-directed gene silencing with epigallocatechin-3-gallate (EGCG) reverses drug resistance in human breast cancer cells. J. Chem. Biol. 2015, 9, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suganuma, M.; Saha, A.; Fujiki, H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 2011, 102, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, H.; Sueoka, E.; Watanabe, T.; Suganuma, M. Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. J. Cancer Prev. 2015, 20, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, D.; Zhu, K. SOX2OT variant 7 contributes to the synergistic interaction between EGCG and Doxorubicin to kill osteosarcoma via autophagy and stemness inhibition. J. Exp. Lin. Cancer Res. 2018, 37, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calgarotto, A.K.; Maso, V.; Junior, G.C.F.; Nowill, A.E.; Filho, P.L.; Vassallo, J.; Saad, S.T.O. Antitumor activities of Quercetin and Green Tea in xenografts of human leukemia HL60 cells. Sci. Rep. 2018, 8, 3459. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Henning, S.M.; Heber, D.; Vadgama, J.V. Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. J. Nutr. Biochem. 2015, 26, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.E.; Tan, S.; Gao, S.J.; Yongvongsoontorn, N.; Kim, S.H.; Lee, J.H.; Choi, H.S.; Yano, H.; Zhuo, L.; Kurisawa, M.; et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014, 9, 907–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, K.; Chung, J.E.; Gao, S.J.; Yongvongsoontorn, N.; Kurisawa, M. Highly Augmented Drug Loading and Stability of Micellar Nanocomplexes Composed of Doxorubicin and Poly(ethylene glycol)-Green Tea Catechin Conjugate for Cancer Therapy. Adv. Mater. 2018, 30, 1706963. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.; Bray, F.; Lortet-Tieulent, J.; Goodman, M.; Jemal, A. International variations in bladder cancer incidence and mortality. Eur. Urol. 2014, 66, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Abufaraj, M.; Gust, K.; Moschini, M.; Foerster, B.; Soria, F.; Mathieu, R.; Shariat, S.F. Management of muscle invasive, locally advanced and metastatic urothelial carcinoma of the bladder: A literature review with emphasis on the role of surgery. Transl. Androl. Urol. 2016, 5, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zeng, X.T.; Liu, T.Z.; Zhang, C.; Yang, Z.H.; Li, S.; Chen, X.Y. Fruits and vegetables intake and risk of bladder cancer: A PRISMA-compliant systematic review and dose-response meta-analysis of prospective cohort studies. Medicine (Baltimore) 2015, 94, 759. [Google Scholar] [CrossRef] [PubMed]
- Philippou, Y.; Hadjipavlou, M.; Khan, S.; Rane, A. Complementary and alternative medicine (CAM) in prostate and bladder cancer. BJU Int. 2013, 112, 1073–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde, V.R.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. Tea (Camellia sinensis (L.)): A putative anticancer agent in bladder carcinoma? Anticancer Agents Med. Chem. 2015, 15, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Kamat, A.; Barton, G.H.; Dinney, C.P.; Lin, J. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk. Br. J. Cancer 2013, 108, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Wakai, K.; Hirose, K.; Takezaki, T.; Hamajima, N.; Ogura, Y.; Nakamura, S.; Hayashi, N.; Tajima, K. Foods and beverages in relation to urothelial cancer: Case-control study in Japan. Int. J. Urol. 2004, 11, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkens, L.R.; Kadir, M.M.; Kolonel, L.N.; Nomura, A.M.; Hankin, J.H. Risk factors for lower urinary tract cancer: the role of total fluid consumption, nitrites and nitrosamines, and selected foods. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 161–166. [Google Scholar] [PubMed]
- Chyou, P.H.; Nomura, A.M.; Stemmermann, G.N. A prospective study of diet, smoking, and lower urinary tract cancer. Ann. Epidemiol. 1993, 3, 211–216. [Google Scholar] [CrossRef]
- Nagano, J.; Kono, S.; Preston, D.L.; Moriwaki, H.; Sharp, G.B.; Koyama, K.; Mabuchi, K. Bladder-cancer incidence in relation to vegetable and fruit consumption: a prospective study of atomic-bomb survivors. Int. J. Cancer 2000, 86, 132–138. [Google Scholar] [CrossRef]
- Kurahashi, N.; Inoue, M.; Iwasaki, M.; Sasazuki, S.; Tsugane, S. Coffee, green tea, and caffeine consumption and subsequent risk of bladder cancer in relation to smoking status: A prospective study in Japan. Cancer Sci. 2009, 100, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Hemelt, M.; Hu, Z.; Zhong, Z.; Xie, L.P.; Wong, Y.C.; Tam, P.C.; Cheng, K.K.; Ye, Z.; Bi, X.; Lu, Q.; et al. Fluid intake and the risk of bladder cancer: Results from the South and East China case-control study on bladder cancer. Int. J. Cancer 2010, 127, 638–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, M.M.; Bas Bueno-de-Mesquita, H.B.; Büchner, F.L.; Aben, K.K.; Kampman, E.; Egevad, L.; Overvad, K.; Tjønneland, A.; Roswall, N.; Clavel-Chapelon, F. Fluid intake and the risk of urothelial cell carcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 2011, 128, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Xie, B.; Mao, Q.; Kong, D.; Lin, Y.; Zheng, X. Tea consumption and risk of bladder cancer: A meta-analysis. World J. Surg. Oncol. 2012, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, F.; Huang, X.; Hua, Q.; Huang, T.; Liu, Z.; Liu, Z.; Zhang, Z.; Liao, C.; Chen, Y.; et al. The association of tea consumption with bladder cancer risk: A meta-analysis. Asia Pac. J. Clin. Nutr. 2013, 22, 128–137. [Google Scholar] [PubMed]
- Zhang, Y.F.; Xu, Q.; Lu, J.; Wang, P.; Zhang, H.W.; Zhou, L.; Ma, X.Q.; Zhou, Y.H. Tea consumption and the incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Eur. J. Cancer Prev. 2015, 24, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.; Zeng, X.T.; Li, S.; Kwong, J.S.; Liu, T.Z.; Wang, X.H. Tea Consumption and Risk of Bladder Cancer: A Dose-Response Meta-Analysis. Front. Physiol. 2017, 7, 693. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yuan, H.; Li, J.; Tang, Y.; Pu, C.; Han, P. Relationship between bladder cancer and total fluid intake: A meta-analysis of epidemiological evidence. World J. Surg. Oncol. 2014, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 2006, 66, 2500–2505. [Google Scholar] [CrossRef] [PubMed]
- Kemberling, J.K.; Hampton, J.A.; Keck, R.W.; Gomez, M.A.; Selman, S.H. Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J. Urol. 2003, 170, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Ye, Z.Q.; Koo, M.W. Growth inhibition and cell cycle arrest effects of epigallocatechin gallate in the NBT-II bladder tumour cell line. BJU Int. 2004, 93, 1082–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieger-Christ, K.M.; Hanley, R.; Lodowsky, C.; Bernier, T.; Vemulapalli, P.; Roth, M.; Kim, J.; Yee, A.S.; Le, S.M.; Marie, P.J.; et al. The green tea compound, (−)-epigallocatechin-3-gallate downregulates N-cadherin and suppresses migration of bladder carcinoma cells. J. Cell Biochem. 2007, 102, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Xie, L.P.; Zheng, X.Y.; Wang, Y.B.; Bai, Y.; Shen, H.F.; Li, L.C.; Dahiya, R. A component of green tea, (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem. Biophys. Res. Commun. 2007, 354, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Philips, B.J.; Coyle, C.H.; Morrisroe, S.N.; Chancellor, M.B.; Yoshimura, N. Induction of apoptosis in human bladder cancer cells by green tea catechins. Biomed. Res. 2009, 4, 207–215. [Google Scholar] [CrossRef]
- Chen, N.G.; Lu, C.C.; Lin, Y.H.; Shen, W.C.; Lai, C.H.; Ho, Y.J.; Chung, J.G.; Lin, T.H.; Lin, Y.C.; Yang, J.S. Proteomic approaches to study epigallocatechin gallate-provoked apoptosis of TSGH-8301 human urinary bladder carcinoma cells: Roles of AKT and heat shock protein 27-modulated intrinsic apoptotic pathways. Oncol. Rep. 2011, 26, 939–947. [Google Scholar] [PubMed]
- Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials 2011, 32, 7633–7640. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Morselli, E.; Vicencio, J.M.; Kepp, O.; Joza, N.; Tajeddine, N.; Kroemer, G. Life, death and burial: Multifaceted impact of autophagy. Biochem. Soc. Trans. 2008, 36, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Dower, C.M.; Wills, C.A.; Frisch, S.M.; Wang, H.G. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Wilde, L.; Tanson, K.; Curry, J.; Martinez-Outschoorn, U. Autophagy in cancer: A complex relationship. Biochem. J. 2018, 475, 1939–1954. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell 2010, 40, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Liuzzi, J.P.; Guo, L.; Yoo, C.; Stewart, T.S. Zinc and autophagy. BioMetals 2014, 27, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, B.; Zhang, X.; Ma, Y.; Zhang, A. Fangchinoline Induces Apoptosis, Autophagy and Energetic Impairment in Bladder Cancer. Cell Physiol. Biochem. 2017, 43, 1003–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, B.; Liu, W.; Xu, X.; Yang, Y.; Yi, Q.; Guo, F.; Li, J.; Zhou, J.; Kou, Q. Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells. Oncol. Rep. 2017, 38, 3137–3143. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Lin, Y.; Gou, X.; He, W. Tea Polyphenol inhibits autophagy to sensitize Epirubicin-induced apoptosis in human bladder cancer cells. Neoplasma 2017, 64, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Matsuo, T.; Sagara, Y.; Ohba, K.; Ohyama, K.; Sakai, H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int. J. Mol. Sci. 2017, 18, 2214. [Google Scholar] [CrossRef] [PubMed]
- Coyle, C.H.; Philips, B.J.; Morrisroe, S.N.; Chancellor, M.B.; Yoshimura, N. Antioxidant effects of green tea and its polyphenols on bladder cells. Life Sci. 2008, 83, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, I.; Subramanian, A.; Huang, C.H.; Godwin, A.K.; Van Veldhuizen, P.J.; Banerjee, S.; Banerjee, S.K. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review. Int. J. Mol. Sci. 2017, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Saeki, K.; Hayakawa, S.; Nakano, S.; Ito, S.; Oishi, Y.; Suzuki, Y.; Isemura, M. In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3-O-gallate (EGCG) with Proteins That Explain the Health Benefits of Green Tea. Molecules 2018, 23, 1295. [Google Scholar] [CrossRef] [PubMed]
- Duggan, B.J.; Gray, S.; Johnston, S.R.; Williamson, K.; Miyaki, H.; Gleave, M. The role of antisense oligonucleotides in the treatment of bladder cancer. Urol. Res. 2002, 30, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Kim, G.Y.; Hwang, H.J.; Kim, W.J.; Choi, Y.H. Diallyl trisulfide-induced apoptosis of bladder cancer cells is caspase-dependent and regulated by PI3K/Akt and JNK pathways. Environ. Toxicol. Pharmacol. 2014, 37, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018, 8, 180002. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Obata, T.; Khan, Q.; Highshaw, R.A.; De Vere White, R.; Sweeney, C. The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int. 2004, 93, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, K.I.; Choi, E.O.; Kwon, D.H.; HwangBo, H.; Kim, M.Y.; Kim, H.J.; Ji, S.Y.; Hong, S.H.; Jeong, J.W.; Park, C.; et al. Induction of apoptosis by ethanol extract of Citrus unshiu Markovich peel in human bladder cancer T24 cells through ROS-mediated inactivation of the PI3K/Akt pathway. Biosci. Trends 2017, 11, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.Y.; Wu, C.C.; Hsu, H.Y.; Chuang, H.Y.; Huang, S.Y.; Tsai, C.H.; Chang, Y.; Tsao, G.S.; Chen, C.L.; Chen, J.Y. EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int. J. Mol. Sci. 2015, 16, 2530–2558. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Katiyar, S.K. Polyphenols from green tea inhibit the growth of melanoma cells through inhibition of class I histone deacetylases and induction of DNA damage. Gene. Cancer. 2015, 6, 49–61. [Google Scholar]
- Bryan, R.T. Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos. Trans R. Soc. Lond B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.J.; Bao, J.S.; Yue, Z.J.; Zeng, F.C.; Cen, S.; Tang, Z.Y.; Kang, X.L. Elevated expression of matrix metalloproteinase-9 is associated with bladder cancer pathogenesis. J Cancer Res. Ther. 2018, 14, 54–59. [Google Scholar]
- Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Antitumor effect of ascorbic acid, lysine, proline, arginine, and green tea extract on bladder cancer cell line T-24. Int. J. Urol. 2006, 4, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Lee, J.; Lee, S.; Yoo, S M.; Kim, J.H.; Kim, W.T.; Kim, W.J.; Park, J. Clinical, prognostic, and therapeutic significance of heat shock protein 27 in bladder cancer. Oncotarget 2018, 9, 7961–7974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Pang, E.; Loo, R.R.; Rao, J.; Go, V.L.; Loo, J.A.; Lu, Q.Y. Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics 2011, 11, 4638–4647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall, D.; Kilian, A.Y.; Bellmunt, J. The prognostic role of epigenetic dysregulation in bladder cancer: A systematic review. Cancer Treat. Rev. 2017, 61, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Sopko, N.A.; Kates, M.; Liu, X.; Joice, G.; McConkey, D.J.; Bivalacqua, T.J. Three-dimensional organoid culture reveals involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells. Oncotarget 2018, 9, 11060–11070. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M.; Koh, W.P.; Sun, C.L.; Lee, H.P.; Yu, M.C. Green tea intake, ACE gene polymorphism and breast cancer risk among Chinese women in Singapore. Carcinogenesis 2005, 26, 1389–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Zhang, M.; Xie, X.; Jin, J.; Holman, C.D. Green tea consumption and glutathione S-transferases genetic polymorphisms on the risk of adult leukemia. Eur. J. Nutr. 2017, 56, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Scholl, C.; Lepper, A.; Lehr, T.; Hanke, N.; Schneider, K.L.; Brockmöller, J.; Seufferlein, T.; Stingl, J.C. Population nutrikinetics of green tea extract. PLoS ONE 2018, 13, 0193074. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Lu, M.; Mao, L.J.; Wang, J.Q.; Li, W.; Wen, R.M.; Chen, J.C. Relationships among MTHFR a1298c gene polymorphisms and methylation status of Dact1 gene in transitional cell carcinomas. Asian Pac. J. Cancer Prev. 2012, 13, 5069–5074. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Deng, Z.; Wang, Z.; Zhang, W.; Su, J. MTHFR C677T polymorphisms are associated with aberrant methylation of the IGF-2 gene in transitional cell carcinoma of the bladder. J. Biomed. Res. 2012, 26, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Sato, D. Inhibition of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rats by green tea. Int. J. Urol. 1999, 6, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sato, D.; Matsushima, M. Preventive effects of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rat by green tea leaves. Int. J. Urol. 2003, 10, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Sagara, Y.; Miyata, Y.; Nomata, K.; Hayashi, T.; Kanetake, H. Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(-4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiol. 2010, 34, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Henriques, A.; Arantes-Rodrigues, R.; Faustino-Rocha, A.I.; Teixeira-Guedes, C.I.; Pinho-Oliveira, J.; Talhada, D.; Teixeira, J.H.; Andrade, A.; Colaço, B.; Paiva-Cardoso, M.N.; et al. The effects of whole green tea infusion on mouse urinary bladder chemical carcinogenesis. Iran. J. Basic Med. Sci. 2014, 17, 145–148. [Google Scholar] [PubMed]
- Matsuo, T.; Miyata, Y.; Asai, A.; Sagara, Y.; Furusato, B.; Fukuoka, J.; Sakai, H. Green Tea Polyphenol Induces Changes in Cancer-Related Factors in an Animal Model of Bladder Cancer. PLoS ONE 2017, 12, 0171091. [Google Scholar] [CrossRef] [PubMed]
- Bailey, H.H.; Mukhtar, H. Green tea polyphenols and cancer chemoprevention of genitourinary cancer. Am. Soc. Clin. Oncol. Educ. Book 2013, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities. Cancer Prev. Res. 2012, 5, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Gee, J.R.; Saltzstein, D.R.; Kim, K.; Kolesar, J.; Huang, W.; Havighurst, T.C.; Wollmer, B.W.; Stublaski, J.; Downs, T.; Mukhtar, H.; et al. A Phase II Randomized, Double-blind, Presurgical Trial of Polyphenon E in Bladder Cancer Patients to Evaluate Pharmacodynamics and Bladder Tissue Biomarkers. Cancer Prev. Res. 2017, 10, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, T.; Zhou, B.; Wei, J.; Fang, Y.; Lu, J.; Guo, L.; Chen, W.; Liu, Z.P.; Luo, J. Mg(II)-Catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials 2016, 81, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.C.; Xiao, H.; Zhu, Z.; Li, Q.; Bai, Q.; Wakefield, M.R.; Mann, J.D.; Fang, Y. A Potential Role for Green Tea as a Radiation Sensitizer for Prostate Cancer. Pathol. Oncol. Res. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Rouanne, M.; Roumiguié, M.; Houédé, N.; Masson-Lecomte, A.; Colin, P.; Pignot, G.; Larré, S.; Xylinas, E.; Rouprêt, M.; Neuzillet, Y. Development of immunotherapy in bladder cancer: present and future on targeting PD(L)1 and CTLA-4 pathways. World J. Urol. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Rohrmann, S.; Bopp, M.; Faeh, D. Swiss National Cohort Study Group. Impact of smoking and excess body weight on overall and site-specific cancer mortality risk. Cancer Epidemiol. Biomarkers Prev. 2015, 24, 1516–1522. [Google Scholar] [CrossRef] [PubMed]
- Aben, K.K.; Witjes, J.A.; Schoenberg, M.P.; Hulsbergen-van de, K.C.; Verbeek, A.L.; Kiemeney, L.A. Familial aggregation of urothelial cell carcinoma. Int. J. Cancer 2002, 98, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espina, C.; Straif, K.; Friis, S.; Kogevinas, M.; Saracci, R.; Vainio, H.; Schüz, J. European Code against Cancer 4th Edition: Environment, occupation and cancer. Cancer Epidemiol. 2015, 39, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Tong, Y.; Zhao, Q.; Yu, G.; Wei, X.; Lu, Q. Coffee consumption and bladder cancer: a meta-analysis of observational studies. Sci. Rep. 2015, 5, 9051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case-Control Study | Cohort Study | ||||||
---|---|---|---|---|---|---|---|
Author/Year /Country/Ref | Daily Intake | OR/RR | 95% CI | Author/Year Country/Ref | Daily Intake | OR/RR | 95% CI |
Waikens et al. | Cases/controls = 271/522 | Chyou et al. | |||||
/1996 | (Men) | /1993 | Never | 1.0 | |||
/USA | Q1 | 1.0 | /USA | Ever | 1.34 | 0.79–2.27 | |
/[49] | Q2 | 1.1 | 0.6−1.9 | /[50] | |||
Q3 | 1.1 | 0.6–2.3 | |||||
(Women) | Nagano et al. | ||||||
Q1 | 1.0 | /2000 | 0–1 cup | 1.0 | |||
Q2 | 0.8 | 0.3–2.1 | /Japan | 2–4 | 1.07 | 0.61–2.00 | |
Q2 | 0.9 | 0.3–2.6 | /[51] | ≥5 | 1.07 | 0.58–2.08 | |
Wakai et al. | 124/744 | Kurahashi et al. | |||||
/2004 | < | 1.0 | /2009 | (Men) | |||
/Japan | 1–4 | 1.40 | 0.74–2.62 | /Japan | <1 cup | 1.0 | |
/[47] | 5–9 | 2.67 | 1.44–4.94 | /[52] | 1–2 | 1.18 | 0.73–1.91 |
≥10 | 1.18 | 0.49–2.84 | 3–4 | 0.71 | 0.43–1.18 | ||
≥5 | 0.90 | 0.56–1.45 | |||||
Hemelt et al. | 381/371 | (Women) | |||||
/2010 | 0 | 1.00 | <3 | 1.0 | |||
/China | <Daily | 0.83 | 0.54–1.27 | 3–4 | 1.22 | 0.49–3.00 | |
/[53] | Daily | 1.02 | 0.71–1.48 | ≥5 | 2.29 | 1.06–4.92 | |
<4 | 1.23 | 0.76–1.97 | |||||
≥4 | 0.83 | 0.53–1.28 | |||||
Wang et al. | 1007/1299 | ||||||
/2013 | Never | 1.0 | |||||
/USA | 0.1–0.13 | 0.82 | 0.61–1.11 | ||||
/[49] | ≥0.14 | 0.60 | 0.45–0.79 |
Author/Year /Reference | Number of Case-Control Studies | Number of Cohort Studies | Odds Ratio | 95% Confidence Interval |
---|---|---|---|---|
Qin et al./2012/[55] | 2 | 3 | 0.97 | 0.73–1.21 |
Wang et al./2013/[13] | 2 | 2 | 0.81 | 0.68–0.98 |
Wu et al./2013/[56] | 3 | 2 | 1.03 | 0.82–1.31 |
Zhang et al./2015/[57] | 0 | 3 | 1.02 | 0.95–1.11 |
Weng et al./2017/[58] | 4 | 3 | 0.95 | 0.73–1.24 |
Cell Line | Type | Dosage/Concentration | Author/Year/Reference |
---|---|---|---|
Growth inhibition | |||
AY-27 | EGCG | >100 μM | Kemberling et al./2003/[61] |
NBT-II | EGCG | 10, 20, or 40 μM/L | Chen et al./2004/[62] |
J82 | EGCG | 70–87 μM | Rieger et al./2007/[63] |
UM-UC-3 | EGCG | 70–87 μM | Rieger et al./2007/[63] |
EJ | EGCG | 70–87 μM | Rieger et al./2007/[63] |
T24 | EGCG | 70–87 μM 20–100 μg/mL 20–80 μg/mL | Rieger et al./2007/[63]; Qin et al./2007/[64]; Philips et al./2009/[65] |
KK47 | EGCG | 70–87 μM | Rieger et al./2007/[63] |
TCCSUP | EGCG | 70–87 μM 10–80 μg/mL | Rieger et al./2007/[63]; Philips et al./2009/[65] |
TSGH-8301 | EGCG | 25–100 μM | Chen et al./2011/[66] |
MBT-2 | EGCG | 12.5–50 μM | Hsieh et al./2011/[67] |
RT4 | EGCG | 60–80 μg/mL | Philips et al./2009/[65] |
SW780 | EGCG | 10–80 μg/mL | Philips et al./2009/[65] |
Apoptosis induction | |||
NBT-II | EGCG | 10 μM/L | Chen et al./2004/[62] |
T24 | EGCG | 10–80 μg/mL | Qin et al./2007/[64] |
TCCSUP | EGCG | 40 μg/mL | Philips et al./2009/[65] |
TSGH-8301 | EGCG | 75 μM | Chen et al./2011/[66] |
MBT-2 | EGCG | 50 μM | Hsieh et al./2011/[67] |
SW780 | EGCG | 50–200 μM | Luo et al./2017/[27] |
Migration inhibition | |||
UM-UC-3 | EGCG | 5 μM | Rieger et al./2007/[63] |
EJ | EGCG | 5 μM | Rieger et al./2007/[63] |
TCCSUP | EGCG | 5 μM | Rieger et al./2007/[63] |
SW780 | EGCG | 25–50 μM | Luo et al./2017/[27] |
Cell cycle arrest | |||
NBT-II | EGCG | 10, 20, or 40 μM/L | Chen et al./2004/[62] |
Molecules | Cell Line | Author/Year/Reference |
---|---|---|
Bcl-2 family | T24 | Qin et al./2007/61; Gu et al./2017/[68] |
TSGH-8301 | Chen et al./2011/[66] | |
MBT-2 | Hsieh et al./2011/[67] | |
SW780 | Luo et al./2017/[27] | |
BIU87 | Gu et al./2017/[68] | |
Caspase family | TSGH-8301 | Chen et al./2011/[66] |
MBT-2 | Hsieh et al./2011/[67] | |
SW780 | Luo et al./2017/[27] | |
Cyclin D1 | NBT-II | Chen et al./2004/[62] |
Cyclin-dependent kinase 4/6 | NBT-II | Chen et al./2004/[62] |
Heat shock protein 27 | TSGH-8301 | Chen et al./2011/[65] |
JNK/Bcl-2/Beclin-1 | T24, BIU87 | Gu et al./2017/[75] |
Matrix metalloproteinase-9 | SW780 | Luo et al./2017/[27] |
N-cadherin | UM-UC-3 | Rieger et al./2007/[63] |
Nuclear factor-kappa B | TCCSUP | Philips et al./2009/[65] |
SW780 | Luo et al./2017/[27] | |
Phosphatidylinositol 3-kinase | UM-UC-3 | Rieger et al./2007/[63] |
/Akt signaling | T24 | Qin et al./2007/[64] |
TSGH-8301 | Chen et al./2011/[66] | |
Retinoblastoma protein | NBT-II | Chen et al./2004/[62] |
Wnt signaling | TCCSUP | Philips et al./2009/[65] |
Author/Year/Reference | Agents | Methods | Animal Model | Summary of Results |
---|---|---|---|---|
Sato et al./1999/ [100] | GTE | Drinking | Rat; Chemically induced | Dose-dependently inhibited tumor growth when administered after the carcinogen |
Sato et al./2003/ [101] | GTE | Drinking | Rat; Chemically induced | Prevented tumor growth when administered before the carcinogen |
Kemberling et al./2003/[61] | EGCG | Intra-vesical | Rat; intravesical implantation | Inhibited the growth of transitional carcinoma cells |
Rieger et al./2007/[63] | EGCG | Drinking | Xenograft model | Over 50% decrease in the mean final tumor volume |
Sagara et al./2010/[102] | GTE | Drinking | Mouse; Chemically induced | Inhibited tumor growth and invasion via regulation of angiogenesis |
Chen et al./2011/[66] | ECGC | Gavage | Mouse; xenograft model | Inhibited tumor growth in a dose-dependent manner |
Hsieh et al./2011/[67] | EGCG | Orally, intraperitoneally, intratumor | Mouse; injection of cancer cells | EGCG–gold nanoparticles were more effective than free EGCG in inhibiting tumor growth |
Henriques et al./2014/[103] | Whole green tea | Drinking | Mouse; Chemically induced | Influenced inflammation in the urothelium, but not carcinogenesis |
Matsuo et al./2017/[104] | GTE | Drinking | Mouse; Chemically induced | Inhibited tumor growth and angiogenesis via human-antigen R-related pathways |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyata, Y.; Matsuo, T.; Araki, K.; Nakamura, Y.; Sagara, Y.; Ohba, K.; Sakai, H. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. Medicines 2018, 5, 87. https://doi.org/10.3390/medicines5030087
Miyata Y, Matsuo T, Araki K, Nakamura Y, Sagara Y, Ohba K, Sakai H. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. Medicines. 2018; 5(3):87. https://doi.org/10.3390/medicines5030087
Chicago/Turabian StyleMiyata, Yasuyoshi, Tomohiro Matsuo, Kyohei Araki, Yuichiro Nakamura, Yuji Sagara, Kojiro Ohba, and Hideki Sakai. 2018. "Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer" Medicines 5, no. 3: 87. https://doi.org/10.3390/medicines5030087
APA StyleMiyata, Y., Matsuo, T., Araki, K., Nakamura, Y., Sagara, Y., Ohba, K., & Sakai, H. (2018). Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. Medicines, 5(3), 87. https://doi.org/10.3390/medicines5030087