RUNX3 Methylation: An Epigenetic Biomarker for Early Liver Damage Induced by Co-Exposure to Aflatoxin B1 and Hepatitis B Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects Recruitment
2.2. Aflatoxins Exposure Assessment
2.3. Liver Function and HBV Infection Detection
2.4. Pyrosequencing for DNA Methylation Detection
2.5. Statistical Analysis
3. Results
3.1. Demographic Information of the Study Population
3.2. Effect of AFB1 Exposure on Liver Function and RUNX3 Methylation
3.3. Effect of HBV Infection on Liver Function and RUNX3 Methylation Levels
3.4. Correlation Analysis of RUNX3 Methylation Levels with AFB1 Exposure and HBV Infection
3.5. Factorial Analysis of Methylation Levels of RUNX3 with AFB1 Exposure and HBV Infection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Low AFB1 Exposure (n = 75) | High AFB1 Exposure (n = 75) | p | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
RUNX3 site1 | |||
HBsAg+ | 4.11 ± 2.14 | 5.93 ± 3.78 | 0.197 |
HBsAg− | 6.70 ± 3.48 | 6.13 ± 3.22 | 0.656 |
p | 0.012 * | 0.523 | |
RUNX3 site2 | |||
HBsAg+ | 8.61 ± 3.53 | 9.57 ± 2.99 | 0.400 |
HBsAg− | 13.22 ± 5.73 | 11.03 ± 4.97 | 0.044 * |
p | 0.006 * | 0.510 | |
RUNX3 site3 | |||
HBsAg+ | 6.60 ± 2.31 | 7.97 ± 2.17 | 0.165 |
HBsAg− | 8.91 ± 2.59 | 8.52 ± 2.29 | 0.469 |
p | 0.009 * | 0.617 | |
RUNX3 site4 | |||
HBsAg+ | 5.85 ± 1.28 | 7.05 ± 1.53 | 0.089 |
HBsAg− | 7.30 ± 1.52 | 7.16 ± 1.52 | 0.475 |
p | 0.006 * | 0.749 | |
RUNX3 site5 | |||
HBsAg+ | 4.11 ± 0.83 | 5.02 ± 0.86 | 0.061 |
HBsAg− | 5.08 ± 0.74 | 4.98 ± 0.91 | 0.460 |
p | 0.001 * | 0.910 | |
RUNX3 site6 | |||
HBsAg+ | 4.03 ± 0.34 | 4.56 ± 0.49 | 0.020 * |
HBsAg− | 4.63 ± 0.61 | 4.89 ± 2.12 | 0.869 |
p | 0.002 * | 0.857 | |
RUNX3 site7 | |||
HBsAg+ | 1.57 ± 0.18 | 2.08 ± 0.47 | 0.006 * |
HBsAg− | 2.32 ± 1.16 | 2.08 ± 0.58 | 0.470 |
p | 0.001 * | 0.818 | |
RUNX3 site8 | |||
HBsAg+ | 1.67 ± 0.25 | 2.37 ± 0.77 | 0.010 * |
HBsAg− | 2.90 ± 1.43 | 2.30 ± 0.99 | 0.082 |
p | 0.001 * | 0.482 | |
RUNX3 site9 | |||
HBsAg+ | 3.42 ± 0.45 | 4.71 ± 1.47 | 0.022 * |
HBsAg- | 5.51 ± 2.35 | 4.58 ± 1.56 | 0.117 |
p | 0.005 * | 0.637 | |
RUNX3 Total | |||
HBsAg+ | 4.55 ± 1.43 | 5.54 ± 1.63 | 0.190 |
HBsAg− | 6.18 ± 2.04 | 5.86 ± 1.76 | 0.583 |
p | 0.010 * | 0.673 |
AFB1 EDI (ng/kg·bw/d) | ||
---|---|---|
Correlation Coefficient | p | |
Liver function and lipid metabolism | ||
AST (U/L) | 0.039 | 0.662 |
ALT (U/L) | −0.014 | 0.876 |
ALP (U/L) | 0.115 | 0.199 |
GGT (U/L) | 0.071 | 0.449 |
TP (g/L) | −0.127 | 0.154 |
TBIL (μmol/L) | 0.141 | 0.114 |
ALB (g/L) | 0.094 | 0.299 |
RUNX3 methylation | ||
RUNX3 site1 | −0.192 | 0.030 * |
RUNX3 site2 | −0.241 | 0.008 * |
RUNX3 site3 | −0.207 | 0.019 * |
RUNX3 site4 | −0.180 | 0.043 * |
RUNX3 site5 | −0.139 | 0.118 |
RUNX3 site6 | −0.015 | 0.871 |
RUNX3 site7 | −0.156 | 0.080 |
RUNX3 site8 | −0.288 | 0.001 * |
RUNX3 site9 | −0.295 | 0.001 * |
RUNX3 Total | −0.184 | 0.038 * |
RUNX3 Site 1 Methylation | RUNX3 Site 2 Methylation | RUNX3 Site 3 Methylation | RUNX3 Site 4 Methylation | RUNX3 Site 8 Methylation | RUNX3 Site 9 Methylation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Liver function and lipid metabolism | ||||||||||||
AST (U/L) | 0.016 | 0.857 | −0.050 | 0.583 | 0.017 | 0.852 | −0.002 | 0.984 | 0.021 | 0.819 | 0.035 | 0.696 |
ALT (U/L) | 0.109 | 0.223 | 0.036 | 0.699 | 0.103 | 0.249 | 0.083 | 0.351 | 0.069 | 0.445 | 0.091 | 0.314 |
ALP (U/L) | −0.111 | 0.215 | −0.130 | 0.156 | −0.108 | 0.227 | −0.151 | 0.090 | −0.209 | 0.020 * | −0.192 | 0.032 * |
GGT (U/L) | 0.122 | 0.189 | 0.074 | 0.440 | 0.112 | 0.228 | 0.121 | 0.194 | 0.144 | 0.124 | 0.142 | 0.132 |
TP (g/L) | 0.059 | 0.511 | 0.072 | 0.432 | 0.057 | 0.522 | 0.047 | 0.602 | 0.014 | 0.877 | 0.019 | 0.835 |
TBIL (μmol/L) | 0.032 | 0.719 | −0.024 | 0.795 | 0.026 | 0.769 | 0.056 | 0.534 | 0.052 | 0.568 | 0.070 | 0.437 |
ALB (g/L) | −0.114 | 0.210 | −0.142 | 0.128 | −0.141 | 0.121 | −0.123 | 0.177 | −0.157 | 0.086 | −0.125 | 0.174 |
HBsAg+ | HBsAg− | HBV Main Effect | AFB1 Main Effect | HBV *AFB1 | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | F | p | F | p | F | p | |
RUNX3 site1 | ||||||||
Low AFB1 exposure | 4.11 ± 2.14 | 6.70 ± 3.48 | 3.106 | 0.080 * | 0.631 | 0.428 | 2.294 | 0.132 |
High AFB1 exposure | 5.93 ± 3.78 | 6.13 ± 3.22 | ||||||
RUNX3 site2 | ||||||||
Low AFB1 exposure | 8.61 ± 3.53 | 13.22 ± 5.73 | 5.696 | 0.018 * | 0.232 | 0.631 | 1.536 | 0.217 |
High AFB1 exposure | 9.57 ± 2.99 | 11.03 ± 4.97 | ||||||
RUNX3 site3 | ||||||||
Low AFB1 exposure | 6.60 ± 2.31 | 8.91 ± 2.59 | 5.946 | 0.016 * | 0.702 | 0.404 | 2.257 | 0.135 |
High AFB1 exposure | 7.97 ± 2.17 | 8.52 ± 2.29 | ||||||
RUNX3 site4 | ||||||||
Low AFB1 exposure | 5.85 ± 1.28 | 7.30 ± 1.52 | 4.606 | 0.034 * | 2.163 | 0.144 | 3.424 | 0.066 |
High AFB1 exposure | 7.05 ± 1.53 | 7.16 ± 1.52 | ||||||
RUNX3 site5 | ||||||||
Low AFB1 exposure | 4.11 ± 0.83 | 5.08 ± 0.74 | 5.629 | 0.019 * | 4.251 | 0.041 * | 6.669 | 0.011 * |
High AFB1 exposure | 5.02 ± 0.86 | 4.98 ± 0.91 | ||||||
RUNX3 site6 | ||||||||
Low AFB1 exposure | 4.03 ± 0.34 | 4.63 ± 0.61 | 1.799 | 0.182 | 1.337 | 0.249 | 0.160 | 0.690 |
High AFB1 exposure | 4.56 ± 0.49 | 4.89 ± 2.12 | ||||||
RUNX3 site7 | ||||||||
Low AFB1 exposure | 1.57 ± 0.18 | 2.32 ± 1.16 | 3.112 | 0.080 * | 0.416 | 0.520 | 3.153 | 0.078 |
High AFB1 exposure | 2.08 ± 0.47 | 2.08 ± 0.58 | ||||||
RUNX3 site8 | ||||||||
Low AFB1 exposure | 1.67 ± 0.25 | 2.90 ± 1.43 | 4.145 | 0.044 * | 0.032 | 0.858 | 5.165 | 0.025 * |
High AFB1 exposure | 2.37 ± 0.77 | 2.30 ± 0.99 | ||||||
RUNX3 site9 | ||||||||
Low AFB1 exposure | 3.42 ± 0.45 | 5.51 ± 2.35 | 4.219 | 0.042 * | 0.145 | 0.704 | 5.397 | 0.022 * |
High AFB1 exposure | 4.71 ± 1.47 | 4.58 ± 1.56 | ||||||
RUNX3 Total | ||||||||
Low AFB1 exposure | 4.55 ± 1.43 | 6.18 ± 2.04 | 4.642 | 0.033 * | 0.553 | 0.458 | 2.122 | 0.147 |
High AFB1 exposure | 5.54 ± 1.63 | 5.86 ± 1.76 |
Appendix B
References
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El, G.F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part F: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef] [PubMed]
- Woloshuk, C.P.; Shim, W.B. Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge. Fems Microbiol. Rev. 2013, 37, 94–109. [Google Scholar] [CrossRef]
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef]
- Groopman, J.D.; Kensler, T.W.; Wild, C.P. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu. Rev. Public Health 2008, 29, 187–203. [Google Scholar] [CrossRef]
- Mao, J.; He, B.; Zhang, L.; Li, P.; Zhang, Q.; Ding, X.; Zhang, W. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B(1) in Peanut Oil under UV Irradiation. Toxins 2016, 8, 332. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, B.K.; Dubey, N.K. Aflatoxins in food systems: Recent advances in toxicology, biosynthesis, regulation and mitigation through green nanoformulations. J. Sci. Food Agric. 2023, 103, 1621–1630. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- He, Z.; Chen, Z.; Mo, Y.; Lu, X.; Luo, Y.; Lin, S.; Zhong, Y.; Deng, J.; Zheng, S.; Xia, L.; et al. Assessment of the Adverse Health Effects of Aflatoxin Exposure from Unpackaged Peanut Oil in Guangdong, China. Toxins 2023, 15, 646. [Google Scholar] [CrossRef]
- Nugraha, A.; Khotimah, K.; Rietjens, I. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem. Toxicol. 2018, 113, 134–144. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, C.C.; Marsh, G.M.; Wu, F. Population attributable risk of aflatoxin-related liver cancer: Systematic review and meta-analysis. Eur. J. Cancer 2012, 48, 2125–2136. [Google Scholar] [CrossRef]
- Shimakawa, Y.; Lemoine, M.; Njai, H.F.; Bottomley, C.; Ndow, G.; Goldin, R.D.; Jatta, A.; Jeng-Barry, A.; Wegmuller, R.; Moore, S.E.; et al. Natural history of chronic HBV infection in West Africa: a longitudinal population-based study from The Gambia. Gut 2016, 65, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Pillai, A.; Tiro, J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014, 11, e1001624. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; London, W.T. Global epidemiology of hepatocellular carcinoma: An emphasis on demographic and regional variability. Clin. Liver Dis. 2015, 19, 223–238. [Google Scholar] [CrossRef]
- Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis: A Meta-analysis. Gastroenterology 2018, 154, 1706–1718.e1. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef]
- Parikh, N.D.; Tayob, N.; Singal, A.G. Blood-based biomarkers for hepatocellular carcinoma screening: Approaching the end of the ultrasound era? J Hepatol 2023, 78, 207–216. [Google Scholar] [CrossRef]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef]
- Greenberg, M.; Bourc’His, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Villanueva, L.; Alvarez-Errico, D.; Esteller, M. The Contribution of Epigenetics to Cancer Immunotherapy. Trends Immunol. 2020, 41, 676–691. [Google Scholar] [CrossRef] [PubMed]
- Mah, W.C.; Lee, C.G. DNA methylation: Potential biomarker in Hepatocellular Carcinoma. Biomark. Res. 2014, 2, 5. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- Koch, A.; Joosten, S.C.; Feng, Z.; de Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.; Van Neste, L.; et al. Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol. 2018, 15, 459–466. [Google Scholar] [CrossRef]
- Garami, J.; Moustafa, A.A. Probability discounting of monetary gains and losses in opioid-dependent adults. Behav. Brain Res. 2019, 364, 334–339. [Google Scholar] [CrossRef]
- Hardy, T.; Zeybel, M.; Day, C.P.; Dipper, C.; Masson, S.; McPherson, S.; Henderson, E.; Tiniakos, D.; White, S.; French, J.; et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 2017, 66, 1321–1328. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, H.; Yu, J. Biomarkers in Hepatocellular Carcinoma: Current Status and Future Perspectives. Biomedicines 2020, 8, 576. [Google Scholar] [CrossRef]
- Nishiyama, A.; Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021, 37, 1012–1027. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wu, H.C.; Shen, J.; Ahsan, H.; Tsai, W.Y.; Yang, H.I.; Wang, L.Y.; Chen, S.Y.; Chen, C.J.; Santella, R.M. Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin. Cancer Res. 2007, 13, 2378–2384. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, K.; Zhang, B.; Zhu, L.; Xu, W. Aflatoxin B1-induced epigenetic alterations: An overview. Food Chem. Toxicol. 2017, 109, 683–689. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, C.; Feng, M.; Liu, W.; Xie, H.; Qin, Q.; Zhao, E.; Wan, L. Methylation analysis of p16, SLIT2, SCARA5, and Runx3 genes in hepatocellular carcinoma. Medicine 2017, 96, e8279. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.G.; Cardoso, M.V.; de Souza, F.K.; Espindola, K.; Amorim, R.P.; Monteiro, M.C. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl. Res. 2019, 204, 51–71. [Google Scholar] [CrossRef]
- Chao, H.; Ma, H.; Sun, J.; Yuan, S.; Dong, P.; Zhao, A.; Li, L.; Shen, W.; Zhang, X. Whole-Transcriptome Analysis of Non-Coding RNA Alteration in Porcine Alveolar Macrophage Exposed to Aflatoxin B1. Toxins 2022, 14, 373. [Google Scholar] [CrossRef]
- Gao, Y.N.; Yang, X.; Wang, J.Q.; Liu, H.M.; Zheng, N. Multi-Omics Reveal Additive Cytotoxicity Effects of Aflatoxin B1 and Aflatoxin M1 toward Intestinal NCM460 Cells. Toxins 2022, 14, 368. [Google Scholar] [CrossRef]
- Ito, Y.; Bae, S.C.; Chuang, L.S. The RUNX family: Developmental regulators in cancer. Nat. Rev. Cancer 2015, 15, 81–95. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, Y.J.; Jeong, P.; Ha, Y.S.; Bae, S.C.; Kim, W.J. Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. J. Urol. 2008, 180, 1141–1145. [Google Scholar] [CrossRef]
- Lee, S.H.; Hyeon, D.Y.; Yoon, S.H.; Jeong, J.H.; Han, S.M.; Jang, J.W.; Nguyen, M.P.; Chi, X.Z.; An, S.; Hyun, K.G.; et al. RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis. Cell Death Differ. 2021, 28, 1251–1269. [Google Scholar] [CrossRef]
- Alizadeh-Sedigh, M.; Fazeli, M.S.; Mahmoodzadeh, H.; Sharif, S.B.; Teimoori-Toolabi, L. Methylation of FBN1, SPG20, ITF2, RUNX3, SNCA, MLH1, and SEPT9 genes in circulating cell-free DNA as biomarkers of colorectal cancer. Cancer Biomark. 2022, 34, 221–250. [Google Scholar] [CrossRef]
- Baca, S.C.; Seo, J.H.; Davidsohn, M.P.; Fortunato, B.; Semaan, K.; Sotudian, S.; Lakshminarayanan, G.; Diossy, M.; Qiu, X.; El, Z.T.; et al. Liquid biopsy epigenomic profiling for cancer subtyping. Nat. Med. 2023, 29, 2737–2741. [Google Scholar] [CrossRef]
- Wang, S.; He, Z.; Li, D.; Zhang, B.; Li, M.; Li, W.; Zhu, W.; Xing, X.; Zeng, X.; Wang, Q.; et al. Aberrant methylation of RUNX3 is present in Aflatoxin B(1)-induced transformation of the L02R cell line. Toxicology 2017, 385, 1–9. [Google Scholar] [CrossRef]
- GB 5009.22-2016 kw; Determination of Aflatoxins Groups B and G in Foods. China Standard Press: Beijing, China, 2016; pp. 17–18.
- Ronaghi, M.; Uhlen, M.; Nyren, P. A sequencing method based on real-time pyrophosphate. Science 1998, 281, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Harrington, C.T.; Lin, E.I.; Olson, M.T.; Eshleman, J.R. Fundamentals of pyrosequencing. Arch. Pathol. Lab. Med. 2013, 137, 1296–1303. [Google Scholar] [CrossRef]
- Higashimoto, K.; Hara, S.; Soejima, H. DNA Methylation Analysis Using Bisulfite Pyrosequencing. Methods Mol. Biol. 2023, 2577, 3–20. [Google Scholar]
- Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science 2017, 357, eaal2380. [Google Scholar] [CrossRef]
- Pan, H.; Renaud, L.; Chaligne, R.; Bloehdorn, J.; Tausch, E.; Mertens, D.; Fink, A.M.; Fischer, K.; Zhang, C.; Betel, D.; et al. Discovery of Candidate DNA Methylation Cancer Driver Genes. Cancer Discov. 2021, 11, 2266–2281. [Google Scholar] [CrossRef]
- Wolinska, E.; Skrzypczak, M. Epigenetic Changes Affecting the Development of Hepatocellular Carcinoma. Cancers 2021, 13, 4237. [Google Scholar] [CrossRef]
- Sui, Y.; Lu, Y.; Zuo, S.; Wang, H.; Bian, X.; Chen, G.; Huang, S.; Dai, H.; Liu, F.; Dong, H. Aflatoxin B(1) Exposure in Sheep: Insights into Hepatotoxicity Based on Oxidative Stress, Inflammatory Injury, Apoptosis, and Gut Microbiota Analysis. Toxins 2022, 14, 840. [Google Scholar] [CrossRef]
- Chu, Y.J.; Yang, H.I.; Wu, H.C.; Liu, J.; Wang, L.Y.; Lu, S.N.; Lee, M.H.; Jen, C.L.; You, S.L.; Santella, R.M.; et al. Aflatoxin B(1) exposure increases the risk of cirrhosis and hepatocellular carcinoma in chronic hepatitis B virus carriers. Int. J. Cancer 2017, 141, 711–720. [Google Scholar] [CrossRef]
- Nagaraju, G.P.; Dariya, B.; Kasa, P.; Peela, S.; El-Rayes, B.F. Epigenetics in hepatocellular carcinoma. Semin. Cancer Biol. 2022, 86, 622–632. [Google Scholar] [CrossRef]
- Li, L.; He, Z.; Shi, Y.; Sun, H.; Yuan, B.; Cai, J.; Chen, J.; Long, M. Role of epigenetics in mycotoxin toxicity: A review. Env. Toxicol. Pharmacol. 2023, 100, 104154. [Google Scholar] [CrossRef]
- Rieswijk, L.; Claessen, S.M.; Bekers, O.; van Herwijnen, M.; Theunissen, D.H.; Jennen, D.G.; de Kok, T.M.; Kleinjans, J.C.; van Breda, S.G. Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology 2016, 350–352, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, N.; Huang, Z.B.; Fu, S.; Yu, S.M.; Fu, Y.M.; Zhou, P.C.; Chen, R.C.; Zhou, R.R.; Huang, Y.; et al. HBx regulates transcription factor PAX8 stabilization to promote the progression of hepatocellular carcinoma. Oncogene 2019, 38, 6696–6710. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.N.; Bai, T.; Chen, Z.S.; Wu, F.X.; Chen, Y.Y.; De Xiang, B.; Peng, T.; Han, Z.G.; Li, L.Q. The p53 mutation spectrum in hepatocellular carcinoma from Guangxi, China: Role of chronic hepatitis B virus infection and aflatoxin B1 exposure. Liver Int. 2015, 35, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Jiang, K.; Xu, Q.; Meng, W.; Sun, M.; Zhao, J.; Xiao, K. Research progress on the mechanism of liver damage induced by aflatoxin B_1. J. Food Saf. Qual. 2018, 9, 5832–5836. [Google Scholar]
- Nishida, N.; Nagasaka, T.; Nishimura, T.; Ikai, I.; Boland, C.R.; Goel, A. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology 2008, 47, 908–918. [Google Scholar] [CrossRef]
- Hussain, S.P.; Schwank, J.; Staib, F.; Wang, X.W.; Harris, C.C. TP53 mutations and hepatocellular carcinoma: Insights into the etiology and pathogenesis of liver cancer. Oncogene 2007, 26, 2166–2176. [Google Scholar] [CrossRef]
- Wu, H.C.; Wang, Q.; Yang, H.I.; Ahsan, H.; Tsai, W.Y.; Wang, L.Y.; Chen, S.Y.; Chen, C.J.; Santella, R.M. Aflatoxin B1 exposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol. Biomark. Prev. 2009, 18, 846–853. [Google Scholar] [CrossRef]
Low AFB1 Exposure (n = 75) | High AFB1 Exposure (n = 75) | p | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age (year) | 49 ± 8.90 | 49 ± 9.59 | 0.665 |
BMI | 23.26 ± 3.34 | 23.60 ± 3.53 | 0.754 |
Waist hip ratio | 0.91 ± 0.05 | 0.92 ± 0.05 | 0.637 |
Gender | 0.485 | ||
Female | 51 (68%) | 34 (45.3%) | |
Male | 24 (32%) | 41 (54.7%) | |
Smoking status | 0.001 * | ||
Never smoker (Y, %) | 58 (77.3%) | 39 (52%) | |
Former and Current smoker (Y, %) | 17 (22.7%) | 36 (48%) | |
Drinking status | 0.040 * | ||
Never drinking (Y, %) | 50 (66.7%) | 36 (48%) | |
Former and Current drinking (Y, %) | 25 (33.3%) | 39 (52%) | |
Education | 0.026 * | ||
No education (Y, %) | 21 (28%) | 16 (21.3%) | |
Primary school (Y, %) | 31 (41.3%) | 17 (22.7%) | |
Junior high school (Y, %) | 16 (21.3%) | 36 (48%) | |
High school and above (Y, %) | 7 (9.3%) | 6 (8%) |
Low AFB1 Exposure (n = 75) | High AFB1 Exposure (n = 75) | p | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
AFB1 EDI (ng/kg BW/d) | 0.62 ± 0.90 | 18.35 ± 20.60 | <0.001 * |
AFT EDI (ng/kg BW/d) | 1.01 ± 1.60 | 21.22 ± 24.35 | <0.001 * |
Liver function and lipid metabolism | |||
AST (U/L) | 22.69 ± 7.23 | 24.00 ± 8.71 | 0.506 |
ALT (U/L) | 21.83 ± 15.16 | 24.03 ± 14.67 | 0.507 |
ALP (U/L) | 82.39 ± 22.21 | 89.01 ± 24.46 | 0.162 |
GGT (U/L) | 30.59 ± 23.98 | 43.52 ± 43.59 | 0.030 * |
TP (g/L) | 77.30 ± 3.58 | 76.65 ± 4.00 | 0.430 |
TBIL (μmol/L) | 10.06 ± 5.30 | 10.31 ± 4.41 | 0.314 |
ALB (g/L) | 47.74 ± 1.84 | 47.75 ± 2.37 | 0.749 |
RUNX3 methylation | |||
RUNX3 site1 | 6.34 ± 3.44 | 6.09 ± 3.29 | 0.959 |
RUNX3 site2 | 12.57 ± 5.69 | 10.84 ± 4.77 | 0.116 |
RUNX3 site3 | 8.59 ± 2.66 | 8.43 ± 2.26 | 0.838 |
RUNX3 site4 | 7.10 ± 1.56 | 7.14 ± 1.51 | 0.979 |
RUNX3 site5 | 4.95 ± 0.82 | 4.99 ± 0.90 | 0.882 |
RUNX3 site6 | 4.54 ± 0.61 | 4.84 ± 1.96 | 0.582 |
RUNX3 site7 | 2.23 ± 1.11 | 2.08 ± 0.56 | 0.826 |
RUNX3 site8 | 2.74 ± 1.40 | 2.31 ± 0.95 | 0.444 |
RUNX3 site9 | 5.24 ± 2.31 | 4.60 ± 1.53 | 0.462 |
RUNX3 Total | 5.96 ± 2.04 | 5.81 ± 1.73 | 0.967 |
Low AFB1 Exposure (n = 65) | High AFB1 Exposure (n = 62) | p | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
AFB1 EDI (ng/kg BW/d) | 0.01 ± 0.90 | 12.64 ± 22.10 | <0.001 * |
AFT EDI (ng/kg BW/d) | 0.09 ± 1.68 | 14.81 ± 26.23 | <0.001 * |
Liver function and lipid metabolism | |||
AST (U/L) | 22.00 ± 6.46 | 21.00 ± 6.34 | 0.898 |
ALT (U/L) | 18.00 ± 14.74 | 18.00 ± 12.76 | 0.990 |
ALP (U/L) | 82.00 ± 21.87 | 84.50 ± 24.69 | 0.368 |
GGT (U/L) | 23.00 ± 24.01 | 28.00 ± 43.91 | 0.165 |
TP (g/L) | 77.50 ± 3.73 | 77.25 ± 4.05 | 0.561 |
TBIL (μmol/L) | 8.90 ± 4.85 | 10.75 ± 4.48 | 0.089 |
ALB (g/L) | 47.65 ± 1.87 | 47.90 ± 1.96 | 0.186 |
RUNX3 methylation | |||
RUNX3 site1 | 5.18 ± 3.52 | 4.52 ± 3.33 | 0.175 |
RUNX3 site2 | 12.43 ± 5.73 | 9.94 ± 4.97 | 0.044 * |
RUNX3 site3 | 8.68 ± 2.63 | 7.93 ± 2.56 | 0.142 |
RUNX3 site4 | 7.33 ± 1.52 | 6.95 ± 1.67 | 0.191 |
RUNX3 site5 | 5.06 ± 0.76 | 4.96 ± 0.97 | 0.300 |
RUNX3 site6 | 4.39 ± 0.63 | 4.52 ± 2.11 | 0.950 |
RUNX3 site7 | 2.00 ± 1.15 | 1.82 ± 0.59 | 0.241 |
RUNX3 site8 | 2.07 ± 1.43 | 1.97 ± 1.00 | 0.033 * |
RUNX3 site9 | 4.29 ± 2.36 | 3.96 ± 1.58 | 0.037 * |
RUNX3 Total | 5.70 ± 2.04 | 5.32 ± 1.87 | 0.195 |
HBsAg− (n = 127) | HBsAg+ (n = 23) | p | |
---|---|---|---|
mean ± SD | mean ± SD | ||
AFB1 EDI (ng/kg BW/d) | 10.21 ± 18.28 | 5.49 ± 5.57 | 0.960 |
AFT EDI (ng/kg BW/d) | 11.91 ± 21.43 | 6.73 ± 6.74 | 0.990 |
Liver function and lipid metabolism | |||
AST (U/L) | 22.35 ± 6.37 | 28.87 ± 12.80 | 0.012 * |
ALT (U/L) | 21.56 ± 13.76 | 30.48 ± 18.69 | 0.014 * |
ALP (U/L) | 85.62 ± 23.39 | 86.13 ± 24.76 | 0.902 |
GGT (U/L) | 36.10 ± 35.54 | 42.38 ± 36.61 | 0.417 |
TP (g/L) | 77.15 ± 3.89 | 76.02 ± 3.16 | 0.218 |
TBIL (μmol/L) | 10.40 ± 4.68 | 8.99 ± 5.73 | 0.042 * |
ALB (g/L) | 47.92 ± 1.92 | 46.73 ± 2.91 | 0.061 |
RUNX3 methylation | |||
RUNX3 site1 | 6.43 ± 3.36 | 5.06 ± 3.18 | 0.036 * |
RUNX3 site2 | 12.14 ± 5.46 | 9.06 ± 3.23 | 0.020 * |
RUNX3 site3 | 8.72 ± 2.45 | 7.28 ± 2.29 | 0.019 * |
RUNX3 site4 | 7.23 ± 1.51 | 6.45 ± 1.50 | 0.033 * |
RUNX3 site5 | 5.03 ± 0.82 | 4.59 ± 0.95 | 0.036 * |
RUNX3 site6 | 4.76 ± 1.55 | 4.31 ± 0.50 | 0.046 * |
RUNX3 site7 | 2.20 ± 0.93 | 1.85 ± 0.44 | 0.021 * |
RUNX3 site8 | 2.62 ± 1.27 | 2.06 ± 0.68 | 0.042 * |
RUNX3 site9 | 5.07 ± 2.06 | 4.10 ± 1.27 | 0.044 * |
RUNX3 Total | 6.03 ± 1.91 | 5.05 ± 1.58 | 0.029 * |
AFB1 EDI (ng/kg·bw/d) | ||
---|---|---|
Correlation Coefficient | p | |
Liver function and lipid metabolism | ||
AST (U/L) | 0.049 | 0.555 |
ALT (U/L) | 0.014 | 0.861 |
ALP (U/L) | 0.096 | 0.240 |
GGT (U/L) | 0.111 | 0.197 |
TP (g/L) | −0.121 | 0.139 |
TBIL (μmol/L) | 0.092 | 0.261 |
ALB (g/L) | 0.053 | 0.526 |
RUNX3 methylation (% 5mC) | ||
RUNX3 site1 | −0.071 | 0.409 |
RUNX3 site2 | −0.196 | 0.021 * |
RUNX3 site3 | −0.109 | 0.202 |
RUNX3 site4 | −0.083 | 0.325 |
RUNX3 site5 | −0.040 | 0.638 |
RUNX3 site6 | 0.006 | 0.943 |
RUNX3 site7 | −0.047 | 0.583 |
RUNX3 site8 | −0.192 | 0.024 * |
RUNX3 site9 | −0.181 | 0.036 * |
RUNX3 Total | −0.078 | 0.353 |
RUNX3 Site 2 Methylation | RUNX3 Site 8 Methylation | RUNX3 Site 9 Methylation | ||||
---|---|---|---|---|---|---|
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Liver function and lipid metabolism | ||||||
AST (U/L) | −0.060 | 0.483 | 0.082 | 0.337 | 0.023 | 0.792 |
ALT (U/L) | 0.049 | 0.565 | 0.109 | 0.203 | 0.094 | 0.280 |
ALP (U/L) | −0.080 | 0.348 | −0.135 | 0.116 | −0.101 | 0.242 |
GGT (U/L) | 0.097 | 0.273 | 0.206 | 0.019 * | 0.203 | 0.024 * |
TP (g/L) | 0.063 | 0.460 | 0.058 | 0.500 | 0.047 | 0.585 |
TBIL (μmol/L) | −0.037 | 0.660 | 0.004 | 0.963 | 0.006 | 0.948 |
ALB (g/L) | −0.132 | 0.128 | −0.103 | 0.240 | −0.104 | 0.241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, Y.; Lu, X.; Zheng, S.; Deng, J.; Huang, S.; Hong, Y.; Xian, X.; Yijiati, A.; Yu, X.; Luo, X.; et al. RUNX3 Methylation: An Epigenetic Biomarker for Early Liver Damage Induced by Co-Exposure to Aflatoxin B1 and Hepatitis B Virus. Toxics 2025, 13, 425. https://doi.org/10.3390/toxics13060425
Mo Y, Lu X, Zheng S, Deng J, Huang S, Hong Y, Xian X, Yijiati A, Yu X, Luo X, et al. RUNX3 Methylation: An Epigenetic Biomarker for Early Liver Damage Induced by Co-Exposure to Aflatoxin B1 and Hepatitis B Virus. Toxics. 2025; 13(6):425. https://doi.org/10.3390/toxics13060425
Chicago/Turabian StyleMo, Yunying, Xiaodan Lu, Shixiong Zheng, Junfeng Deng, Shihan Huang, Ye Hong, Xiaoyu Xian, Aliya Yijiati, Xingyu Yu, Xunwu Luo, and et al. 2025. "RUNX3 Methylation: An Epigenetic Biomarker for Early Liver Damage Induced by Co-Exposure to Aflatoxin B1 and Hepatitis B Virus" Toxics 13, no. 6: 425. https://doi.org/10.3390/toxics13060425
APA StyleMo, Y., Lu, X., Zheng, S., Deng, J., Huang, S., Hong, Y., Xian, X., Yijiati, A., Yu, X., Luo, X., Xiao, M., Yang, X., Routledge, M. N., Gong, Y., & He, Z. (2025). RUNX3 Methylation: An Epigenetic Biomarker for Early Liver Damage Induced by Co-Exposure to Aflatoxin B1 and Hepatitis B Virus. Toxics, 13(6), 425. https://doi.org/10.3390/toxics13060425