Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies
Abstract
:1. Introduction
2. Mechanism of Ototoxic Action of Cisplatin
3. Structural Lesions due to Cisplatin Ototoxicity
4. Functional Changes due to Cisplatin Ototoxicity
4.1. Auditory Functional Changes on Experimental Animals
4.2. Auditory Functional Changes on Humans in Clinical Research
5. Clinical Manifestations of Cisplatin Ototoxicity
6. Otoprotection strategies
6.1. Preventing ROS Action
6.2. Preventing ROS Formation
6.3. Inducing the Production of Endogenous Antioxidants
6.4. Other Mechanisms
7. Local Administration of Otoprotective Drugs
8. Clinical Studies with Otoprotective Drugs
9. Conclusions
Acknowledgments
Conflict of Interest
References
- Rybak, L.P.; Whitworth, C.A.; Mukherjea, D.; Ramkumar, V. Mechansims of cisplatin-induced ototoxicity and prevention. Hear Res. 2007, 226, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Mukherjea, D.; Jajoo, S.; Ramkumar, V. Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J. Exp. Med. 2009, 219, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.W.; Morest, D.K.; Parham, K. Cisplatin-Induced ototoxicity: Effect of intatympanic dexamethasone injections. Otol. Neurotol. 2008, 29, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005, 4, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr. Opin. Otolaryngol. Head Neck Surg. 2007, 15, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Daldal, A.; Odabasi, O.; Serbetcioglu, B. The protective effect of intratympanic dexamethasone on cisplatin-induced ototoxicity in guinea pigs. Otolaryngol. Head Neck Surg. 2007, 137, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, J.H.; Beijnen, J.H.; Balm, A.J.M.; Schellens, J.H.M. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev. 2006, 32, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene 2012, 31, 1869–1883. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.M.; Fuertes, M.A.; Alonso, C.; Perez, J.M. Is cisplatin-induced cell death always produced by apoptosis? Mol. Pharmacol. 2001, 59, 657–663. [Google Scholar] [PubMed]
- Yang, Z.; Schumaker, L.M.; Egorin, M.J.; Zuhowski, E.G.; Guo, Z.; Cullen, K.J. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin. Cancer Res. 2006, 12, 5817–5825. [Google Scholar] [CrossRef] [PubMed]
- Brenner, C.; Grimm, S. The permeability transition pore complex in cancer cell death. Oncogene 2006, 25, 4744–4756. [Google Scholar] [CrossRef] [PubMed]
- Tajeddine, N.; Galluzzi, L.; Kepp, O.; Hangen, E.; Morselli, E.; Senovilla, L.; Araujo, N.; Pinna, G.; Larochette, N.; Zamzami, N.; et al. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 2008, 27, 4221–4232. [Google Scholar] [CrossRef] [PubMed]
- Vaseva, A.V.; Marchenko, N.D.; Ji, K.; Tsirka, S.E.; Holzmann, S.; Moll, U.M. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 2012, 149, 1536–1548. [Google Scholar] [CrossRef] [PubMed]
- Holzer, A.K.; Samimi, G.; Katano, K.; Naerdemann, W.; Lin, X.; Safaei, R.; Howell, S.B. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol. Pharmacol. 2004, 66, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Öhrvik, H.; Thiele, D.J. The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. J. Trace Elem. Med. Biol. 2015, 31, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Deuster, D.; Knief, A.; Sperling, M.; Holtkamp, M.; Edemir, B.; Pavenstädt, H.; Lanvers-Kaminsky, C.; am Zehnhoff-Dinnesen, A.; Schinkel, A.H.; et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 2010, 176, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Choi, C.H.; Do, I.G.; Song, S.Y.; Lee, W.; Park, H.S.; Song, T.J.; Kim, M.K.; Kim, T.J.; Lee, J.W.; et al. Prognostic value of the copper transporters, CTR1 and CTR2, in patients with ovarian carcinoma receiving platinum-based chemotherapy. Gynecol. Oncol. 2011, 122, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Duan, L.; Zhou, B.; Ma, R.; Zhou, H.; Liu, Z. Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin. Exp. Pharmacol. Physiol. 2012, 39, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.G.; Larson, C.A.; Safaei, R.; Howell, S.B. Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clin. Cancer Res. 2009, 15, 4312–4321. [Google Scholar] [CrossRef] [PubMed]
- Van den Berghe, P.V.; Folmer, D.E.; Malingré, H.E.; van Beurden, E.; Klomp, A.E.; van de Sluis, B.; Merkx, M.; Berger, R.; Klomp, L.W. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem. J. 2007, 407, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.G.; Larson, C.A.; Adams, P.L.; Abada, P.B.; Pesce, C.E.; Safaei, R.; Howell, S.B. Copper transporter 2 regulates endocytosis and controls tumor growth and sensitivity to cisplatin in vivo. Mol. Pharmacol. 2011, 79, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Katano, K.; Safaei, R.; Samimi, G.; Holzer, A.; Rochdi, M.; Howell, S.B. The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol. Pharmacol. 2003, 64, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Sumizawa, T.; Mutoh, M.; Chen, Z.S.; Terada, K.; Furukawa, T.; Yang, X.L.; Gao, H.; Miura, N.; Sugiyama, T.; et al. Cooper-Transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin reistance. Cancer Res. 2000, 60, 1312–1316. [Google Scholar] [PubMed]
- Samimi, G.; Safaei, R.; Katano, K.; Holzer, A.K.; Rochdi, M.; Tomioka, M.; Goodman, M.; Howell, S.B. Increased expression of coppler efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res. 2004, 10, 4661–4669. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.T.; Chen, H.H.; Song, I.S.; Savaraj, N.; Ishikawa, T. The roles of cooper transporters in cisplatin resistance. Cancer Metastasis Rev. 2007, 26, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Ludwig, T.; Lang, D.; Pavenstädt, H.; Koepsell, H.; Piechota, H.J.; Haier, J.; Jaehde, U.; Zisowsky, J.; Schlatter, E. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. 2005, 167, 1477–1484. [Google Scholar] [CrossRef]
- Ciarimboli, G. Organic cation transporters. Xenobiotica. 2008, 38, 936–971. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Schlatter, E. Regulation of organic cation transport. Pflugers. Arch. 2005, 449, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Filipski, K.K.; Mathijssen, R.H.; Mikkelsen, T.S.; Schinkel, A.H.; Sparreboom, A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther. 2009, 86, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Lanvers-Kaminsky, C.; Sprowl, J.A.; Malath, I.; Deuster, D.; Eveslage, M.; Schlatter, E.; Mathijssen, R.H.; Boos, J.; Jürgens, H.; Am Zehnhoff-Dinnesen, A.G.; et al. Human OCT2 variant c.808G > T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics 2015, 16, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Yonezawa, A.; Hashimoto, S.; Katsura, T.; Inui, K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem. Pharmacol. 2010, 80, 1762–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khateeb, M.; Appleton, T.G.; Gahan, L.R.; Charles, B.G.; Berners-Price, S.J.; Bolton, A.M. Reactions of cisplatin hydrolytes with methionine, cysteine, and plasma ultrafiltrate studied by a combination of HPLC and NMR techniques. J. Inorg. Biochem. 1999, 77, 13–21. [Google Scholar] [CrossRef]
- Eastman, A. Cross-Linking of glutathione to DNA by cancer chemotherapeutic platinum coordination complexes. Chem. Biol. Interact. 1987, 61, 241–248. [Google Scholar] [CrossRef]
- Jones, M.M.; Basinger, M.A.; Beaty, J.A.; Jolscher, M.A. The relative nephrotoxicity of cisplatin, cis-Pt (NH3)2(guanosine)22+, and the hydrolysis product of cisplatin in the rat. Cancer Chemother. Pharmacol. 1991, 29, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Ekborn, A.; Lindberg, A.; Laurell, G. Ototoxicity, nephrotoxicity and pharmacokinetics of cisplatin and its monohydrated complex in the guinea pig. Cancer Chemother. Pharmacol. 2003, 51, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Timerbaev, A.R.; Keppler, B.K.; Hirokawa, T. Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques. J. Chromatogr. 2006, 1106, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Inai, S.; Jinnouchi, K. Expression of caspase-activated deioxyribonuclease (CAD) and caspase-3 (CPP32) in the cochlea of cisplatin (CPPD)-treated guinea pigs. Auris. Nasis. Larynx 2003, 30, 219–225. [Google Scholar] [CrossRef]
- Wang, J.; Ladrech, S.; Pujol, R. Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res. 2004, 69, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Previati, M.; Lanzoni, I.; Astolfi, L. Cisplatin cytotoxicity in organ of Corti derived immortalized cells. J. Cell. Biochem. 2007, 101, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Mukherjea, D.; Whitworth, C.A.; Nandish, S. Expression of the kidney injury molecule 1 in the rat cochlea and induction by cisplatin. Neuroscience 2006, 139, 733–740. [Google Scholar] [CrossRef] [PubMed]
- So, H.; Kim, H.; Lee, J.H. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J. Assoc. Res. Otolaryngol. 2007, 8, 338–355. [Google Scholar] [CrossRef] [PubMed]
- Cleric, W.J.; DiMartino, D.L.; Prasad, M.R. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear Res. 1995, 84, 30–40. [Google Scholar] [CrossRef]
- García-Berrocal, J.; Nevado, J.; Ramírez-Camacho, R.; Sanz, R.; González-García, J.A.; Sánchez-Rodríguez, C.; Cantos, B.; España, P.; Verdaguer, J.M.; Trinidad Cabezas, A. The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. Br. J. Pharmacol. 2007, 152, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Nakagawa, T.; Kita, T.; Kim, T.S.; Endo, T.; Shiga, A.; Iguchi, F.; Lee, S.H.; Ito, J. Role of reactive radicals in degeneration of the auditory system of mice following cisplatin treatment. Acta. Otolaryngol. 2004, 124, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Sunose, H.; Takasaka, T. Effects of free radicals on the intracellular calcium concentration in the isolated outer hair cell of the guinea pig cochlea. Acta. Otolrayngol. 1993, 113, 137–141. [Google Scholar] [CrossRef]
- Pigeolet, E.; Corbisier, P.; Houbion, A.; Lambert, D.; Michiels, C.; Raes, M.; Zachary, M.D.; Remacle, J. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Ageing Dev. 1990, 51, 283–297. [Google Scholar] [CrossRef]
- Liang, F.; Schulte, B.A.; Qu, C.; Hu, W.; Shen, Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience 2005, 135, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hughes, F.M., Jr.; Bortner, C.D.; Purdy, G.D.; Cidlowski, J.A. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 1997, 272, 30567–30576. [Google Scholar] [CrossRef] [PubMed]
- Bortner, C.D.; Cidlowski, J.A. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 1998, 56, 1549–1559. [Google Scholar] [CrossRef]
- Watanabe, K.; Inai, S.; Jinnouchi, K.; Bada, S.; Hess, A.; Michel, O.; Yagi, T. Nuclear-Factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res. 2002, 22, 4081–4085. [Google Scholar] [PubMed]
- Chung, W.H.; Boo, S.H.; Chung, M.K.; Lee, H.S.; Cho, Y.S.; Hong, S.H. Proapoptotic effects of NF-kappaB on cisplatin-induced cell death in auditory cell line. Acta Otolaryngol. 2008, 128, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- So, H.; Kim, Y.; Kim, E.; Pae, H.O.; Chung, H.T.; Kim, H.J.; Kwon, K.B.; Lee, K.M.; Lee, H.Y.; Moon, S.K.; et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatroy cytokines via Nrf2/HO-1. J. Assoc. Res. Otolaryngol. 2008, 9, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Dabholkar, M.; Christian, M.; Reed, E. Cisplatin. Cancer Chemother. Biol. Response Modif. 1994, 15, 87–98. [Google Scholar] [PubMed]
- Ferry, K.V.; Hamilton, T.C.; Johnson, S.W. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem. Pharmacol. 2000, 60, 1305–1313. [Google Scholar] [CrossRef]
- Selvakumaran, M.; Pisarcik, D.A.; Bao, R.; Yeung, A.T.; Hamilton, T.C. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res. 2003, 63, 1311–1316. [Google Scholar] [PubMed]
- De Laat, W.L.; Jaspers, N.G.; Hoeijmakers, J.H. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999, 13, 768–785. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.M.; Chinganças, V.; Galhardo, S.; Carvalho, H.; Menck, C.F. The eukaryotic nucleotide excision repair pathway. Biochimie 2003, 85, 1083–1099. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, A.; van Oudenaren, A.; Baert, M.; van Steeg, H.; Leenen, P.J.; van der Horst, G.T.; Hoeijmakers, J.H.; Salvelkoul, H.F.; Garssen, J. Differential ultraviolet-B-induced immunomodulation in XPA, XPC and CSB DNA repair-deficient mice. J. Invest. Dermatol. 2001, 117, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, X.S.; Yang, J.; Wang, G. Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis. Carcinogenesis 2003, 24, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Tornaletti, S.; Patrick, S.M.; Turchi, J.J.; Hanawalt, P.C. Behavior of T7 RNA polymerase and mammalian RNA-polymerase II at site-specific cisplatin adducts in the template DNA. J. Biol. Chem. 2003, 278, 35791–35797. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W.; Li-Korotky, H.S.; Durrant, J.D.; Balaban, C. Cisplatin induces cytoplasmic to nuclear translocation of nucleotide excision repair factors among spiral ganglion neurons. Hear Res. 2008, 239, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Husain, K.; Morris, C.; Whitworth, C.; Somani, S. Effect of protective agents against cisplatin ototoxicity. Am. J. Otol. 2000, 21, 513–520. [Google Scholar] [PubMed]
- Somani, S.M.; Husain, K.; Jagannathan, R.; Rybak, L.P. Ameriolation of cisplatin induced oto- and nephrotoxicity by protective agents. Ann. Neurosci. 2001, 8, 101–113. [Google Scholar]
- Whitwort, C.A.; Ramkumar, V.; Jones, B.; Tsukasaki, N.; Rybak, L.P. Protection against cisplatin ototoxicity by adenosine agonists. Biochem. Pharmacol. 2004, 67, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, L.; Brandon, C.S. Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory cell death. J. Assoc. Res. Otolaryngol. 2006, 7, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; So, H.S.; Lee, J.H. Heme oxygenase-1 attenuates the cisplatin-induced apoptosis of auditory cells via down-regulation of reactive oxygen species generation. Free Radic. Biol. Med. 2006, 40, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Kopke, R.D.; Liu, W.; Gabaizadeh, R. Use of organotypic cultures of Corti’s organ to study the protective offects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am. J. Otol. 1997, 18, 559–571. [Google Scholar] [PubMed]
- Cardinaal, R.M.; de Groot, J.C.; Huizing, E.H.; Veldman, J.E.; Smoorenburg, G.F. Cisplatin-induced ototoxicity: Morphological evidence of spontaneous outer hair cell recovery in albino guinea pigs? Hear Res. 2000, 144, 147–156. [Google Scholar] [CrossRef]
- Van Ruijven, M.W.; de Groot, J.C.; Smoorenburg, G.F. Time sequence of degeneration pattern in the guinea pig cochlea during cisplatin administration. A quantitative histological study. Hear Res. 2004, 197, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, R.; Riggs, L.C.; Strauss, M.; Matz, G.J. Temporal bone histopathology of cisplatin ototoxicitiy. Am. J. Otol. 1995, 16, 731–740. [Google Scholar] [PubMed]
- Smoorenburg, G.F.; de Groot, J.C.; Hamers, F.P.; Klis, S.F. Protection and spontaneous recovery from cisplatin-induced hearing loss. Ann. N. Y. Acad. Sci. 1999, 884, 192–210. [Google Scholar] [CrossRef] [PubMed]
- De Groot, J.C.; Hamers, F.; Gispen, W.; Smoorenburg, G. Co-Administration of the neurotrophic ACTH4–9 analogue, ORG 2766, may reduce the cochleotoxic effects of cisplatin. Hear Res. 1997, 106, 9–19. [Google Scholar] [CrossRef]
- Ress, B.D.; Sridhar, K.S.; Balkany, T.J.; Waxman, G.M.; Stagner, B.B.; Lonsbury-Martin, B.L. Effects of cis-platinum chemotherapy on otoacoustic emissions: The development of an objective screening protocol. Otolaryngol. Head Neck Surg. 1999, 121, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Hatzopoulos, S.; DiStefano, M.; Campbell, K.C.M.; Falgione, D.; Ricci, D.; Rosignoli, M.; Finesso, M.; Albertin, A.; Previati, M.; Capitani, S.; et al. Cisplatin ototoxicity in the Sprague Dawley rat evaluated by distortion product otoacoustic emissions. Audiology 2001, 40, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.R.; Silva, V.C.; Brito, G.A.; Carvalho Junior, J.V.; Gomes Junior, R.M.; Ribeiro Rde, A. Distortion-Product otoacoustic emissions and auditory brainstem responses sensitivity assessment in cisplatin-induced ototoxicity in rats. Braz. J. Otorhinolaryngol. 2009, 75, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Bokemeyer, C.; Berger, C.C.; Hartmann, J.T. Analysis of risk factors for cisplatin induced ototoxicity in patients with testicular cancer. Br. J. Cancer 1998, 77, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, J.; Budnick, A.S.; Sessions, R.B.; Kramer, M.B.; Wong, G.Y. Ototoxicity of high-dose cisplatin by bolus administration in patients with advanced cancer and normal hearing. Laryngoscope 1988, 98, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Zuur, C.L.; Simis, Y.J.W.; Lansdaal, P.E.M. Audiometric patterns in ototoxicity of intra-arterial cisplatin chemoradiation in patients with locally advanced head and neck cancer. Audiol. Neurotol. 2006, 11, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Fausti, S.A.; Larson, V.D.; Noffsinger, D.; Wilson, R.H.; Phillips, D.S.; Fowler, C.G. High-Frequency audiometric monitoring strategies for early detection of ototoxicity. Ear Hear. 1994, 15, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Knight, K.R.; Kraemer, D.F.; Winter, C.; Neuwelt, E.A. Early changes in auditory function as a result of platinum chemotherapy: Use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J. Clin. Oncol. 2007, 25, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Osterhammel, D. High frequency audiometry. Clinical aspects. Scand. Audiol. 1980, 9, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Biro, K.; Nozsek, L.; Prekopp, P. Characterisitics and risk factors of cisplatin induced ototoxicity in testicular cancer patients detected by distortion product otoacoustic emission. Oncology 2006, 70, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.C.; Tiu, C.; Koike, K.; Ritchey, A.K.; Kurs-Lasky, M.; Wax, M.K. Transient-Evoked otoacoustic emissions in children after cisplatin chemotherapy. Otolaryngol. Head Neck Surg. 1998, 118, 584–588. [Google Scholar] [PubMed]
- Fausti, S.A.; Frey, R.H.; Henry, J.A.; Olson, D.J.; Schaffer, H.I. Early detection of ototoxicity using high-frequency, tone-burst-evoked auditory brainstem responses. J. Am. Acad. Audiol. 1992, 3, 397–404. [Google Scholar] [PubMed]
- Fausti, S.A.; Helt, W.J.; Phillips, D.S.; Gordon, J.S.; Bratt, G.W.; Sugiura, K.M.; Noffsinger, D. Early detection of ototoxicity using 1/6th-octave steps. J. Am. Acad. Audiol. 2003, 14, 444–450. [Google Scholar] [PubMed]
- Buhrer, C.; Weinel, P.; Sauter, S. Acute onset deafness in a 4-year-old girl after a single infusion of cis-platinum. Pediatr. Hematol. Oncol. 1990, 7, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Rademaker-Lakhai, J.M.; Crul, M.; Zuur, L. Relationship between cisplatin administration and the development of ototoxicity. J. Clin. Oncol. 2006, 24, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Waters, G.S.; Ahmad, M.; Katsarkas, A.; Stanimir, G.; McKay, J. Ototoxicity due to cis-diamminedichloroplatinum in the treatment of ovarian cancer: Influence of dosage and schedule of administration. Ear Hear. 1991, 12, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Reddel, R.R.; Kefford, R.F.; Grant, J.M.; Coates, A.S.; Fox, R.M.; Tattersall, M.H. Ototoxicity in patients receiving cisplatin: Importance of dose and method of drug administration. Cancer Treat. Rep. 1982, 66, 19–23. [Google Scholar] [PubMed]
- McKeage, M. Comparative adverse effect profiles of platinum drugs. Drug Saf. 1995, 13, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Coradini, P.P.; Cigana, L.; Selistre, S.G. Ototoxicity from cisplatin in childhood cáncer. Pediatr. Hematol. Oncol. 2007, 29, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Womer, R.B.; Silber, J.H. Predicting cisplatin ototoxicity in children: Influence of age and the cumulative dose. Eur. J. Cancer 2004, 40, 2445–2451. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, P.; Lassalle, M.; Mercier, G.; Raquin, M.A.; Izzi, G.; Corradini, N.; Hartmann, O. Platinum compound-related ototoxicity in children: Long-Term follow-up reveals continuous worsening of hearing loss. J. Pediatr. Hematol. Oncol. 2004, 26, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Kushner, B.H.; Budnick, A.; Kramer, K.; Modak, S.; Cheung, N.K. Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer 2006, 107, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Knight, K.R.; Kraemer, D.F.; Neuwelt, E.A. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J. Clin. Oncol. 2005, 23, 8588–8596. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.G.; Tersak, J.M.; Ness, K.K.; Landier, W.; Matthay, K.K.; Schmidt, M.L.; Children’s Oncology Group. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: A report from the Children’s Oncology Group. Pediatrics 2007, 120, e1229–e1236. [Google Scholar] [CrossRef] [PubMed]
- Boothroyd, A. Developmental factors in speech recognition. Int. J. Audiol. 1970, 9, 30–38. [Google Scholar] [CrossRef]
- Davis, J.M.; Elfenbein, J.; Schum, R.; Bentler, R.A. Effects of mild and moderate hearing impairments on language, educational, and psychosocial behavior of children. J. Speech Hear. Disord. 1986, 51, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Bess, F.H.; Dodd-Murphy, J.; Parker, R.A. Children with minimal sensorineural hearing loss: Prevalence, educational performance, and functional status. Ear Hear. 1998, 19, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.R.; Dubno, J.R.; Ahlstrom, J.B. Recognition of low-pass-filtered consonants in noise with normal and impaired high-frequency hearing. J. Acoust. Soc. Am. 2002, 111 (1 Pt 1), 409–416. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; The, B.S.; Strother, D.R.; Davis, Q.G.; Chiu, K.J.; Lu, H.H.; Carpenter, L.S.; Mai, W.Y.; Chintagumpala, M.M.; South, M.; et al. Intensity-Modulated radiation therapy for pediatric medulloblastoma: Early report on the reduction of ototoxicity. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 599–605. [Google Scholar] [CrossRef]
- Chen, W.C.; Jackson, A.; Budnick, A. Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 2006, 106, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, Y.J.; Tward, J.D.; Szabo, A.; Bentz, B.G.; Shrieve, D.C. Relative contributions of radiation and cisplatin-based chemotherapy to sensorineural hearing loss in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Yancey, A.; Harris, M.S.; Egbelakin, A.; Gilbert, J.; Pisoni, D.B.; Renbarger, J. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr. Blood Cancer 2012, 59, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.S.; Kistner, E.O.; Bleibel, W.K.; Shukla, S.J.; Dolan, M.E. Effect of population and gender on chemotherapeutic agent-induced cytotoxicity. Mol. Cancer Ther. 2007, 6, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Peters, U.; Preisler-Adams, S.; Lanvers-Kaminsky, C. Sequence variations of mitochondrial DNA and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Res. 2003, 23, 1249–1255. [Google Scholar] [PubMed]
- Oldenburg, J.; Kraggerud, S.M.; Cvancarova, M.; Lothe, R.A.; Fossa, S.D. Cisplatin-Induced long-term hearing impairment is associated with specific glutathione-s-transferase genotypes in testicular cancer survivors. J. Clin. Oncol. 2007, 25, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Riedemann, L.; Lanvers, C.; Deuster, D. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenomics 2008, 8, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Caronia, D.; Patino-Garcia, A.; Milne, R.L.; Zalacain-Diez, M.; Pita, G.; Alonso, M.R.; Moreno, L.T.; Sierrasesumaga-Ariznabarreta, L.; Benitez, J.; González-Neira, A. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J. 2009, 9, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Kelly, T. Ototoxicity: Bioprotective mechanisms. Curr. Opin. Otolaryngol. Head Neck Surg. 2003, 11, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Treskes, M.; Nijtmans, L.G.; Fichtinger-Schepman, A.M.; van der Vijgh, W.J. Effects of the modulating agent WR2721 and its main metabolites on the formation and stability of cisplatin-DNA adducts in vitro in comparison to the effects of thiosulphate and diethyldithiocarbamate. Biochem. Pharmacol. 1992, 43, 1013–1019. [Google Scholar] [CrossRef]
- Dickey, D.T.; Wu, Y.J.; Muldoon, L.L.; Neuwelt, E.A. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. J. Pharmacol. Exp. Ther. 2005, 314, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.D.; Gu, R.; Pierce, C.; Kil, J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res. 2005, 201, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lloyd Faulconbridge, R.V.; Fetoni, A.; Guitton, M.J.; Pujol, R.; Puel, J.L. Local application of sodium thiosulfate prevents cisplatin-induced hearing loss in the guinea pig. Neuropharmacology 2003, 45, 380–393. [Google Scholar] [CrossRef]
- Choe, W.T.; Chinosornvatana, N.; Chang, K.W. Prevention of cisplatin ototoxicity using transtympanic N-acetylcysteine and lactate. Otol. Neurotol. 2004, 25, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Videhult, P.; Laurell, G.; Wallin, I.; Ehrsson, H. Kinetics of Cisplatin and its monohydrated complex with sulfur-containing compounds designed for local otoprotective administration. Exp. Biol. Med. 2006, 231, 1638–1645. [Google Scholar]
- Goel, R.; Cleary, S.M.; Horton, C.; Kirmani, S.; Abramson, I.; Kelly, C.; Howell, S.B. Effect of sodium thiosulfate on the pharmacokinetics and toxicity of cisplatin. J. Natl. Cancer Inst. 1989, 81, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.B.; Taetle, R. Effect of sodium thiosulfate on cis-dichlorodiammineplatinum(II) toxicity and antitumor activity in L1210 leukemia. Cancer Treat. Rep. 1980, 64, 611–616. [Google Scholar] [PubMed]
- Wimmer, C.; Mees, K.; Stumpf, P. Round window application of d-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growht factor-2 in cisplatin-induced ototoxicity. Otol. Neurotol. 2004, 25, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hospers, G.A.; Eisenhauer, E.A.; de Vries, E.G. The sulthydryl containing compounds WR-2721 and glutathione as radio- and chemoprotective agents. A review, indications for use and prospects. Br. J. Cancer 1999, 80, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Planting, A.S.; Catimel, G.; de Mulder, P.H. Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann. Oncol. 1999, 10, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Ekborn, A.; Hasson, J.; Ehrsson, H.; Eksborg, S.; Wallin, I.; Wagenius, G.; Laurell, G. High-Dose cisplatin with amifostine: Ototoxicity and pharmacokinetics. Laryngoscope 2004, 114, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.C.; Meech, R.P.; Rybak, L.P.; Hughes, L.F. The effect of d-methionine on cochlear oxidative state with and without cisplatin administration: mechanisms of otoprotection. J. Am. Acad. Audiol. 2003, 14, 144–156. [Google Scholar] [PubMed]
- Ekborn, A.; Laurell, G.; Johnstrom, P. d-Methionine and cisplatin ototoxicity in the guinea pig: d-methionine influences cisplatin pharmacokinetics. Hear. Res. 2002, 165, 53–61. [Google Scholar] [CrossRef]
- Deegan, P.M.; Pratt, I.S.; Ryan, M.P. The nephrotoxicity, cytotoxicity and renal handling of cisplatin-methionine complex in male Wistar rats. Toxicology 1994, 98, 1–14. [Google Scholar] [CrossRef]
- Korver, K.D.; Rybak, L.P.; Whiworth, C.; Campbell, K.M. Round window application of d-methionine provides complete cisplatin otoprotection. Otolaryngol. Head Neck Surg. 2002, 126, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Frenz, D.A.; Brahmblatt, S. Round window membrane delivery of l-methionine provides protection from cisplatin ototoxicity without compromising chemotherapeutic efficacy. Neurotoxicology 2001, 22, 163–176. [Google Scholar] [CrossRef]
- Kalcioglu, M.T.; Kilzilay, A.; Gulec, M. The protective effecto of erdosteine against ototoxicity induced by cisplatin in rats. Eur. Arch. Otorhinolaryngol. 2005, 262, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Y.; Kong, W.; Jiang, P.; Jiang, W. In vitro permeability of round window membrane to transforming dexamethasone with delivery vehicles- a dosage estimation. Chin. Med. J. 2007, 120, 2284–2289. [Google Scholar] [PubMed]
- Parnes, L.S.; Sun, A.; Freeman, D.J. Corticosteroid Pharmacokinetics in the inner ear fluids: An animal study followed by clinical application. Laryngoscope 1999, 109S, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hamid, M.; Trune, D. Issues, indications, and controversies regarding intratympanic steroid perfusion. Curr. Opin. Otolaryngol. Head Neck Surg. 2008, 16, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.D.; Gu, R.; Pierce, C.; Kil, J. Combined oral delivery of ebselen and allopurinol reduces multiple cisplatin toxicities in rat breast and ovarian cancer models while enhancing anti-tumor activity. Anticancer Drugs 2005, 16, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Kim, S.J.; Moon, P.D. Antiapoptotic mechanism of cannabinoid receptor 2 agonist on cisplatin-induced apoptosis in the Hel-OC1 auditory cell line. J. Neurosci. Res. 2006, 85, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Muldoon, L.L.; Neuwelt, E.A. The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J. Pharmacol. Exp. Ther. 2005, 312, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Minami, S.B.; Sha, S.H.; Schacht, J. Antioxidant protection in new animal model of cisplatin-induced ototoxicity. Hear. Res. 2004, 198, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Hyppolito, M.A.; de Oliveira, J.A.; Rossato, M. Cisplatin ototoxicity and otoprotection with sodium salicylate. Eur. Arch. Otorhinolaryngol. 2006, 263, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Sha, S.H.; Zotova, E. Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Lab. Invest. 2002, 82, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Kalkanis, J.G.; Withworth, C.; Rybak, L.P. Vitamin E reduces cisplatin ototoxicity. Laryngoscope 2004, 114, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Paksoy, M.; Ayduran, E.; Sanli, A.; Eken, M.; Aydin, S.; Oktay, Z.A. The protective effects of intratympanic dexamethasone and vitamin E on cisplatin-induced ototoxicity are demonstrated in rats. Med. Oncol. 2011, 28, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.C.; Meech, R.P.; Klemens, J.J.; Gerberi, M.T.; Dyrstad, S.S.; Larsen, D.L.; Mitchell, D.L.; El-Azizi, M.; Verhulst, S.J.; Hughes, L.F. Prevention of noise- and drug-induced hearing loss with d-methionine. Hear. Res. 2007, 226, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Whitworth, C.; Somani, S. Application of antioxidants and other agents to prevent cisplatin ototoxicity. Laryngoscope 1999, 109, 1740–1744. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.S.; Nie, Z.; Whitworth, C.; Rybak, L.P.; Ramkumar, V. Upregulation of adenosine receptors in the cochlea by cisplatin. Hear. Res. 1997, 111, 143–152. [Google Scholar] [CrossRef]
- Ford, M.S.; Maggirwar, S.B.; Rybak, L.P.; Whitworth, C.; Ramkumar, V. Expression and function of adenosine receptors in the chinchilla cochlea. Hear. Res. 1997, 105, 130–140. [Google Scholar] [CrossRef]
- Van der Hoop, R.G.; Vecht, C.J.; van der Burg, M.E. Prevention of cisplatin neurotoxicity wiht an ACTH (4–9) analogue in patients with ovarian cancer. N. Engl. J. Med. 1990, 332, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Hamers, F.P.; Wijbenga, J.; Wolters, F.L. Cisplatin ototoxicity involves organ of Corti, stria vascularis and spiral ganglion: Modulation by alphaMSH and ORG 2766. Audiol. Neurootol. 2003, 8, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Bowers, W.J.; Chen, X.; Guo, H.; Frisina, D.R.; Federoff, H.J.; Frisina, R.D. Neurotrophin-3 transduction attenuates cisplatin spiral ganglion neuro ototoxicity in the cochlea. Mol. Ther. 2002, 6, 12–18. [Google Scholar]
- Huang, X.; Whitworth, C.A.; Rybak, L.P. Ginkgo biloba extract (EGb 761) protects against cisplatin-induced ototoxicity in rats. Otol. Neurotol. 2007, 28, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Ding, D.; Salvi, R. Pifithrin-Alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neurorscience 2003, 120, 191–205. [Google Scholar] [CrossRef]
- Chan, D.K.; Lieberman, D.M.; Musatov, S. Protection against cisplatin-induced ototoxicity by adeno-associated virus-mediated delivery of the X-linkedd inhibitor of apoptosis protein is not dependent on caspase inhibition. Otol. Neurotol. 2007, 28, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Light, J.P.; Silverstein, H. Transtympanic perfusion: Indications and limitations. Curr. Opin. Otolaryngol. Head Neck Surg. 2004, 12, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Janning, M.H.; Whitworth, C.A.; Rybak, L.P. Experimental model of cisplatin ototoxicity in chinchillas. Otolaryngol. Head Neck Surg. 1998, 119, 574–580. [Google Scholar] [CrossRef]
- He, J.; Yin, S.; Wang, J.; Ding, D.; Jiang, H. Effectiveness of different approaches for establishing cisplatin-induced cochlear lesions in mice. Acta Otolaryngol. 2009, 129, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Chen, Z.; Yin, S. Ototoxicity of cisplatin administered to guinea pigs via the round window membrane. J. Toxicol. Sci. 2012, 37, 823–830. [Google Scholar]
- Hoffmann, K.K.; Silverstein, H. Inner ear perfusion: Indications and applications. Curr. Opin. Otolaryngol. Head Neck Surg. 2003, 11, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S.K.; Biegner, T.; Kammerer, B.; Delabar, U.; Salt, A.N. Dexamethasone concentration gradients along scala tympani after application to the round window membrane. Otol. Neurotol. 2008, 29, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Goycoolea, M.V.; Lundman, L. Round window membrane. Structure, function and permeability: A review. Microsc. Res. Tech. 1997, 36, 201–211. [Google Scholar] [CrossRef]
- Laurell, G.; Teixeira, M.; Sterkers, O. Local administration of antioxidants to the inner ear. Kinetics and distribution (1). Hear. Res. 2002, 173, 198–209. [Google Scholar] [CrossRef]
- Grindal, T.C.; Sampson, E.M.; Antonelli, P.J. AM-111 prevents hearing loss from semicircular canal injury in otitis media. Laryngoscope 2010, 120, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Horie, R.T.; Sakamoto, T.; Nakagawa, T.; Tabata, Y.; Okamura, N.; Tomiyama, N.; Tachibana, M.; Ito, J. Sustained delivery of lidocaine into the cochlea using Poly lactic/glycolic acid microparticles. Laryngoscope 2010, 120, 377–383. [Google Scholar] [CrossRef] [PubMed]
- King, E.B.; Salt, A.N.; Eastwood, H.T.; O’Leary, S.J. Direct entry of gadolinium into thevestibule following intratympanic applications in Guinea pigs and the influence of cochlear implantation. J. Assoc. Res. Otolaryngol. 2011, 12, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Pyykkö, I. Enhanced oval window and blocked round window passages for middle-inner ear transportation of gadolinium in guinea pigs with a perforated round window membrane. Eur. Arch. Otorhinolaryngol. 2015, 272, 303–309. [Google Scholar] [CrossRef] [PubMed]
- King, E.B.; Salt, A.N.; Kel, G.E.; Eastwood, H.T.; O’Leary, S.J. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs. Hear. Res. 2013, 304, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Schuknecht, H.F. Ablation therapy for the relief of Ménière’s disease. Laryngoscope 1956, 66, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Parham, K. Can intratympanic dexamethasone protect against cisplatin ototoxicity in mice with age-related hearing loss? Otolaryngol. Head Neck Surg. 2011, 145, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Topdag, M.; Iseri, M.; Gelenli, E.; Yardimoglu, M.; Yazir, Y.; Ulubil, S.A.; Topdag, D.O.; Ustundag, E. Effect of intratympanic dexamethasone, memantine and piracetam on cellular apoptosis due to cisplatin ototoxicity. J. Laryngol. Otol. 2012, 126, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.; Daniel, S.J. Intratympanic dexamethasone to prevent cisplatin ototoxicity: A guinea pig model. Otolaryngol. Head Neck Surg. 2011, 145, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Shafik, A.G.; Elkabarity, R.H.; Thabet, M.T.; Soliman, N.B.; Kalleny, N.K. Effect of intratympanic dexamethasone administration on cisplatin-induced ototoxicity in adult guinea pigs. Auris. Nasus. Larynx 2013, 40, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L.; Hussain, N.; Pafford, R.; Parham, K. Dexamethasone otoprotection in a multidose cisplatin ototoxicity mouse model. Otolaryngol. Head Neck Surg. 2014, 150, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Roehm, P.; Hoffer, M.; Balaban, C.D. Gentamicin uptake in the chinchilla inner ear. Hear. Res. 2007, 230, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Blakley, B.W. Update on intratympanic gentamicin for Meniere’s disease. Laryngoscope 2000, 110 (2 Pt 1), 236–240. [Google Scholar] [CrossRef] [PubMed]
- Saliba, I.; el Fata, F.; Ouelette, V.; Robitaille, Y. Are intratympanic injections of N-acetylcysteine and methylprednisolone protective against Cisplatin-induced ototoxicity? J. Otolaryngol. Head Neck Surg. 2010, 39, 236–243. [Google Scholar] [PubMed]
- Van As, J.W.; van den Berg, H.; van Dalen, E.C. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst. Rev. 2014, 7, CD009219. [Google Scholar] [PubMed]
- Riga, M.G.; Chelis, L.; Kakolyris, S.; Papadopoulos, S.; Stathakidou, S.; Chamalidou, E.; Xenidis, N.; Amarantidis, K.; Dimopoulos, P.; Danielides, V. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: A feasible method with promising efficacy. Am. J. Clin. Oncol. 2013, 36, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.G.; Bass, J.K.; Onar-Thomas, A.; Huang, J.; Chintagumpala, M.; Bouffet, E.; Hassall, T.; Gururangan, S.; Heath, J.A.; Kellie, S.; et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro. Oncol. 2014, 16, 848–855. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callejo, A.; Sedó-Cabezón, L.; Juan, I.D.; Llorens, J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. Toxics 2015, 3, 268-293. https://doi.org/10.3390/toxics3030268
Callejo A, Sedó-Cabezón L, Juan ID, Llorens J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. Toxics. 2015; 3(3):268-293. https://doi.org/10.3390/toxics3030268
Chicago/Turabian StyleCallejo, Angela, Lara Sedó-Cabezón, Ivan Domènech Juan, and Jordi Llorens. 2015. "Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies" Toxics 3, no. 3: 268-293. https://doi.org/10.3390/toxics3030268
APA StyleCallejo, A., Sedó-Cabezón, L., Juan, I. D., & Llorens, J. (2015). Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. Toxics, 3(3), 268-293. https://doi.org/10.3390/toxics3030268