A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomonitoring Data
2.2. In Vitro Toxicokinetic (TK) Data and Partition Modeling
2.3. In Vitro Bioactivity Data
2.3.1. ACEA: (ACEA Biosciences, San Diego, CA; [40,41])
2.3.2. ATG: (Attagene, Morrisville, NC; [41,43])
2.3.3. BSK: (BioSeek, Now BioMAP, Diversity plus Panel, [44,45,46,47])
2.3.4. DNT
2.3.5. HTPP: (High-Throughput Phenotypic Profiling with the Cell Painting Assay [52,53,54])
2.3.6. HTTr: (High-Throughput Transcriptomics with the TempO-Seq Human Whole Transcriptome Assay [56,57])
2.3.7. Thyroid
2.3.8. Zebrafish
2.4. BCBCR Calculation
2.5. In Vivo Data with Internal Concentrations in Rats
3. Results
4. Discussion
- Toxicokinetics (TK): There are multiple uncertainties associated with toxicokinetics, some already described. For some PFAS, there are active transport mechanisms that could increase or, more typically, decrease excretion [5]. Further complicating in vitro-in vivo extrapolation. TK uncertainties could cause BCBCR values to increase or decrease.
- In Vitro Disposition: As already mentioned, one would need to add a correction for chemical-specific in vitro distribution within the bioactivity testing well. These uncertainties could cause BCBCR values to increase or decrease.
- Incomplete coverage of bioactivity assays/mechanisms. The current study uses a selected battery of in vitro assays that cover a relatively targeted set of biological processes. Adding more assays could potentially make the in vitro PODs decrease. This uncertainty would only cause the BCBCR to decrease.
- Uncertainty in in vitro PODs for existing assays. All in vitro assays are subject to noise, and a variety of assay artifacts that can cause false positives or false negatives. As a rule of thumb, if a particular target was evaluated in multiple assays using different technologies, the POD could range by about an order of magnitude [70]. These uncertainties could cause BCBCR values to increase or decrease.
- Not all PFAS have long half-lives. For chemicals with short half-lives, blood draws with timing unrelated to exposures will tend to underestimate peak concentrations in individuals or populations [71]. This uncertainty would only cause the BCBCR to decrease.
- Bioactivity is not necessarily toxicity. The in vitro assays used here (and many others that one might use) measure perturbations in biology that might not lead to apical toxicity. There can be compensatory or adaptive mechanisms to prevent overt toxicity. Overt toxicity may require that the tissue concentration exceed a threshold level for extended periods of time or that the effect concentration be reached at a particular life stage. These uncertainties would only cause BCBCR values to increase.
- Uncertainties in the blood measurements: The blood concentration measurements are themselves subject to uncertainty, although analytical techniques for PFAS have significantly improved with time. So these uncertainties are likely smaller than some of the others mentioned. Regardless, this uncertainty could cause BCBCR values to increase or decrease.
- Different populations have different exposures and, therefore, different blood levels. Also, different sampled individuals with the same exposure can have different blood levels due to lifestage, genetic, and environmental factors. To estimate this uncertainty, consider the 50th percentile data for PFOA or PFOS in Figure 1. These data comprise mean and median values from many population samples, including individuals known to be exposed and individuals from the general population. Values span many orders of magnitude, with significant density of values over ~2 orders of magnitude. The higher values tend to be from exposed populations (e.g., workers in factories manufacturing PFAS, firefighters using PFAS foams, individuals consuming fish from PFAS-contaminated water, individuals drinking water from PFAS-contaminated wells), but there are outlier values from (supposedly) non-exposed populations. Regardless, as more populations are tested, minimum BCBCR values can only decrease.
- Other PFAS may not have been identified. The PFAS that have been tested for in blood may be the original (manufactured) parent compound, or they could be degradates or human metabolites. The presence of one PFAS may indicate that others are also present, and these may not be detected either because they are short-lived (but not necessarily nontoxic) or not tested for. The original exposure could also be to a mixture of PFAS, including parents and degradates. This uncertainty would only cause BCBCR values to decrease for the measured PFAS, not necessarily for the initially manufactured and released compound.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danish EPA. More Environmentally Friendly Alternatives to PFOS-Compounds and PFOA, Environmental Project No. 1013 2005. 2004. Available online: http://www2.mst.dk/udgiv/publications/2005/87-7614-668-5/pdf/87-7614-669-3.pdf (accessed on 1 March 2024).
- DeWitt, J. (Ed.) Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances; Humana Press: New York, NY, USA, 2015. [Google Scholar]
- Olsen, G.W.; Burris, J.M.; Ehresman, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 2007, 115, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Beesoon, S.; Zhu, L.; Martin, J.W. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ. Sci. Technol. 2013, 47, 10619–10627. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- NTP. NTP Technical Report on the Toxicity Studies of Perfluoroalkyl Sulfonates (Perfluorobutane Sulfonic Acid, Perfluorohexane Sulfonate Potassium Salt, and Perfluorooctane Sulfonic Acid) Administered by Gavage to Sprague Dawley (Hsd:Sprague Dawley SD) Rats. Research Triangle Park NC. 2019. Available online: https://cebs.niehs.nih.gov/cebs/publication/TOX-96 (accessed on 1 March 2024).
- NTP. NTP Technical Report on the Toxicity Studies of Perfluoroalkyl Carboxylates (Perfluorohexanoic Acid, Perfluorooctanoic Acid, Perfluorononanoic Acid, and Perfluorodecanoic Acid) Administered by Gavage to Sprague Dawley (Hsd:Sprague Dawley SD) Rats. Research Triangle Park NC. 2019. Available online: https://cebs.niehs.nih.gov/cebs/publication/TOX-97 (accessed on 1 March 2024).
- DeWitt, J.C.; Shnyra, A.; Badr, M.Z.; Loveless, S.E.; Hoban, D.; Frame, S.R.; Cunard, R.; Anderson, S.E.; Meade, B.J.; Peden-Adams, M.M.; et al. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit. Rev. Toxicol. 2009, 39, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Cousins, I.T.; DeWitt, J.C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef] [PubMed]
- Meneguzzi, A.; Fava, C.; Castelli, M.; Minuz, P. Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front. Endocrinol. 2021, 12, 70635. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.U.; Larsen, J.R.; Deen, L.; Flachs, E.M.; Haervig, K.K.; Hull, S.D.; Bonde, J.P.E.; Tottenborg, S.S. Per- and polyfluoroalkyl substances and male reproductive health: A systematic review of the epidemiological evidence. J. Toxicol. Environ. Health, B. Crit. Rev. 2020, 23, 276–291. [Google Scholar] [CrossRef]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public. Health 2017, 14, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ. Res. 2021, 194, 110690. [Google Scholar] [CrossRef]
- Reardon, A.J.F.; Moez, E.K.; Dinu, I.; Goruk, S.; Field, C.J.; Kinniburgh, D.W.; MacDonald, A.M.; Martin, J.W.; Study, A.P. Longitudinal analysis reveals early-pregnancy associations between perfluoroalkyl sulfonates and thyroid hormone status in a Canadian prospective birth cohort. Environ. Int. 2019, 129, 389–399. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wosu, A.C.; Fleisch, A.F.; Dunlop, A.L.; Starling, A.P.; Ferrara, A.; Dabelea, D.; Oken, E.; Buckley, J.P.; Chatzi, L.; et al. Associations of Gestational Perfluoroalkyl Substances Exposure with Early Childhood BMI z-Scores and Risk of Overweight/Obesity: Results from the ECHO Cohorts. Environ. Health Perspect. 2023, 131, 67001. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.M.; Ning, X.; Bakre, S.; Barrett, E.S.; Bastain, T.; Bennett, D.H.; Bloom, M.S.; Breton, C.V.; Dunlop, A.L.; Eick, S.M. Birth Outcomes in Relation to Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Stress in the Environmental Influences on Child Health Outcomes (ECHO) Program. Environ. Health Perspect. 2023, 131, 37006. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Deng, Y.; San, S.; Qiu, D.; Guo, X.; Xu, L.; Li, Y.; Zhang, H.; Li, Y. The Association between Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Respiratory Tract Infections in Preschool Children: A Wuhan Cohort Study. Toxics 2023, 11, 897. [Google Scholar] [CrossRef] [PubMed]
- Carlson, L.M.; Angrish, M.; Shirke, A.V.; Radke, E.G.; Schulz, B.; Kraft, A.; Judson, R.; Patlewicz, G.; Blain, R.; Lin, C.; et al. Systematic Evidence Map for Over One Hundred and Fifty Per- and Polyfluoroalkyl Substances (PFAS). Environ. Health Perspect. 2022, 130, 56001. [Google Scholar] [CrossRef]
- Gaines, L. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am. J. Ind. Med. 2022, 66, 353–378. [Google Scholar] [CrossRef]
- Gluge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- US EPA. PFAS Master List of PFAS Substances. 2024. Available online: https://comptox.epa.gov/dashboard/chemical-lists/PFASMASTER (accessed on 25 March 2024).
- USEPA. EPA’s Per- and Polyfluoroalkyl Substances (PFAS) Action Plan. 2019. Available online: https://www.epa.gov/sites/default/files/2019-02/documents/pfas_action_plan_021319_508compliant_1.pdf (accessed on 1 March 2024).
- Ludwicki, J.K.; Góralczyk, K.; Struciński, P.; Wojtyniak, B.; Rabczenko, D.; Toft, G.; Lindh, C.H.; Jönsson, B.A.G.; Lenters, V.; Heederik, D.; et al. Hazard quotient profiles used as a risk assessment tool for PFOS and PFOA serum levels in three distinctive European populations. Environ. Int. 2015, 74, 112–118. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Framework for Ecological Risk Assessment. 1992. Available online: https://semspub.epa.gov/work/10/500006111.pdf (accessed on 1 March 2024).
- Hays, S.M.; Becker, R.A.; Leung, H.W.; Aylward, L.L.; Pyatt, D.W. Biomonitoring equivalents: A screening approach for interpreting biomonitoring results from a public health risk perspective. Regul. Toxicol. Pharm. 2007, 47, 96–109. [Google Scholar] [CrossRef]
- Hays, S.M.; Aylward, L.L.; Lakind, J.S. Introduction to the Biomonitoring Equivalents Pilot Project: Development of guidelines for the derivation and communication of Biomonitoring Equivalents. Regul. Toxicol. Pharmacol. 2008, 51 (Suppl. S3), S1–S2. [Google Scholar] [CrossRef]
- Pleil, J.D.; Sobus, J.R. Estimating lifetime risk from spot biomarker data and intraclass correlation coefficients (ICC). J. Toxicol. Environ. Health A 2013, 76, 747–766. [Google Scholar] [CrossRef]
- LaKind, J.S.; Sobus, J.R.; Goodman, M.; Barr, D.B.; Furst, P.; Albertini, R.J.; Arbuckle, T.E.; Schoeters, G.; Tan, Y.M.; Teeguarden, J.; et al. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument. Environ. Int. 2014, 73, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Paul-Friedman, K.; Gagne, M.; Loo, L.H.; Karamertzanis, P.; Netzeva, T.; Sobanski, T.; Franzosa, J.A.; Richard, A.M.; Lougee, R.R.; Gissi, A.; et al. Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol. Sci. 2020, 173, 202–225. [Google Scholar] [CrossRef]
- Judson, R.; Richard, A.; Dix, D.; Houck, K.; Elloumi, F.; Martin, M.; Cathey, T.; Transue, T.R.; Spencer, R.; Wolf, M. ACToR--Aggregated Computational Toxicology Resource. Toxicol. Appl. Pharm. 2008, 233, 7–13. [Google Scholar] [CrossRef]
- US EPA. CompTox Chemicals Dashboard. 2024. Available online: https://comptox.epa.gov/dashboard (accessed on 1 March 2024).
- Grulke, C.M.; Williams, A.J.; Thillanadarajah, I.; Richard, A.M. EPA’s DSSTox database: History of development of a curated chemistry resource supporting computational toxicology research. Comput. Toxicol. 2019, 12, 100096. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol. Vitr. 2008, 22, 457–467. [Google Scholar] [CrossRef]
- Pearce, R.; Setzer, R.; Strope, C.; Sipes, N.; Wambaugh, J. httk: R Package for High-Throughput Toxicokinetics. J. Stat. Softw. 2017, 79, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Smeltz, M.G.; Clifton, M.S.; Henderson, W.M.; McMillan, L.; Wetmore, B.A. Targeted Per- and Polyfluoroalkyl substances (PFAS) assessments for high throughput screening: Analytical and testing considerations to inform a PFAS stock quality evaluation framework. Toxicol. Appl. Pharm. 2023, 459, 116355. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, A.; Clifton, M.S.; Henderson, W.M.; Smeltz, M.G.; Phillips, M.; Wambaugh, J.F.; Wetmore, B.A. Category-Based Toxicokinetic Evaluations of Data-Poor Per- and Polyfluoroalkyl Substances (PFAS) using Gas Chromatography Coupled with Mass Spectrometry. Toxics 2023, 11, 463. [Google Scholar] [CrossRef]
- Smeltz, M.; Wambaugh, J.F.; Wetmore, B.A. Plasma Protein Binding Evaluations of Per- and Polyfluoroalkyl Substances for Category-Based Toxicokinetic Assessment. Chem. Res. Toxicol. 2023, 36, 870–881. [Google Scholar]
- Poothong, S.; Thomsen, C.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Haug, L.S. Distribution of Novel and Well-Known Poly- and Perfluoroalkyl Substances (PFASs) in Human Serum, Plasma, and Whole Blood. Environ. Sci. Technol. 2017, 51, 13388–13396. [Google Scholar] [CrossRef]
- Rotroff, D.M.; Dix, D.J.; Houck, K.A.; Kavlock, R.J.; Knudsen, T.B.; Martin, M.T.; Reif, D.M.; Richard, A.M.; Sipes, N.S.; Abassi, Y.A.; et al. Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T-47D Human Ductal Carcinoma Cells. Chem. Res. Toxicol. 2013, 26, 1097–1107. [Google Scholar] [CrossRef]
- Houck, K.A.; Patlewicz, G.; Richard, A.M.; Williams, A.J.; Shobair, M.A.; Smeltz, M.; Clifton, M.S.; Wetmore, B.; Medvedev, A.; Makarov, S. Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 2021, 457, 152789. [Google Scholar] [CrossRef] [PubMed]
- Filer, D.L.; Kothiya, P.; Setzer, R.W.; Judson, R.S.; Martin, M.T. Tcpl: The ToxCast pipeline for high-throughput screening data. Bioinformatics 2017, 33, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Romanov, S.; Medvedev, A.; Gambarian, M.; Poltoratskaya, N.; Moeser, M.; Medvedeva, L.; Diatchenko; Makarov, S. Homogeneous reporter system enables quantitative functional assessment of multiple transcription factors. Nat. Methods 2008, 5, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Houck, K.A.; Friedman, K.P.; Feshuk, M.; Patlewicz, G.; Smeltz, M.; Clifton, M.S.; Wetmore, B.A.; Velichko, S.; Berenyi, A.; Berg, E.L. Evaluation of 147 perfluoroalkyl substances for immunotoxic and other (patho)physiological activities through phenotypic screening of human primary cells. ALTEX 2023, 40, 248–270. [Google Scholar] [CrossRef] [PubMed]
- Kleinstreuer, N.C.; Yang, J.; Berg, E.L.; Knudsen, T.B.; Richard, A.M.; Martin, M.T.; Reif, D.M.; Judson, R.S.; Polokoff, M.; Dix, D.J.; et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 2014, 32, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.L. Phenotypic chemical biology for predicting safety and efficacy. Drug. Discov. Today Technol. 2017, 23, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.L.; Kunkel, E.J.; Hytopoulos, E.; Plavec, I. Characterization of compound mechanisms and secondary activities by BioMAP analysis. J. Pharm. Toxicol. Methods 2006, 53, 67–74. [Google Scholar] [CrossRef]
- Carstens, K.E.; Freudenrich, T.; Wallace, K.; Choo, S.; Carpenter, A.; Smeltz, M.; Clifton, M.S.; Henderson, W.M.; Richard, A.M.; Patlewicz, G.; et al. Evaluation of Per- and Polyfluoroalkyl Substances (PFAS) In Vitro Toxicity Testing for Developmental Neurotoxicity. Chem. Res. Toxicol. 2023, 36, 402–419. [Google Scholar] [CrossRef]
- Brown, J.P.; Hall, D.; Frank, C.L.; Wallace, K.; Mundy, W.R.; Shafer, T.J. Editor’s Highlight: Evaluation of a Microelectrode Array-Based Assay for Neural Network Ontogeny Using Training Set Chemicals. Toxicol. Sci. 2016, 154, 126–139. [Google Scholar] [CrossRef]
- Harrill, J.A. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods Mol. Biol. 2018, 1683, 305–338. [Google Scholar] [PubMed]
- Frank, C.L.; Brown, J.P.; Wallace, K.; Mundy, W.R.; Shafer, T.J. From the Cover: Developmental Neurotoxicants Disrupt Activity in Cortical Networks on Microelectrode Arrays: Results of Screening 86 Compounds During Neural Network Formation. Toxicol. Sci. 2017, 160, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.A.; Singh, S.; Han, H.; Davis, C.T.; Borgeson, B.; Hartland, C.; Kost-Alimova, M.; Gustafsdottir, S.M.; Gibson, C.C.; Carpenter, A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016, 11, 1757–1774. [Google Scholar] [CrossRef] [PubMed]
- Nyffeler, J.; Haggard, D.E.; Willis, C.; Setzer, R.W.; Judson, R.; Paul-Friedman, K.; Everett, L.J.; Harrill, J.A. Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data. SLAS Discov. 2021, 26, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Nyffeler, J.; Willis, C.; Lougee, R.; Richard, A.; Paul-Friedman, K.; Harrill, J.A. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol. Appl. Pharmacol. 2020, 389, 114876. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, T.; Brown, J.; Davidson, S.; Friedman, K.P.; Judson, R. Tcplfit2: An R-language general purpose concentration-response modeling package. Bioinformatics 2022, 38, 1157–1158. [Google Scholar] [CrossRef] [PubMed]
- Yeakley, J.M.; Shepard, P.J.; Goyena, D.E.; VanSteenhouse, H.C.; McComb, J.D.; Seligmann, B.E. A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS ONE 2017, 12, e0178302. [Google Scholar] [CrossRef]
- Harrill, J.A.; Everett, L.J.; Haggard, D.E.; Sheffield, T.; Bundy, J.L.; Willis, C.M.; Thomas, R.S.; Shah, I.; Judson, R.S. High-Throughput Transcriptomics Platform for Screening Environmental Chemicals. Toxicol. Sci. 2021, 181, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Degitz, S.J.; Olker, J.H.; Denny, J.S.; Degoey, P.P.; Hartig, P.C.; Cardon, M.C.; Eytcheson, S.A.; Haselman, J.T.; Mayasich, S.A.; Hornung, M.W. In vitro screening of per- and polyfluorinated substances (PFAS) for interference with seven thyroid hormone system targets across nine assays. Toxicol. Vitr. 2024, 95, 105762. [Google Scholar] [CrossRef]
- Noyes, P.D.; Friedman, K.P.; Browne, P.; Haselman, J.T.; Gilbert, M.E.; Hornung, M.W.; Barone, S., Jr.; Crofton, K.M.; Laws, S.C.; Stoker, T.E.; et al. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. Environ. Health Perspect. 2019, 127, 95001. [Google Scholar] [CrossRef]
- Olker, J.H.; Korte, J.J.; Denny, J.S.; Haselman, J.T.; Hartig, P.C.; Cardon, M.C.; Hornung, M.W.; Degitz, S.J. In vitro screening for chemical inhibition of the iodide recycling enzyme, iodotyrosine deiodinase. Toxicol. Vitr. 2021, 71, 105073. [Google Scholar] [CrossRef]
- Olker, J.H.; Korte, J.J.; Denny, J.S.; Hartig, P.C.; Cardon, M.C.; Knutsen, C.N.; Kent, P.M.; Christensen, J.P.; Degitz, S.J.; Hornung, M.W. Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for Inhibitors of Iodothyronine Deiodinases. Toxicol. Sci. 2019, 168, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Paul Friedman, K.; Watt, E.D.; Hornung, M.W.; Hedge, J.M.; Judson, R.S.; Crofton, K.M.; Houck, K.A.; Simmons, S.O. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicol. Sci. 2016, 151, 160–180. [Google Scholar] [CrossRef]
- Montano, M.; Cocco, E.; Guignard, C.; Marsh, G.; Hoffmann, L.; Bergman, A.; Gutleb, A.C.; Murk, A.J. New approaches to assess the transthyretin binding capacity of bioactivated thyroid hormone disruptors. Toxicol. Sci. 2012, 130, 94–105. [Google Scholar] [CrossRef]
- Society for the Advancement of Adverse Outcome Pathways (SAAOP). AOP Wiki. 2024. Available online: https://aopwiki.org/aops (accessed on 25 March 2024).
- Deal, S.; Wambaugh, J.; Judson, R.; Mosher, S.; Radio, N.; Houck, K.; Padilla, S. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis. J. Appl. Toxicol. 2016, 36, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.E.; Lau, C.; Pradeep, P.; Sayre, R.R.; Judson, R.S.; Tornero-Velez, R.; Wambaugh, J.F. A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. Toxics 2023, 11, 98. [Google Scholar] [CrossRef]
- Chiu, W.A.; Lynch, M.T.; Lay, C.R.; Antezana, A.; Malek, P.; Sokolinski, S.; Rogers, R.D. Bayesian Estimation of Human Population Toxicokinetics of PFOA, PFOS, PFHxS, and PFNA from Studies of Contaminated Drinking Water. Environ. Health Perspect. 2022, 130, 127001. [Google Scholar] [CrossRef]
- Armitage, J.M.; Sangion, A.; Parmar, R.; Looky, A.B.; Arnot, J.A. Update and Evaluation of a High-Throughput In Vitro Mass Balance Distribution Model: IV-MBM EQP v2.0. Toxics 2021, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Armitage, J.M.; Wania, F.; Arnot, J.A. Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ. Sci. Technol. 2014, 48, 9770–9779. [Google Scholar] [CrossRef]
- Watt, E.D.; Judson, R.S. Uncertainty quantification in ToxCast high throughput screening. PLoS ONE 2018, 13, e0196963. [Google Scholar] [CrossRef]
- Aylward, L.L.; Kirman, C.R.; Adgate, J.L.; McKenzie, L.M.; Hays, S.M. Interpreting variability in population biomonitoring data: Role of elimination kinetics. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Washington, J.W.; Rosal, C.G.; McCord, J.P.; Strynar, M.J.; Lindstrom, A.B.; Bergman, E.L.; Goodrow, S.M.; Tadesse, H.K.; Pilant, A.N.; Washington, B.J.; et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science 2020, 368, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Noker, P.E.; Gorman, G.S.; Gibson, S.J.; Hart, J.A.; Ehresman, D.J.; Butenhoff, J.L. Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod. Toxicol. 2012, 33, 428–440. [Google Scholar] [CrossRef] [PubMed]
Name | Sex | Liver Weight | Relative Liver Weight | Kidney Weight | Relative Kidney Weight | Decreased Hematocrit | Decreased Cholesterol | Decreased t3 | Decreased Free t4 | Decreased Total t4 | Plasma Conc. at Lowest LEL (ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|
PFBS | female | 250 | 125 | NA | 62.6 | NA | 500 | 62.6 | 62.6 | 62.6 | 154.3 |
PFBS | male | 125 | 62.6 | 500 | 500 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 2222 |
PFDA | female | 0.156 | 0.156 | 0.312 | 0.625 | 1.25 | 1.25 | NA | 1.25 | NA | 11,207.8 |
PFDA | male | 0.156 | 0.156 | 2.5 | 0.625 | NA | 0.156 | 0.312 | 0.312 | 0.312 | 8505 |
PFHxA | female | 500 | 500 | 1000 | 1000 | 250 | 250 | NA | NA | NA | 475.4 |
PFHxA | male | 500 | 250 | NA | 500 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 378.2 |
PFHxSK | female | 3.12 | 3.12 | NA | NA | NA | NA | NA | 6.25 | 12.5 | 37,030 |
PFHxSK | male | 1.25 | 1.25 | NA | 10 | NA | 1.25 | 0.625 | 0.625 | 0.625 | 66,760 |
PFNA | female | 1.56 | 1.56 | 1.56 | 1.56 | NA | NA | 3.12 | 3.12 | 3.12 | 26,400 |
PFNA | male | 0.625 | 0.625 | 2.5 | 1.25 | NA | 0.625 | 0.625 | 0.625 | 0.625 | 56,730 |
PFOA | female | 25 | 25 | 50 | 100 | 6.25 | 50 | NA | 100 | 100 | 2960.1 |
PFOA | male | 0.625 | 0.625 | 1.25 | 0.625 | 1.25 | 1.25 | 0.625 | 0.625 | 0.625 | 50,690.2 |
PFOS | female | 0.312 | 0.312 | NA | NA | NA | 5 | 0.312 | 0.312 | 0.625 | 30,530 |
PFOS | male | 0.312 | 0.312 | NA | NA | NA | 0.312 | 0.625 | 0.312 | 0.312 | 23,730 |
DTXSID | CASRN | Name | Abbreviation |
---|---|---|---|
DTXSID20874028 | 914637-49-3 | 2H,2H,3H,3H-Perfluorooctanoic acid | 5:3 PFOA |
DTXSID6027426 | 1691-99-2 | 2-Perfluorooctylsulfonyl-N-ethylaminoethyl alcohol | N-EtFOSE |
DTXSID90382620 | 812-70-4 | 3-(Perfluoroheptyl)propanoic acid | 7:3 FTCA |
DTXSID00379268 | 356-02-5 | 3:3 Fluorotelomer carboxylic acid | 3:3 FTCA |
DTXSID30891564 | 757124-72-4 | 4:2 Fluorotelomer sulfonic acid | 4:2 FTSA |
DTXSID90558000 | 57678-01-0 | 6:2 Fluorotelomer phosphate monoester | 6:2 monoPAP |
DTXSID6067331 | 27619-97-2 | 6:2 Fluorotelomer sulfonic acid | 6:2 FTSA |
DTXSID00192353 | 39108-34-4 | 8:2 Fluorotelomer sulfonic acid | 8:2 FTS |
DTXSID8037708 | 3825-26-1 | Ammonium perfluorooctanoate | PFOAA |
DTXSID1032646 | 4151-50-2 | N-Ethylperfluorooctanesulfonamide | NEtFOSA |
DTXSID7027831 | 24448-09-7 | N-Methyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide | N-MeFOSE |
DTXSID1067629 | 31506-32-8 | N-Methylperfluorooctanesulfonamide | N-MeFOSA |
DTXSID70880215 | 13252-13-6 | Perfluoro-2-methyl-3-oxahexanoic acid | GenX |
DTXSID5030030 | 375-73-5 | Perfluorobutanesulfonic acid | PFBS |
DTXSID4059916 | 375-22-4 | Perfluorobutanoic acid | PFBA |
DTXSID3031860 | 335-76-2 | Perfluorodecanoic acid | PFDA |
DTXSID8059920 | 375-92-8 | Perfluoroheptanesulfonic acid | PFHpS |
DTXSID1037303 | 375-85-9 | Perfluoroheptanoic acid | PFHpA |
DTXSID50469320 | 41997-13-1 | Perfluorohexanesulfonamide | FHxSA |
DTXSID7040150 | 355-46-4 | Perfluorohexanesulfonic acid | PFHxS |
DTXSID3031862 | 307-24-4 | Perfluorohexanoic acid | PFHxA |
DTXSID8031863 | 375-95-1 | Perfluorononanoic acid | PFNA |
DTXSID3038939 | 754-91-6 | Perfluorooctanesulfonamide | PFOSA |
DTXSID3031864 | 1763-23-1 | Perfluorooctanesulfonic acid | PFOS |
DTXSID8031865 | 335-67-1 | Perfluorooctanoic acid | PFOA |
DTXSID6062599 | 2706-90-3 | Perfluoropentanoic acid | PFPeA |
DTXSID8059970 | 422-64-0 | Perfluoropropanoic acid | PFPrA |
DTXSID3059921 | 376-06-7 | Perfluorotetradecanoic acid | PFTeDA |
DTXSID90868151 | 72629-94-8 | Perfluorotridecanoic acid | PFTriDA |
DTXSID8047553 | 2058-94-8 | Perfluoroundecanoic acid | PFUnDA |
DTXSID3037707 | 29420-49-3 | Potassium perfluorobutanesulfonate | KPFBS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Judson, R.S.; Smith, D.; DeVito, M.; Wambaugh, J.F.; Wetmore, B.A.; Paul Friedman, K.; Patlewicz, G.; Thomas, R.S.; Sayre, R.R.; Olker, J.H.; et al. A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS). Toxics 2024, 12, 271. https://doi.org/10.3390/toxics12040271
Judson RS, Smith D, DeVito M, Wambaugh JF, Wetmore BA, Paul Friedman K, Patlewicz G, Thomas RS, Sayre RR, Olker JH, et al. A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS). Toxics. 2024; 12(4):271. https://doi.org/10.3390/toxics12040271
Chicago/Turabian StyleJudson, Richard S., Doris Smith, Michael DeVito, John F. Wambaugh, Barbara A. Wetmore, Katie Paul Friedman, Grace Patlewicz, Russell S. Thomas, Risa R. Sayre, Jennifer H. Olker, and et al. 2024. "A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS)" Toxics 12, no. 4: 271. https://doi.org/10.3390/toxics12040271
APA StyleJudson, R. S., Smith, D., DeVito, M., Wambaugh, J. F., Wetmore, B. A., Paul Friedman, K., Patlewicz, G., Thomas, R. S., Sayre, R. R., Olker, J. H., Degitz, S., Padilla, S., Harrill, J. A., Shafer, T., & Carstens, K. E. (2024). A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS). Toxics, 12(4), 271. https://doi.org/10.3390/toxics12040271