Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Lines
2.3. Standard Methods
2.4. Reversal of Anti-Parasitic Activity
2.5. Mitochondrial Membrane Potential Assay
2.6. Drug Combinations
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wyk, B.-E.; Wink, M. Phytomedicines, Herbal Drugs and Poisons; University of Chicago Press: Chicago, IL, USA, 2015. [Google Scholar]
- Mnayer, D.; Fabiano-Tixier, A.S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Munday, C.M. Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutr. Cancer 2001, 40, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Sendl, A. Allium sativum and Allium ursinum: Part 1 Chemistry, analysis, history, botany. Phytomedicine 1995, 1, 323–339. [Google Scholar] [CrossRef]
- Suleria, H.A.; Butt, M.S.; Anjum, F.M.; Saeed, F.; Khalid, N. Onion: Nature protection against physiological threats. Crit. Rev. Food Sci. Nutr. 2015, 55, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Nejad, B.; Saki, J. Effect of aqueous Allium cepa and Ixora brachiata root extract on Leishmania major promastigotes. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e15442. [Google Scholar] [CrossRef] [PubMed]
- Saleheen, D.; Ali, S.A.; Yasinzai, M.M. Antileishmanial activity of aqueous onion extract In Vitro. Fitoterapia 2004, 75, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Wabwoba, B.W.; Anjili, C.O.; Ngeiywa, M.M.; Ngure, P.K.; Kigondu, E.M.; Ingonga, J.; Makwali, J. Experimental chemotherapy with Allium sativum (Liliaceae) methanolic extract in rodents infected with Leishmania major and Leishmania donovani. J. Vector Borne Dis. 2010, 47, 160–167. [Google Scholar] [PubMed]
- Gallwitz, H.; Bonse, S.; Martinez-Cruz, A.; Schlichting, I.; Schumacher, K.; Krauth-Siegel, R.L. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallographic, kinetic, and spectroscopic studies. J. Med. Chem. 1999, 42, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Sendl, A.; Elbl, G.; Steinke, B.; Redl, K.; Breu, W.; Wagner, H. Comparative pharmacological investigations of Allium ursinum and Allium sativum. Planta Med 1992, 58, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Weiner, L.; Shin, I.; Shimon, L.J.; Miron, T.; Wilchek, M.; Mirelman, D.; Frolow, F.; Rabinkov, A. Thiol-disulfide organization in alliin lyase (alliinase) from garlic (Allium sativum). Protein Sci. 2009, 18, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Munchberg, U.; Anwar, A.; Mecklenburg, S.; Jacob, C. Polysulfides as biologically active ingredients of garlic. Org. Biomol. Chem. 2007, 5, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Benkeblia, N.; Lanzotti, V. Allium thiosulfinates: Chemistry, biological properties and their potential utilization in food preservation. Food 2007, 1, 193–201. [Google Scholar]
- Neglected Tropical Diseases, World Health Organization (WHO). Available online: http://www.who.int/neglected_diseases/diseases/en/ (accessed on 6 June 2016).
- Leishmaniasis, World Health Organization (WHO). Available online: http://www.who.int/mediacentre/factsheets/fs375/en/ (accessed on 8 June 2016).
- Leroux, A.E.; Krauth-Siegel, R.L. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol. Biochem. Parasitol. 2015, 206, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed]
- Krstin, S.; Sobeh, M.; Braun, M.S.; Wink, M. Tulbaghia violacea and Allium ursinum extracts exhibit anti-parasitic and antimicrobial activities. Molecules 2018, 23, 313. [Google Scholar] [CrossRef] [PubMed]
- Divo, A.A.; Patton, C.L.; Sartorelli, A.C. Evaluation of rhodamine 123 as a probe for monitoring mitochondrial function in Trypanosoma brucei spp. J. Eukaryot. Microbiol. 1993, 40, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Krstin, S.; Mohamed, T.; Wang, X.; Wink, M. How do the alkaloids emetine and homoharringtonine kill trypanosomes? An insight into their molecular modes of action. Phytomedicine 2016, 23, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wientjes, M.G.; Au, J.L. Evaluation of combination chemotherapy: Integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin. Cancer Res. 2004, 10, 7994–8004. [Google Scholar] [CrossRef] [PubMed]
- Ferary, S.; Auger, J. What is the true odour of cut Allium? Complementarity of various hyphenated methods: Gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry with particle beam and atmospheric pressure ionization interfaces in sulphenic acids rearrangement components discrimination. J. Chromatogr. A 1996, 750, 63–74. [Google Scholar]
- Arnault, I.; Christides, J.P.; Mandon, N.; Haffner, T.; Kahane, R.; Auger, J. High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and UV detection. J. Chromatogr. A 2003, 991, 69–75. [Google Scholar] [CrossRef]
- Mondy, N.; Naudin, A.; Christides, J.P.; Mandon, N.; Auger, J. Comparison of GC-MS and HPLC for the analysis of Allium volatiles. Chromatographia 2001, 53, 356–360. [Google Scholar] [CrossRef]
- Calvey, E.M.; White, K.D.; Matusik, J.E.; Sha, D.; Block, E. Allium chemistry: Identification of organosulfur compounds in ramp (Allium tricoccum) homogenates. Phytochemistry 1998, 49, 359–364. [Google Scholar] [CrossRef]
- Calvey, E.M.; Matusik, J.E.; White, K.D.; DeOrazio, R.; Sha, D.; Block, E. Allium chemistry: Supercritical fluid extraction and LC-APCI-MS of thiosulfinates and related compounds from homogenates of garlic, onion, and ramp. Identification in garlic and ramp and synthesis of 1-propanesulfinothioic acid S-allyl ester. J. Agric. Food Chem. 1997, 45, 4406–4413. [Google Scholar] [CrossRef]
- Aoyagi, M.; Kamoi, T.; Kato, M.; Sasako, H.; Tsuge, N.; Imai, S. Structure and bioactivity of thiosulfinates resulting from suppression of lachrymatory factor synthase in onion. J. Agric. Food Chem. 2011, 59, 10893–10900. [Google Scholar] [CrossRef] [PubMed]
- Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol. 1992, 46, 695–729. [Google Scholar] [CrossRef] [PubMed]
- Elnima, E.I.; Ahmed, S.A.; Mekkawi, A.G.; Mossa, J.S. The antimicrobial activity of garlic and onion extracts. Pharmazie 1983, 38, 747–748. [Google Scholar] [PubMed]
- Benmalek, Y.; Yahia, O.A.; Belkebir, A.; Fardeau, M.L. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. Bioengineered 2013, 4, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, X.; Deng, L.; Zhao, X.; Wei, Y.; Gao, Z.; Jia, J.; Xu, J.; Sun, C. Fresh garlic extract enhances the antimicrobial activities of antibiotics on resistant strains in vitro. Jundishapur J. Microbiol. 2015, 8, e14814. [Google Scholar] [CrossRef] [PubMed]
- Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; An update. Apoptosis 2003, 8, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, V.; Wink, M. Alkaloids induce programmed cell death in bloodstream forms of trypanosomes (Trypanosoma b. brucei). Molecules 2008, 13, 2462–2473. [Google Scholar] [CrossRef] [PubMed]
Peak No. | tR | Area % | [M + H]+ | Tentative identification | Reference |
---|---|---|---|---|---|
1 | 7.54 | 0.69 | 227 | 1-Ethyl-2-(3-(propylsulfinyl)propyl)disulfane | Tentative |
2 | 8.31 | 1.12 | 249 | 1-Allyl-2-((1E,3E)-4-(vinyldisulfanyl)buta-1,3-dien-1-yl)disulfane | Tentative |
3 | 9.89 | 0.64 | 137 | Methanesulfinothioic acid S-(E)-1-propenyl ester | [24] |
4 | 10.08 | 6.34 | 137 | Methanesulfinothioic acid S-(Z)-1-propenyl ester | [24] |
5 | 11.68 | 1.29 | 137 | S-methyl 1-propenesulfinothioate/S-1-propenyl methanesulfinothioate | [24] |
6 | 12.64 | 2.08 | 251 | Gamma-l-glutamyl-l-cysteine | [25] |
7 | 12.92 | 3.06 | 251 | Gamma-l-glutamyl-l-cysteine | [25] |
8 | 17.88 | 23.66 | 163 | Allicin | [25] |
9 | 20.12 | 1.25 | 209 | (E)-1-allyl-2-(3-(methylesulfinyl)prop-1-en-1-yl)disulfane | Tentative |
10 | 20.37 | 11.78 | 163 | 2-Propene-1-sulfinothioic acid S-(E)-1-propenyl ester | [24] |
11 | 20.53 | 12.89 | 163 | Propene-1-sulfinothioic acid S-(Z)-1-propenyl ester | [24] |
12 | 25.59 | 23.39 | 235 | Ajoene | [26] |
13 | 27.95 | 3.31 | 237 | (E)-1-Propenyl 1-(1-propenylsulfinyl)propyl disulfide | [27] |
14 | 28.45 | 8.49 | 237 | 2-Propenyl 1-(2-propenylsulfinyl) propyl disulfide | [27] |
Peak No. | tR | [M + H]+ | Proposed Compound | Reference |
---|---|---|---|---|
1 | 26.87 | 163 | (cis/trans)-zwiebelane | [28] |
Sample | IC50T. b. b. | IC50L. t. | IC50 HaCaT | Selectivity Index | |
---|---|---|---|---|---|
HaCaT/T. b. b. | HaCaT/L. t. | ||||
Allium sativum | 0.95 ± 0.04 | 2.89 ± 0.4 | 22.27 ± 1.61 | 23 | 8 |
Allium cepa | 4.59 ± 0.34 | 7.23 ± 0.78 | 44.56 ± 3.06 | 10 | 6 |
Suramin | 0.13 ± 0.01 | NT | NT | / | / |
Amphotericin B | NT | 0.13 ± 0.02 | NT | / | / |
Doxorubicin | NT | NT | 1.04 ± 0.35 | / | / |
Gram Type | Sample | A. sativum | A. cepa | Ciprofloxacin | Ampicillin | Nystatin | ||
---|---|---|---|---|---|---|---|---|
Indicator Strain | ||||||||
MIC | MMC | MIC | MMC | MIC | MIC | MIC | ||
+ | Bacillus subtilis | 40 | 160 | 40 | >320 | ≤0.03 | ≤0.03 | NT |
+ | MRSA | 40 | >320 | 320 | >320 | 0.03 | 16 | NT |
+ | MRSA CI | 80 | >320 | 160 | >320 | 4 | 16 | NT |
+ | Staphylococcus epidermidis | 40 | >320 | 80 | >320 | 0.03 | 0.5 | NT |
+ | Enterococcus faecalis | 160 | >320 | >320 | >320 | 0.5 | 1 | NT |
+ | VRE | 320 | >320 | >320 | >320 | 0.5 | 1 | NT |
+ | Streptococcus pyogenes | 80 | 160 | 40 | 40 | 0.13 | <0.03 | NT |
- | Escherichia coli | 40 | 160 | >320 | >320 | ≤0.03 | 4 | NT |
- | Escherichia coli EHEC | 40 | >320 | >320 | >320 | ≤0.03 | 4 | NT |
- | Klebsiella pneumoniae | 80 | >320 | >320 | >320 | 0.125 | >64 | NT |
- | Klebsiella pneumoniae CI | 80 | >320 | >320 | >320 | <0.03 | 32 | NT |
- | Pseudomonas aeruginosa | 40 | >320 | 160 | >320 | ≤0.03 | >64 | NT |
F | Candida albicans | 5 | 5 | 160 | 160 | NT | NT | 10 |
F | Candida parapsilosis | 5 | 5 | 160 | 160 | NT | NT | 10 |
Extract | IC50 ± SD Extract Alone (μg/mL) | Drug | IC50 ± SD Drug Alone (μM) | Fixed Concentration of the Extract (μg/mL) | IC50 ± SD Drug in Combination (μM) | CI Value at IC50 | Interpretation |
---|---|---|---|---|---|---|---|
T. b. brucei | |||||||
Allium cepa | 4.59 ± 0.34 | Diminazene | 0.24 ± 0.01 | 0.5 | 0.19 ± 0.09 | 0.90 | Additive |
1 | 0.24 ± 0.04 | 1.22 | No effect | ||||
Pentamidine | 0.07 ± 0.01 | 0.5 | 0.11 ± 0.01 | 1.68 | No effect | ||
1 | 0.09 ± 0.01 | 1.50 | No effect | ||||
Suramin | 0.09 ± 0.01 | 0.5 | 0.07 ± 0.01 | 0.89 | Synergism | ||
1 | 0.07 ± 0.01 | 1.00 | Additive | ||||
L. tarentolae | |||||||
7.23 ± 0.78 | Amphotericin B | 0.14 ± 0.02 | 0.75 | 0.15 ± 0.02 | 1.17 | No effect | |
1.5 | 0.15 ± 0.02 | 1.28 | No effect | ||||
Pentamidine | 4.01 ± 0.86 | 0.75 | 3.82 ± 0.81 | 1.06 | Additive | ||
1.5 | 3.71 ± 0.94 | 1.13 | No effect | ||||
T. b. brucei | |||||||
Allium sativum | 0.95 ± 0.04 | Diminazene | 0.24 ± 0.01 | 0.1 | 0.20 ± 0.05 | 0.94 | Additive |
0.2 | 0.19 ± 0.03 | 1.00 | Additive | ||||
Pentamidine | 0.07 ± 0.01 | 0.1 | 0.05 ± 0.02 | 0.82 | Synergism | ||
0.2 | 0.05 ± 0.02 | 0.92 | Additive | ||||
Suramin | 0.09 ± 0.01 | 0.1 | 0.1 ± 0.01 | 1.22 | No effect | ||
0.2 | 0.1 ± 0.01 | 1.32 | No effect | ||||
L. tarentolae | |||||||
2.89 ± 0.4 | Amphotericin B | 0.14 ± 0.02 | 0.32 | 0.14 ± 0.02 | 1.11 | No effect | |
0.64 | 0.13 ± 0.01 | 1.15 | No effect | ||||
Pentamidine | 4.01 ± 0.86 | 0.32 | 3.5 ± 0.45 | 0.98 | Additive | ||
0.64 | 3.18 ± 0.46 | 1.01 | Additive |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstin, S.; Sobeh, M.; Braun, M.S.; Wink, M. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicines 2018, 5, 37. https://doi.org/10.3390/medicines5020037
Krstin S, Sobeh M, Braun MS, Wink M. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicines. 2018; 5(2):37. https://doi.org/10.3390/medicines5020037
Chicago/Turabian StyleKrstin, Sonja, Mansour Sobeh, Markus Santhosh Braun, and Michael Wink. 2018. "Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae" Medicines 5, no. 2: 37. https://doi.org/10.3390/medicines5020037
APA StyleKrstin, S., Sobeh, M., Braun, M. S., & Wink, M. (2018). Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicines, 5(2), 37. https://doi.org/10.3390/medicines5020037