Health Risk for Non-Dietary Children’s Exposure to Heavy Metals in Postindustrial Areas in Upper Silesia, Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. Sample Preparation
- Mineralization time: 20 min, temperature: 210 °C, generator power: 1800 W;
- Mineralization time: 15 min, temperature: 210 °C, generator power: 1800 W;
- Sample cooling: 30 min.
2.3. Chemical Analysis of Heavy Metal Concentration in the Tested Samples
2.4. Quality Control and Quality Assurance
2.5. Assessment of Children’s Exposure and Health Risks
- Scenario 1 (S1) assumes exposure of children to the lowest demonstrated concentrations of metals;
- Scenario 2 (S2) assumes exposure of children to average concentrations of the tested metals;
- Scenario 3 (S3) assumes exposure of children to the highest demonstrated metal concentrations.
2.6. Obtaining Data on the School Achievements of Children in Contaminated Areas
2.7. Statistical Analysis of Results
3. Results
3.1. Cd, Pb, and Zn Content in Soil Samples
3.2. Children’s Non-Dietary Exposure and Health Risks
3.3. Children’s Dermal and Inhalation Exposure to Heavy Metals
3.4. School Achievements of Children from the Studied Areas Contaminated with Heavy Metals
4. Discussion
4.1. Soil Contamination with Heavy Metals in the Central Part of Upper Silesia Province as a Significant Environmental Health Risk Factor for the Local Population
4.2. Summary of Findings and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADD | Average daily dose |
BW | Body weight |
CEC | Central Examination Commission |
CF | Conversion Factor |
DALYs | Disability-adjusted life years |
DEC | District Examination Commission |
d.m. | Dry mass |
HI | Hazard Index |
HQ | Hazard quotient |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
IQ | Intelligence quotient |
IR | Ingestion Rate by children |
KT | Katowice—Szopienice |
KW | Kruskal–Wallis test |
LOQ | Limit of quantification |
MAX | Maximum value |
MC | Metal Concentration |
ME | Median |
MIN | Minimum value |
MPC | Maximum permissible concentration |
PCA | Polish Centre for Accreditation |
PS | Piekary Śląskie—Orzeł Biały |
PSC | Primary School |
PTWI | Provisional Tolerable Weekly Intake |
RfD | Reference dose |
SD | Standard deviation |
SW | Świętochłowice—Lipiny |
US EPA | United States Environmental Protection Agency |
Arithmetic mean |
References
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud. Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 730305. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Abd Elnabi, M.K.A.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Elaty, A.E.A.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef]
- Mahmoud, N.; Al-Shahwani, D.; Al-Thani, H.; Isaifan, R.J. Risk assessment of the impact of heavy metals in urban traffic dust on human health. Atmosphere 2023, 14, 1049. [Google Scholar] [CrossRef]
- Wang, X.F.; Deng, C.B.; Sunahara, G.; Yin, J.; Xu, G.P.; Zhu, K.X. Risk assessments of heavy metals to children following non-dietary exposures and sugarcane consumption in a rural area in Southern China. Expo. Health 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Nabgha-E-Amen; Eqani, S.A.M.A.S.; Khuram, F.; Alamdar, A.; Tahir, A.; Shah, S.T.A.; Nasir, A.; Shen, H. Environmental exposure pathway analysis of trace elements and autism risk in Pakistani children population. Sci. Total Environ. 2020, 712, 136471. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.; Penney, R.; Solo-Gabriele, H. A Review of the Field on Children’s Exposure to Environmental Contaminants: A Risk Assessment Approach. Int. J. Environ. Res. Public Health 2017, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Exposure Factors Handbook 2011 Edition (Final Report); U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 29 October 2024).
- Shabanda, I.S.; Koki, I.B.; Low, K.H.; Zain, S.M.; Khor, S.M.; Abu Bakar, N.K. Daily exposure to toxic metals through urban road dust from industrial, commercial, heavy traffic, and residential areas in Petaling Jaya, Malaysia: A health risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 37193–37211. [Google Scholar] [CrossRef]
- Mendoza-Cano, O.; Lugo-Radillo, A.; Ríos-Silva, M.; Gonzalez-Curiel, I.E.; Bricio-Barrios, J.A.; Camacho-Delacruz, A.A.; Romo-García, M.F.; Cuevas-Arellano, H.B.; Quintanilla-Montoya, A.L.; Solano-Barajas, R.; et al. Exploring Heavy Metal and Metalloid Exposure in Children: A Pilot Biomonitoring Study near a Sugarcane Mill. Toxics 2024, 12, 426. [Google Scholar] [CrossRef]
- Spychała, A.; Klita, W.; Gut, K. Non-dietary exposure of children and adolescents to heavy metals in soils of recreational areas in the Silesia region–Księża Góra in Radzionków. Environ. Med. 2019, 22, 65–70. (In Polish) [Google Scholar] [CrossRef]
- Ayodeji-Fapohunda, G.N.; Ugwoha, E.; Nwaichi, E.O. Nutrition as A Therapeutic Intervention for Metal Toxicity. Curr. J. Appl. Sci. Technol. 2023, 42, 72–84. [Google Scholar] [CrossRef]
- Medgyesi, D.N.; Brogan, J.M.; Sewell, D.K.; Creve-Coeur, J.P.; Kwong, L.H.; Baker, K.K. Where children play: Young child exposure to environmental hazards during play in public areas in a transitioning internally displaced persons community in Haiti. Int. J. Environ. Res. Public Health 2018, 15, 1646. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, P.; Zhao, F.J. Dietary cadmium exposure, risks to human health and mitigation strategies. Crit. Rev. Environ. Sci. Technol. 2023, 53, 939–963. [Google Scholar] [CrossRef]
- Pirzaman, A.T.; Ebrahimi, P.; Niknezhad, S.; Vahidi, T.; Hosseinzadeh, D.; Akrami, S.; Ashrafi, A.M.; Velayatimehr, M.M.; Hosseinzadeh, R.; Kazemi, S. Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas. Hum. Exp. Toxicol. 2023, 42, 09603271231210262. [Google Scholar] [CrossRef]
- Shetty, S.S.; Sonkusare, S.; Naik, P.B.; Madhyastha, H. Environmental pollutants and their effects on human health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Sci. Total Environ. 2023, 868, 161691. [Google Scholar] [CrossRef]
- Ding, M.; Shi, S.; Qie, S.; Li, J.; Xi, X. Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Front. Pediatr. 2023, 11, 1169733. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Sen, D.; Laskar, P.; Saha, T.; Kundu, G.; Chaudhuri, A.G.; Ganguly, S. Pathophysiological effects of cadmium (II) on human health-a critical review. J. Basic. Clin. Physiol. Pharmacol. 2023, 34, 249–261. [Google Scholar] [CrossRef]
- WHO. Exposure to Lead: A Major Public Health Concern. Preventing Disease Through Healthy Environments; World Health Organization: Geneva, Switzerland, 2023; Available online: https://iris.who.int/bitstream/handle/10665/372293/9789240078130-eng.pdf?sequence=1 (accessed on 29 October 2024).
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Larsen, B.; Sánchez-Triana, E. Global health burden and cost of lead exposure in children and adults: A health impact and economic modelling analysis. Lancet Planet. Health 2023, 7, e831–e840. [Google Scholar] [CrossRef] [PubMed]
- Stiles, L.I.; Ferrao, K.; Mehta, K.J. Role of zinc in health and disease. Clin. Exp. Med. 2024, 24, 38. [Google Scholar] [CrossRef]
- Kiouri, D.P.; Tsoupra, E.; Peana, M.; Perlepes, S.P.; Stefanidou, M.E.; Chasapis, C.T. Multifunctional role of zinc in human health: An update. EXCLI J. 2023, 22, 809–827. [Google Scholar] [CrossRef]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19. Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef]
- Piekut, A.; Gut, K.; Ćwieląg-Drabek, M.; Domagalska, J.; Marchwińska-Wyrwał, E. The relationship between children’s non-nutrient exposure to cadmium, lead and zinc and the location of recreational areas—Based on the Upper Silesia region case (Poland). Chemosphere 2019, 223, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Baranyai, N.; Lux, G. Upper Silesia: The revival of a traditional industrial region in Poland. Reg. Stat. 2015, 4, 126–144. Available online: https://mpra.ub.uni-muenchen.de/73962/1/MPRA_paper_73962.pdf (accessed on 29 October 2024). [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Wieczorek, K.; Turek, A.; Szczesio, M.; Wolf, W.M. Comprehensive evaluation of metal pollution in urban soils of a post-industrial city—A case of Łódź, Poland. Molecules 2020, 25, 4350. [Google Scholar] [CrossRef] [PubMed]
- Dulias, R. Physical Geography of the Silesia Upland; University of Silesia Publishing House: Katowice, Poland, 2018. (In Polish) [Google Scholar]
- Góralczyk, M.; Panasiuk, E.; Przybyła, M. Śląskie Voivodship statistically–History and Present; Central Statistical Office in Katowice: Katowice, Poland, 2018. Available online: https://katowice.stat.gov.pl/download/gfx/katowice/en/defaultaktualnosci/667/3/1/1/wojewodztwo_slaskie_statystycznie_3.pdf (accessed on 29 October 2024).
- Central Statistical Office. The Size and Demographic Structure of the Population and the Number of Buildings and Apartments in the Silesia Voivodeship—Final Results of the 2021 National Census; Central Statistical Office in Katowice: Katowice, Poland, 2022. Available online: https://katowice.stat.gov.pl/download/gfx/katowice/pl/defaultaktualnosci/1265/5/1/1/nsp_2021_-_wyniki_ostateczne.pdf (accessed on 29 October 2024). (In Polish)
- Mathiarasan, S.; Hüls, A. Impact of Environmental Injustice on Children’s Health—Interaction between Air Pollution and Socioeconomic Status. Int. J. Environ. Res. Public Health 2021, 18, 795. [Google Scholar] [CrossRef]
- Lange, A.; Wadowska-Król, J. The history of the Szopienice lead epidemic and the contemporary problem of environmental pollution in Silesia. Aleksandra Lange talks to Doctor Jolanta Wadowska-Król. In From Theory and Practice of Teaching the Polish Language; University of Silesia Publishing House: Katowice, Poland, 2022; Volume 31, pp. 1–9. (In Polish) [Google Scholar] [CrossRef]
- Wadowska-Król, J.; Sadzikowska, L. „I was just working”. Lucyna Sadzikowska talks to Jolanta Wadowska-Król. In Narrations of the Shoah; special issue, 17–40; University of Silesia Publishing House: Katowice, Poland, 2021. (In Polish) [Google Scholar] [CrossRef]
- Liao, L.; Du, M.; Chen, Z. Environmental pollution and socioeconomic health inequality: Evidence from China. SCS 2023, 95, 104579. [Google Scholar] [CrossRef]
- WHO. Environmental Health Inequalities. 2023. Available online: https://www.who.int/europe/news-room/fact-sheets/item/environmental-health-inequalities (accessed on 20 October 2024).
- US EPA. Guidelines for Human Exposure Assessment (EPA/100/B-19/001); Washington, DC: Risk Assessment Forum; U.S. Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- US EPA. Cadmium; CASRN 7440-43-9; Integrated Risk Information System (IRIS). Chemical Assessment Summary National Center for Environmental Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- US EPA. Zinc and Compounds; CASRN 7440-66-6; Integrated Risk Information System (IRIS). Chemical Assessment Summary National Center for Environmental Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives of the United Nations; World Health Organization (JECFA). Evaluation of Certain Food Additives and Contaminants: Twenty-Ninth Report of the Joint FAO/WHO Expert Committee on Food Additives; JECFA: Geneva, Switzerland, 1986. [Google Scholar]
- US EPA. Exposure Factors Handbook Chapter 5 (Update): Soil and Dust Ingestion; U.S. EPA Office of Research and Development. Washington, DC, EPA/600/R-17/384F; U.S. Environmental Protection Agency: Washington, DC, USA, 2017. [Google Scholar]
- U.S. EPA. Risk Assessment Guidance for Superfund. Volume 1 Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); EPA/540/R/99/005, Office of Superfund Remediation and Technology Innovation; U.S. Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- U.S. EPA. Exposure Factors Handbook (1997, Final Report); EPA/600/P-95/002F a-c; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Chief Inspectorate of Environmental Protection. Available online: https://powietrze.gios.gov.pl/ (accessed on 23 April 2025).
- U.S. EPA. Exposure Factors Handbook (2011 Edition) Chapter 6: Inhalation Rates; U.S. EPA Office of Research and Development. Washington, DC; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Central Examination Board. Eighth-Grade Examination. 2024. Available online: https://cke.gov.pl/egzamin-osmoklasisty/ (accessed on 10 September 2024). (In Polish)
- OKE. District Examination Board in Jaworzno. Results—Eighth-Grade Exam. 2024. Available online: https://oke.jaworzno.pl/www3/2020/03/19/wyniki-e8/ (accessed on 4 September 2024).
- The Online Legal Database. Regulation of the Minister of the Climate and Environment of 13 November 2024 amending the regulation on the method of conducting the assessment of land Surface contamination. J. Laws 2024, 1657. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20240001657/O/D20241657.pdf (accessed on 5 February 2025). (In Polish).
- Chiroma, T.M.; Ebewele, R.O.; Hymore, F.K. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int. Ref. J. Eng. Sci. 2014, 3, 01–09. [Google Scholar]
- Mohammadi, A.A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of Heavy Metal Pollution and Human Health Risks Assessment in Soils Around an Industrial Zone in Neyshabur, Iran. Biol. Trace Elem. Res. 2020, 195, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Hiller, E.; Mihaljevič, M.; Filová, L.; Lachká, L.; Jurkovič, Ľ.; Kulikova, T.; Fajčíková, K.; Šimurková, M.; Tatarková, V. Occurrence of selected trace metals and their oral bioaccessibility in urban soils of kindergartens and parks in Bratislava (Slovak Republic) as evaluated by simple in vitro digestion procedure. Ecotoxicol. Environ. Saf. 2017, 144, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, J.; Jin, B.; Li, Y.; Shi, Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environ. Sci. Pollut. Res. 2017, 24, 19816–19826. [Google Scholar] [CrossRef]
- Penteado, J.O.; Brum, R.L.; Ramires, P.F.; Garcia, E.M.; Dos Santos, M.; da Silva Júnior, F.M.R. Health risk assessment in urban parks soils contaminated by metals, Rio Grande city (Brazil) case study. Ecotoxicol. Environ. Saf. 2021, 208, 111737. [Google Scholar] [CrossRef]
- Nieć, J.; Baranowska, R.; Dziubanek, G.; Rogala, D. Children’s exposure to heavy metals in the soils of playgrounds, sports fields, sandpits and kindergarten grounds in the region of Upper Silesia. J. Ecol. Health 2013, 17, 55–62. (In Polish) [Google Scholar]
- Dziubanek, G.; Baranowska, R.; Oleksiuk, K. Heavy metals in the soils of Upper Silesia—A problem from the past or a present hazard? J. Ecol. Health 2012, 16, 169–176. (In Polish) [Google Scholar]
- Ćwieląg-Drabek, M.; Piekut, A.; Gut, K.; Grabowski, M. Risk of cadmium, lead and zinc exposure from consumption of vegetables produced in areas with mining and smelting past. Sci. Rep. 2020, 10, 3363. [Google Scholar] [CrossRef]
- Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [Google Scholar] [CrossRef]
- Kicińska, A. Environmental risk related to presence and mobility of As, Cd and Tl in soils in the vicinity of a metallurgical plant—Long-term observations. Chemosphere 2019, 236, 124308. [Google Scholar] [CrossRef] [PubMed]
- Niezgoda, M.; Dziubanek, G.; Rogala, D.; Niesler, A. Health risks for consumers of forest ground cover produce contaminated with heavy metals. Toxics 2024, 12, 101. [Google Scholar] [CrossRef]
- Pelc, W.; Pawlas, N.; Dobrakowski, M.; Kasperczyk, S. Environmental and socioeconomic factors contributing to elevated blood lead levels in children from an industrial area of Upper Silesia. Environ. Toxicol. Chem. 2016, 35, 2597–2603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, J.-Y.; Tang, N.; Yin, D.-X.; Luo, J.; Xiang, P.; Juhasz, A.L.; Li, H.-B.; Ma, L.Q. Coupling bioavailability and stable isotope ratio to discern dietary and non-dietary contribution of metal exposure to residents in mining-impacted areas. Environ. Int. 2018, 120, 563–571. [Google Scholar] [CrossRef]
- Kyene, M.O.; Gbeddy, G.; Mensah, T.; Acheampong, C.; Kumi-Amoah, G.; Ketemepi, H.K.; Brimah, A.K.; Akyea-Larbi, K.; Darko, D.A. Bioaccessibility and children health risk assessment of soil-laden heavy metals from school playground and public parks in Accra, Ghana. Environ. Monit. Assess. 2023, 195, 1199. [Google Scholar] [CrossRef]
- Zartarian, V.G.; Xue, J.; Gibb-Snyder, E.; Frank, J.J.; Tornero-Velez, R.; Stanek, L.W. Children’s lead exposure in the U.S.: Application of a national-scale, probabilistic aggregate model with a focus on residential soil and wdust lead (Pb) scenarios. Sci. Total Environ. 2023, 905, 167132. [Google Scholar] [CrossRef] [PubMed]
- Carrington, C.; Devleesschauwer, B.; Gibb, H.J.; Bolger, P.M. Global burden of intellectual disability resulting from dietary exposure to lead 2015. Environ. Res. 2019, 172, 420–429. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Kristiansen, J. Remediation of soil from lead-contaminated kindergartens reduces the amount of lead adhering to children’s hands. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 282–288. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Rajca, A. Urban soil contamination with lead and cadmium in the playgrounds located near busy streets in Cracow (South Poland). Geol. Geophys. Environ. 2015, 41, 7–16. [Google Scholar] [CrossRef]
- Parlak, M.; Tunçay, T.; Botsou, F. Heavy metals in soil and sand from playgrounds of Çanakkale City (Turkey), and related health risks for children. Sustainability 2022, 14, 1145. [Google Scholar] [CrossRef]
- Remy, S.; Hambach, R.; Van Sprundel, M.; Teughels, C.; Nawrot, T.S.; Buekers, J.; Cornelis, C.; Bruckers, L.; Schoeters, G. Intelligence gain and social cost savings attributable to environmental lead exposure reduction strategies since the year 2000 in Flanders, Belgium. Environ. Health 2019, 18, 113. [Google Scholar] [CrossRef] [PubMed]
Characteristics of the Method | ICP-OES | ||
---|---|---|---|
Elements | Zn | Pb | Cd |
Line [nm] | 206.201 | 220.353 | 228.802 |
Linearity—correlation coefficient: R2 ≥ 0.995 | 0.999 | 0.999 | 0.999–1.000 |
Accuracy—RSD < 10% standards | 0.62–2.50 | 0.49–4.30 | 0.37–2.90 |
Repeatability—R < 20% | 1.5–6.49 | 0.84–8.21 | 1.75–18.57 |
LOQ [mg/kg] | 3.28 | 12.68 | 0.15 |
LOD [mg/kg] | 1.43 | 5.80 | 0.06 |
Recovery CRM (Trace Metals—Silt Clay 1; CRM045-50G) [75–125%] | 81–105 | 92–118 | 87–99 |
Heavy Metals | Reference Dose (RfD) |
---|---|
Cadmium | 0.001 mg × kg−1 × day−1 |
Lead | 0.0035 mg × kg−1 × day−1 |
Zinc | 0.3 mg × kg−1 × day−1 |
Exposure Factors | 1 to <6 Years | 6 to <12 Years | 12–15 Years |
---|---|---|---|
Soil ingestion (mg/day) | 40 | 30 | 10 |
Body weight (kg) | 18.6 kg * | 31.8 kg ** | 56.8 kg *** |
Factors | Preschool Children | Younger School Children | Older School Children |
---|---|---|---|
Soil-to-skin adherence factor (mg/cm2) | 0.04 | ||
Absorption factor of metals | 0.001 | ||
Skin surface area available for contact (cm2/event) | Boys: 0.728 Girls: 0.711 | Booth gender: 1.16 | Boys: 1.49 Girls: 1.48 |
Exposure frequency (events/year) | 365/year | ||
Exposure duration (years) | 1 year | ||
Body weight (kg) | 18.6 | 31.8 | 56.8 |
Averaging time (days/years) | 365 days/year |
Factors | Preschool Children | Younger School Children | Older School Children |
---|---|---|---|
InhR (m3/d) | 10.1 | 12.0 | 15.2 |
BW (kg) | 18.6 | 31.8 | 56.8 |
Annual air concentration of heavy metals | 2023 | 2024 | |
Cd (ng/m3) | |||
Min | 0.10 | 0.10 | |
0.63 | 0.76 | ||
MAX | 1.71 | 4.72 | |
Pb (µg/m3) | |||
Min | 0.001 | 0.003 | |
0.025 | 0.021 | ||
MAX | 0.094 | 0.083 |
Recreational Area | N Samples | Concentration of Toxic Elements (mg/kg d.m.) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Pb | Zn | ||||||||||||||
MIN | MAX | SD | ME | MIN | MAX | SD | ME | MIN | MAX | SD | ME | |||||
playground | 51 | 0.23 | 30.40 | 7.10 | 7.59 | 3.51 | 7.50 | 4930.10 | 379.33 | 737.16 | 160.84 | 43.66 | 3528.37 | 799.92 | 722.34 | 519.44 |
field/gym | 15 | 1.06 | 40.25 | 8.91 | 9.99 | 7.48 | 44.82 | 952.77 | 285.45 | 242.64 | 235.18 | 123.87 | 4743.33 | 1166.61 | 1193.50 | 1107.36 |
other | 11 | 2.14 | 27.97 | 12.26 | 9.59 | 10.27 | 85.10 | 1594.04 | 554.51 | 470.24 | 470.24 | 353.92 | 4616.60 | 1800.21 | 1516.22 | 1454.10 |
all samples | 77 | 0.23 | 40.25 | 8.19 | 8.47 | 4.86 | 7.50 | 4930.10 | 386.07 | 635.28 | 196.85 | 43.66 | 4743.33 | 1014.25 | 1016.36 | 720.65 |
MPC | 2.00 | 200.00 | 500.00 | |||||||||||||
FAO/WHO | 3.00 | 100.00 | 300.00 |
Recreational Area | Location | N Samples | Concentration of Toxic Elements (mg/kg d.m.) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Pb | Zn | |||||||||||||||
MIN | MAX | SD | ME | MIN | MAX | SD | ME | MIN | MAX | SD | ME | ||||||
playground | KT | 24 | 0.43 | 30.40 | 8.50 | 8.76 | 3.61 | 19.86 | 4930.10 | 513.67 | 1019.67 | 181.26 | 59.19 | 2462.85 | 778.99 | 656.69 | 539.36 |
SW | 14 | 0.23 | 13.96 | 4.09 | 4.30 | 2.32 | 7.50 | 658.42 | 161.70 | 173.47 | 121.07 | 43.66 | 2028.63 | 577.76 | 555.69 | 480.79 | |
PS | 13 | 0.72 | 22.73 | 7.75 | 7.62 | 5.38 | 23.98 | 1334.00 | 365.70 | 383.56 | 266.53 | 50.43 | 3528.37 | 1077.80 | 933.22 | 773.72 | |
field/gym | KT | 9 | 1.06 | 40.25 | 8.46 | 12.59 | 3.54 | 44.82 | 952.77 | 274.10 | 293.97 | 183.20 | 123.87 | 4743.33 | 1007.44 | 1475.93 | 373.01 |
SW | 3 | 6.36 | 11.92 | 8.95 | 2.80 | 8.58 | 196.85 | 407.19 | 280.97 | 111.31 | 238.88 | 1126.73 | 2022.95 | 1598.53 | 449.99 | 1645.90 | |
PS | 3 | 2.90 | 17.45 | 10.19 | 7.27 | 10.21 | 110.29 | 561.17 | 323.95 | 226.36 | 300.40 | 338.93 | 1942.52 | 1212.23 | 811.30 | 1355.22 | |
other | KT | 2 | 5.25 | 18.18 | 11.72 | 9.15 | 11.72 | 221.75 | 762.23 | 491.99 | 382.18 | 491.99 | 750.49 | 2192.23 | 1471.36 | 1019.47 | 1471.36 |
SW | 6 | 2.14 | 24.51 | 8.11 | 8.53 | 4.21 | 85.10 | 850.20 | 338.76 | 353.59 | 139.44 | 353.92 | 4616.60 | 1380.19 | 353.59 | 139.44 | |
PS | 3 | 11.57 | 27.97 | 20.94 | 8.44 | 23.28 | 735.11 | 1594.04 | 1027.68 | 490.56 | 753.91 | 1454.10 | 4159.05 | 2859.65 | 1355.59 | 2965.81 | |
all samplesin the town | KT | 35 | 0.43 | 40.25 | 8.67 | 9.60 | 3.81 | 19.86 | 4930.10 | 450.83 | 859.73 | 199.88 | 59.19 | 4743.33 | 877.30 | 931.08 | 594.40 |
SW | 23 | 0.23 | 24.51 | 5.77 | 5.73 | 3.56 | 7.50 | 850.20 | 223.45 | 232.13 | 139.25 | 43.66 | 4616.60 | 920.21 | 1007.75 | 509.96 | |
PS | 19 | 0.72 | 27.97 | 10.22 | 8.72 | 5.60 | 23.98 | 1594.04 | 463.63 | 440.13 | 282.31 | 50.43 | 4159.05 | 1380.37 | 1137.30 | 1345.92 | |
MPC | 2.00 | 200.00 | 500.00 | ||||||||||||||
FAO/WHO | 3.00 | 100.00 | 300.00 |
Dependencies Studied | p-Value | |||
---|---|---|---|---|
Cadmium | Lead | Zinc | Test Used | |
KT vs. SW vs. PS | 0.26 | 0.13 | 0.12 | KW |
playgrounds vs. field/gym vs. other | 0.10 | 0.14 | 0.05 | KW |
playgrounds (KT vs. SW vs. PS) | 0.21 | 0.24 | 0.19 | KW |
field/gym (KT vs. SW vs. PS) | 0.43 | 0.63 | 0.15 | KW |
other (KT vs. SW vs. PS) | 0.13 | 0.16 | 0.33 | KW |
Metals/Samples from All Types of Locations | Scenario | Total Samples | KT | SW | PS | ||||
---|---|---|---|---|---|---|---|---|---|
Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | ||
Cd | S1 | 0.0005 | 0.0005 | 0.0009 | 0.0009 | 0.0005 | 0.0005 | 0.0015 | 0.0015 |
S2 | 0.0176 | 0.0176 | 0.0186 | 0.0186 | 0.0124 | 0.0124 | 0.0220 | 0.0220 | |
S3 | 0.0866 | 0.0866 | 0.0866 | 0.0866 | 0.0527 | 0.0527 | 0.0602 | 0.0602 | |
Pb | S1 | 0.0161 | 0.0046 | 0.0427 | 0.0122 | 0.0161 | 0.0046 | 0.0516 | 0.0147 |
S2 | 0.8303 | 0.2372 | 0.9695 | 0.2770 | 0.4805 | 0.1373 | 0.9971 | 0.2849 | |
S3 | 10.6024 | 3.0292 | 10.6024 | 3.0292 | 1.8284 | 0.5224 | 3.4280 | 0.9794 | |
Zn | S1 | 0.0960 | 0.0003 | 0.1273 | 0.0004 | 0.0939 | 0.0003 | 0.1085 | 0.0004 |
S2 | 2.1812 | 0.0073 | 1.8867 | 0.0063 | 1.9789 | 0.0066 | 2.9685 | 0.0099 | |
S3 | 10.2007 | 0.0340 | 10.2007 | 0.0340 | 9.9282 | 0.0331 | 8.9442 | 0.0298 |
Metals/Samples from All Types of Locations | Scenario | Total Samples | KT | SW | PS | ||||
---|---|---|---|---|---|---|---|---|---|
Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | ||
Cd | S1 | 0.0002 | 0.0002 | 0.0004 | 0.0004 | 0.0002 | 0.0002 | 0.0007 | 0.0007 |
S2 | 0.0077 | 0.0077 | 0.0082 | 0.0082 | 0.0054 | 0.0054 | 0.0096 | 0.0096 | |
S3 | 0.0380 | 0.0380 | 0.0380 | 0.0380 | 0.0231 | 0.0231 | 0.0264 | 0.0264 | |
Pb | S1 | 0.0071 | 0.0020 | 0.0187 | 0.0054 | 0.0071 | 0.0020 | 0.0226 | 0.0065 |
S2 | 0.3642 | 0.1041 | 0.4253 | 0.1215 | 0.2108 | 0.0602 | 0.4374 | 0.1250 | |
S3 | 4.6510 | 1.3289 | 4.6510 | 1.3289 | 0.8021 | 0.2292 | 1.5038 | 0.4297 | |
Zn | S1 | 0.0421 | 0.0001 | 0.0558 | 0.0002 | 0.0412 | 0.0001 | 0.0476 | 0.0002 |
S2 | 0.9568 | 0.0032 | 0.8276 | 0.0028 | 0.8681 | 0.0029 | 1.3022 | 0.0043 | |
S3 | 4.4748 | 0.0149 | 4.4748 | 0.0149 | 4.3553 | 0.0145 | 3.9236 | 0.0131 |
Metals/Samples from All Types of Locations | Scenario | Total Samples | KT | SW | PS | ||||
---|---|---|---|---|---|---|---|---|---|
Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | Dose (µg/kg/Day) | HQ | ||
Cd | S1 | 0.00004 | 0.00004 | 0.00008 | 0.00008 | 0.00004 | 0.00004 | 0.00013 | 0.00013 |
S2 | 0.00144 | 0.00144 | 0.00153 | 0.00153 | 0.00101 | 0.00101 | 0.00179 | 0.00179 | |
S3 | 0.00709 | 0.00709 | 0.00709 | 0.00709 | 0.00432 | 0.00432 | 0.00492 | 0.00492 | |
Pb | S1 | 0.0013 | 0.0004 | 0.0035 | 0.0010 | 0.0013 | 0.0004 | 0.0042 | 0.0012 |
S2 | 0.0680 | 0.0194 | 0.0794 | 0.0227 | 0.0393 | 0.0112 | 0.0816 | 0.0233 | |
S3 | 0.8680 | 0.2480 | 0.8680 | 0.2480 | 0.1497 | 0.0428 | 0.2806 | 0.0802 | |
Zn | S1 | 0.00786 | 0.00003 | 0.01042 | 0.00003 | 0.00769 | 0.00003 | 0.00888 | 0.00003 |
S2 | 0.17857 | 0.00060 | 0.15445 | 0.00051 | 0.16201 | 0.00054 | 0.24302 | 0.00081 | |
S3 | 0.83509 | 0.00278 | 0.83509 | 0.00278 | 0.81278 | 0.00271 | 0.73223 | 0.00244 |
Location | Scenario | Hazard Index (HI) | |||
---|---|---|---|---|---|
Total Samples | KT | SW | PS | ||
samples from all types of locations | S1 | 0.113 | 0.014 | 0.005 | 0.017 |
S2 | 0.262 | 0.302 | 0.156 | 0.317 | |
S3 | 3.150 | 3.150 | 0.608 | 1.069 | |
playground | S1 | 0.005 | 0.014 | 0.005 | 0.017 |
S2 | 0.254 | 0.339 | 0.112 | 0.256 | |
S3 | 3.120 | 3.112 | 0.449 | 0.894 | |
field/gym | S1 | 0.031 | 0.031 | 0.143 | 0.076 |
S2 | 0.203 | 0.194 | 0.203 | 0.230 | |
S3 | 0.706 | 0.706 | 0.290 | 0.396 | |
other | S1 | 0.059 | 0.153 | 0.059 | 0.487 |
S2 | 0.380 | 0.338 | 0.235 | 0.697 | |
S3 | 1.073 | 0.523 | 0.608 | 1.069 |
Location | Scenario | Hazard Index (HI) | |||
---|---|---|---|---|---|
Total Samples | KT | SW | PS | ||
samples from all types of locations | S1 | 0.049 | 0.006 | 0.002 | 0.007 |
S2 | 0.115 | 0.132 | 0.069 | 0.139 | |
S3 | 1.382 | 1.382 | 0.267 | 0.469 | |
playground | S1 | 0.002 | 0.006 | 0.002 | 0.007 |
S2 | 0.111 | 0.149 | 0.049 | 0.109 | |
S3 | 1.369 | 1.365 | 0.197 | 0.392 | |
field/gym | S1 | 0.013 | 0.013 | 0.063 | 0.034 |
S2 | 0.089 | 0.085 | 0.089 | 0.101 | |
S3 | 0.310 | 0.310 | 0.127 | 0.174 | |
other | S1 | 0.026 | 0.217 | 0.026 | 0.214 |
S2 | 0.167 | 0.480 | 0.103 | 0.306 | |
S3 | 0.471 | 0.743 | 0.267 | 0.469 |
Location | Scenario | Hazard Index (HI) | |||
---|---|---|---|---|---|
Total Samples | KT | SW | PS | ||
samples from all types of locations | S1 | 0.0092 | 0.0011 | 0.0004 | 0.0014 |
S2 | 0.0215 | 0.0247 | 0.0128 | 0.0259 | |
S3 | 0.2579 | 0.2579 | 0.0498 | 0.0875 | |
playground | S1 | 0.0004 | 0.0011 | 0.0004 | 0.0014 |
S2 | 0.0208 | 0.0278 | 0.0092 | 0.0204 | |
S3 | 0.2554 | 0.2548 | 0.0368 | 0.0732 | |
field/gym | S1 | 0.0025 | 0.0025 | 0.0117 | 0.0063 |
S2 | 0.0166 | 0.0159 | 0.0166 | 0.0188 | |
S3 | 0.0578 | 0.0578 | 0.0238 | 0.0324 | |
other | S1 | 0.0049 | 0.0125 | 0.0049 | 0.0399 |
S2 | 0.0311 | 0.0277 | 0.0193 | 0.0571 | |
S3 | 0.0878 | 0.0428 | 0.0498 | 0.0875 |
Cd µg/kg/d | Pb µg/kg/d | Zn mg/kg/d | |
---|---|---|---|
Preschool children | 3.5 × 10−10—6.3 × 10−8 | 1.15 × 10−8–7.72 × 10−6 | 6.83 × 10−11–7.43 × 10−9 |
Younger school children | 3.3 × 10−10–5.87 × 10−8 | 1.09 × 10−8–7.19 × 10−6 | 6.52 × 10−11–6.92 × 10−9 |
Older school children | 2.4 × 10−10–4.2 × 10−8 | 7.82 × 10−9–5.17 × 10−6 | 4.65 × 10−11–4.98 × 10−9 |
Cd ng/kg/d | Pb µg/kg/d | |||
---|---|---|---|---|
Years | 2023 | 2024 | 2023 | 2024 |
Preschool children | ||||
Min | 0.054 | 0.054 | 0.0005 | 0.002 |
0.344 | 0.411 | 0.014 | 0.011 | |
MAX | 0.928 | 2.563 | 0.051 | 0.045 |
Younger school children | ||||
Min | 0.038 | 0.038 | 0.0004 | 0.001 |
0.239 | 0.285 | 0.009 | 0.008 | |
MAX | 0.645 | 1.781 | 0.036 | 0.031 |
Older school children | ||||
Min | 0.027 | 0.027 | 0.0003 | 0.001 |
0.170 | 0.202 | 0.007 | 0.005 | |
MAX | 0.458 | 1.263 | 0.025 | 0.022 |
City | Subject Exam | ||
---|---|---|---|
Polish Language ± SD (ME) (%) | Mathematica ± SD (ME) (%) | English Language ± SD (ME) (%) | |
The Year 2024 | |||
Katowice (N = 55) | 61.71 ± 22.39 (67) | 57.31 ± 29.89 (60) | 73.9 ± 28.12 (28.1) |
Katowice—Szopienice PSC No. 42 | 51.52 ± 18.35 (53) | 31.36 ± 25.32 (20) | 45.04 ± 28.49 (33) |
Świętochłowice (N = 7) | 50.44 ± 21.86 (52) | 40.23 ± 28.53 (32) | 58.69 ± 31.41 (58) |
Świętochłowice—Lipiny PSC No. 19 | 31.1 ± 14.5 (36) | 22.1 ± 16.64 (16) | 43.38 ± 29.5 (27) |
Piekary Śląskie (N = 10) | 52.14 ± 22.71 (56) | 42.54 ± 27.84 (36) | 63.31 ± 30.53 (69) |
Piekary Śląskie—Brzeziny PSC No. 15 | 44.4 ± 25.23 (45.5) | 20.8 ± 17.87 (16) | 45.82 ± 31.74 (27) |
Silesia Province | 58.00 * | 49.54 * | 66.48 * |
Poland | 61 ± 21 (64) | 52 ± 29 (48) | 66 ± 30 (76) |
the year 2021 | |||
Katowice (N = 51) | 64.79 ± 18.84 (69) | 51.17 ± 27.04 (48) | 72.37 ± 28.34 (85) |
Katowice—Szopienice PSC No. 42 | 42.94 ± 19.6 (43) | 29.67 ± 23.71 (24) | 42.94 ± 29.61 (28) |
Świętochłowice (N = 8) | 57.31 ± 20.95 (60) | 40.38 ± 23.85 (36) | 59.93 ± 30.11 (64) |
Świętochłowice—Lipiny PSC No. 19 | 33.49 ± 17.86 (27) | 21.77 ± 13.12 (20) | 33.12 ± 24.33 (22) |
Piekary Śląskie (N = 11) | 56.57 ± 19.95 (60) | 42.62 ± 24.27 (36) | 62.28 ± 29.59 (67) |
Piekary Śląskie—Brzeziny PSC No. 15 | 71.8 ± 15.06 (78) | 49.2 ± 21.91 (50) | 60.36 ± 30.83 (51) |
Silesia Province | 60.57 * | 46.74 * | 66.98 * |
Poland | 60 ± 19 (62) | 47 ± 26 (44) | 66 ± 29 (73) |
the year 2019 | |||
Katowice (N = 59) | 67.68 ± 20.09 (72) | 48.69 ± 26.68 (47) | 67.01 ± 28.68 (77) |
Katowice—Szopienice PSC No. 42 | 47.06 * | 23.80 * | 41.45 * |
Świętochłowice (N = 9) | 63.81 ± 19.84 (68) | 42.55 ± 24.74 (40) | 56.11 ± 29.12 (55) |
Świętochłowice—Lipiny PSC No. 19 | 42.13 * | 22.06 * | 25.67 * |
Piekary Śląskie (N = 10) | 63.37 ± 20.64 (68) | 43.17 ± 26.07 (37) | 57.73 ± 28.43 (58) |
Piekary Śląskie—Brzeziny PSC No. 15 | 70.82 * | 50.24 * | 66.76 * |
Silesia Province | 64.13 * | 44.74 * | 60.24 * |
Poland | 63 ± 20 (66) | 45 ± 26 (40) | 59 ± 29 (60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziubanek, G.; Furman, J.; Rogala, D.; Gut-Pietrasz, K.; Ćwieląg-Drabek, M.; Rusin, M.; Domagalska, J.; Piekut, A.; Baranowska, R.; Niesler, A.; et al. Health Risk for Non-Dietary Children’s Exposure to Heavy Metals in Postindustrial Areas in Upper Silesia, Poland. Toxics 2025, 13, 377. https://doi.org/10.3390/toxics13050377
Dziubanek G, Furman J, Rogala D, Gut-Pietrasz K, Ćwieląg-Drabek M, Rusin M, Domagalska J, Piekut A, Baranowska R, Niesler A, et al. Health Risk for Non-Dietary Children’s Exposure to Heavy Metals in Postindustrial Areas in Upper Silesia, Poland. Toxics. 2025; 13(5):377. https://doi.org/10.3390/toxics13050377
Chicago/Turabian StyleDziubanek, Grzegorz, Joanna Furman, Danuta Rogala, Klaudia Gut-Pietrasz, Małgorzata Ćwieląg-Drabek, Monika Rusin, Joanna Domagalska, Agata Piekut, Renata Baranowska, Anna Niesler, and et al. 2025. "Health Risk for Non-Dietary Children’s Exposure to Heavy Metals in Postindustrial Areas in Upper Silesia, Poland" Toxics 13, no. 5: 377. https://doi.org/10.3390/toxics13050377
APA StyleDziubanek, G., Furman, J., Rogala, D., Gut-Pietrasz, K., Ćwieląg-Drabek, M., Rusin, M., Domagalska, J., Piekut, A., Baranowska, R., Niesler, A., & Osmala-Kurpiewska, W. (2025). Health Risk for Non-Dietary Children’s Exposure to Heavy Metals in Postindustrial Areas in Upper Silesia, Poland. Toxics, 13(5), 377. https://doi.org/10.3390/toxics13050377