Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste
Abstract
:1. Introduction
2. Biochemical Processes
2.1. MICP
2.2. Mining Waste Characterization and Treatment
3. Bioremediation Processes—Geophysical and Biochemical Interactions
3.1. Bioremediation
3.2. MICP Indicators
- Scanning electron microscopy (SEM): This is used to create clear images of MICP-treated samples. It shows precipitates and bacteria species (including shapes), which will better illustrate CaCO3 precipitated by bacterial influence.
- Energy-dispersive X-ray spectroscopy (EDS): This method establishes the proportion of elements that make up a sample. It will provide a comparison between control and MICP-treated samples, which will illustrate the precipitates formed (i.e., CaCO3) and the co-precipitation of different metal(loid)s.
- X-ray diffraction (XRD): This is used to verify precipitates formed during MICP. It confirms CaCO3 (noting specific polymorphs present) and the co-precipitation of metal(loid)s, which will create a better understanding of the mechanisms involved in the bioremediation of mining waste.
3.3. Case Studies
4. Recommendations
- Long-term feasibility: additional research is required to evaluate MICP over long timeframes in practical field scenarios to establish its long-term feasibility. Some considerations impacting long-term feasibility include:
- Annual climate changes may impact the long-term feasibility of the CaCO3 precipitates and the biocement matrix. Testing climate change (e.g., temperature and moisture content changes) will better indicate year-round feasibility as a remediation strategy. This can be expanded to an assessment of F/T cycles and W/D cycles on MICP formation and overall efficacy. Further, CaCO3 solubility is impacted by temperature and carbon dioxide (CO2) concentration [97]. As temperature increases, solubility decreases [97,98], while solubility increases with CO2 increases [97]. These factors may impact the saturation state and therefore MICP-driven precipitation.
- The dissolution of immobilized contaminants over time:
- pH changes: MICP forms geochemically stable CaCO3 precipitates [46]. However, little long-term research has been conducted on the process. A fundamental factor governing metal precipitation is pH. Alkaline solutions are more likely to cause precipitation, while acidic solutions can cause the dissolution of metal precipitates [99]. Therefore, changes in pH could potentially redissolve metal precipitates.
- Redox potential changes: The speciation state can influence oxidation, reduction, mineralization, and immobilization [100]. Certain metal(loid)s are more stable under reducing conditions or oxidizing conditions. Therefore, redox changes can cause the dissolution of precipitates over time. While urease-driven MICP is not readily influenced by redox potential [42], sulfides and iron oxides are easily reactive with redox potential changes [46]. It is possible that immobilized metal(loid)s can be redissolved [46]. The impact of chemical speciation and redox changes should be studied with respect to time to assess their long-term impact.
- Biocement defects: Metal(loid)s immobilized by MICP can release and leach into the soil and/or groundwater via cracks, fissures, or interstices developed in the biocemented matrix. Over time, physical degradation from weather may cause defects causing immobilized contaminants to leach back into the environment. Again, a long-term assessment of MICP is required to establish its practicality as a bioremediation technique.
- Secondary contamination and by-products: A better understanding of secondary contamination and potential by-products is required for a practical field application of MICP. In addition to identifying the presence of these contaminants, mitigative strategies require exploration to minimize their effect.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamrin, H. Underground Mining Methods and Applications; Atlas Copco: Stockholm, Sweden, 1997; pp. 3–14. [Google Scholar]
- Encyclopædia Britannica, Inc. A Zinc-Lead Blast Furnace and Lead-Splash Condenser. Available online: https://www.britannica.com/technology/lead-processing (accessed on 21 December 2023).
- Encyclopædia Britannica, Inc. Schematic Diagram of a Flotation Separation Cell. Available online: https://www.britannica.com/technology/mineral-processing/Concentration (accessed on 21 December 2023).
- saVRee Gyratory Crusher Operation. Available online: https://savree.com/en/encyclopedia/gyratory-crusher (accessed on 21 December 2023).
- Santini, T.C.; Banning, N.C. Alkaline Tailings as Novel Soil Forming Substrates: Reframing Perspectives on Mining and Refining Wastes. Hydrometallurgy 2016, 164, 38–47. [Google Scholar] [CrossRef]
- Karpiński, P.H.; Bałdyga, J. Precipitation Processes (Chapter 8). In Handbook of Industrial Crystallization; Myerson, A.S., Erdemir, D., Lee, A.Y., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 216–265. ISBN 978-1-139-02694-9. [Google Scholar]
- Lewis, A. Precipitation of Heavy Metals. In Sustainable Heavy Metal Remediation: Volume 1: Principles and Processes; Rene, E.R., Sahinkaya, E., Lewis, A., Lens, P.N.L., Eds.; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2017; pp. 101–120. ISBN 978-3-319-58622-9. [Google Scholar]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial Resistance to Metals in the Environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Diels, L.; Geets, J.; Dejonghe, W.; Roy, S.V.; Vanbroekhoven, K.; Szewczyk, A.; Malina, G. Heavy Metal Immobilization in Groundwater by In Situ Bioprecipitation: Comments and Questions about Efficiency and Sustainability of the Process. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Amherst, MA, USA, 16–19 October 2006; The Berkeley Electronic Press: Berkeley, CA, USA, 2010; Volume 11, pp. 99–112. [Google Scholar]
- Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of Calcium Carbonate Minerals by Bacteria and Its Multiple Applications. SpringerPlus 2016, 5, 250. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Front. Mater. 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Jeyakumar, P.; Debnath, C.; Vijayaraghavan, R.; Muthuraj, M. Trends in Bioremediation of Heavy Metal Contaminations. Environ. Eng. Res. 2023, 28, 1–19. [Google Scholar] [CrossRef]
- Joshi, S.; Goyal, S.; Sudhakara Reddy, M. Influence of Biogenic Treatment in Improving the Durability Properties of Waste Amended Concrete: A Review. Constr. Build. Mater. 2020, 263, 120170. [Google Scholar] [CrossRef]
- Weiner, S.; Dove, P.M. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Rev. Mineral. Geochem. 2003, 54, 1–29. [Google Scholar] [CrossRef]
- Kaur, G.; Dhami, N.K.; Goyal, S.; Mukherjee, A.; Reddy, M.S. Utilization of Carbon Dioxide as an Alternative to Urea in Biocementation. Constr. Build. Mater. 2016, 123, 527–533. [Google Scholar] [CrossRef]
- Kumar, A.; Song, H.-W.; Mishra, S.; Zhang, W.; Zhang, Y.-L.; Zhang, Q.-R.; Yu, Z.-G. Application of Microbial-Induced Carbonate Precipitation (MICP) Techniques to Remove Heavy Metal in the Natural Environment: A Critical Review. Chemosphere 2023, 318, 137894. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front. Bioeng. Biotechnol. 2016, 4, 1–21. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Fu, Q.; Zhang, D. Biomineralization Based Remediation of As(III) Contaminated Soil by Sporosarcina Ginsengisoli. J. Hazard. Mater. 2012, 201–202, 178–184. [Google Scholar] [CrossRef]
- Smith, L.A.; Alleman, B.C.; Copley-Graves, L. Biological Treatment Options. In Emerging Technology for Bioremediation of Metals; Means, J.L., Hinchee, R.E., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 1–12. [Google Scholar]
- Benzerara, K.; Miot, J.; Morin, G.; Ona-Nguema, G.; Skouri-Panet, F.; Férard, C. Significance, Mechanisms and Environmental Implications of Microbial Biomineralization. C. R. Geosci. 2011, 343, 160–167. [Google Scholar] [CrossRef]
- Proudfoot, D.; Brooks, L.; Gammons, C.H.; Barth, E.; Bless, D.; Nagisetty, R.M.; Lauchnor, E.G. Investigating the Potential for Microbially Induced Carbonate Precipitation to Treat Mine Waste. J. Hazard. Mater. 2022, 424, 127490. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Pan, X.; Lee, D.-J.; Kumari, D.; Zhang, D. Remediation of Cr(VI) from Chromium Slag by Biocementation. Chemosphere 2013, 93, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Capasso, C. An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Hora, R.N.; Ahenkorah, I.; Beecham, S.; Karim, M.R.; Iqbal, A. State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability 2020, 12, 6281. [Google Scholar] [CrossRef]
- Gomes, H.I.; Mayes, W.M.; Rogerson, M.; Stewart, D.I.; Burke, I.T. Alkaline Residues and the Environment: A Review of Impacts, Management Practices and Opportunities. J. Clean. Prod. 2016, 112, 3571–3582. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid Mine Drainage Remediation Options: A Review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A Critical Review on Remediation, Reuse, and Resource Recovery from Acid Mine Drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef]
- Taylor, J.; Pape, S.; Murphy, N. A Summary of Passive and Active Treatment Technologies for Acid and Metalliferous Drainage (AMD); Australian Centre for Minerals Extension and Research (ACMER): Fremantle, Australia, 2005; p. 49. [Google Scholar]
- Khudhur, F.W.K.; MacDonald, J.M.; Macente, A.; Daly, L. The Utilization of Alkaline Wastes in Passive Carbon Capture and Sequestration: Promises, Challenges and Environmental Aspects. Sci. Total Environ. 2022, 823, 153553. [Google Scholar] [CrossRef]
- Gravogl, G.; Birkelbach, F.; Müller, D.; Lengauer, C.L.; Weinberger, P.; Miletich, R. Pressure Dependence of the Low Temperature Carbonation Kinetics of Calcium Oxide for Potential Thermochemical Energy Storage Purposes and Sustainable CO2 Fixation. Adv. Sustain. Syst. 2021, 5, 2100022. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Chang, E.E.; Chiang, P.-C. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol Air Qual. Res. 2012, 12, 770–791. [Google Scholar] [CrossRef]
- Mujah, D.; Shahin, M.; Cheng, L. State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiology 2016, 34, 524–537. [Google Scholar] [CrossRef]
- Zúñiga-Barra, H.; Toledo-Alarcón, J.; Torres-Aravena, Á.; Jorquera, L.; Rivas, M.; Gutiérrez, L.; Jeison, D. Improving the Sustainable Management of Mining Tailings through Microbially Induced Calcite Precipitation: A Review. Miner. Eng. 2022, 189, 107855. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Zhan, L.; Huang, M.; Zhang, Q.; Achal, V. The Large-Scale Process of Microbial Carbonate Precipitation for Nickel Remediation from an Industrial Soil. Environ. Pollut. 2016, 219, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Govarthanan, M.; Lee, K.-J.; Cho, M.; Kim, J.S.; Kamala-Kannan, S.; Oh, B.-T. Significance of Autochthonous Bacillus Sp. KK1 on Biomineralization of Lead in Mine Tailings. Chemosphere 2013, 90, 2267–2272. [Google Scholar] [CrossRef]
- Kumari, D.; Pan, X.; Lee, D.-J.; Achal, V. Immobilization of Cadmium in Soil by Microbially Induced Carbonate Precipitation with Exiguobacterium Undae at Low Temperature. Int. Biodeterior. Biodegrad. 2014, 94, 98–102. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Ito, M.; Sato, T.; Igarashi, T.; Banda, K.; Chirwa, M.; Nyambe, I.; Nakayama, S.; et al. Efficacy of Biocementation of Lead Mine Waste from the Kabwe Mine Site Evaluated Using Pararhodobacter Sp. Environ. Sci. Pollut. Res. Int. 2019, 26, 15653–15664. [Google Scholar] [CrossRef]
- Kang, C.-H.; Oh, S.J.; Shin, Y.; Han, S.-H.; Nam, I.-H.; So, J.-S. Bioremediation of Lead by Ureolytic Bacteria Isolated from Soil at Abandoned Metal Mines in South Korea. Ecol. Eng. 2015, 74, 402–407. [Google Scholar] [CrossRef]
- Kang, C.-H.; Han, S.-H.; Shin, Y.; Oh, S.J.; So, J.-S. Bioremediation of Cd by Microbially Induced Calcite Precipitation. Appl. Biochem. Biotechnol. 2014, 172, 2907–2915. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D. Bioremediation of Strontium (Sr) Contaminated Aquifer Quartz Sand Based on Carbonate Precipitation Induced by Sr Resistant Halomonas sp. Chemosphere 2012, 89, 764–768. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D.; Fu, Q. Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. J. Microbiol. Biotechnol. 2012, 22, 244–247. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D. Remediation of Copper-Contaminated Soil by Kocuria Flava CR1, Based on Microbially Induced Calcite Precipitation. Ecol. Eng. 2011, 37, 1601–1605. [Google Scholar] [CrossRef]
- Yavuz, O.; Guzel, R.; Aydin, F.; Tegin, I.; Ziyadanogullari, R. Removal of Cadmium and Lead from Aqueous Solution by Calcite. Pol. J. Environ. Stud. 2007, 16, 467–471. [Google Scholar]
- Aziz, H.A.; Adlan, M.N.; Ariffin, K.S. Heavy Metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) Removal from Water in Malaysia: Post Treatment by High Quality Limestone. Bioresour. Technol. 2008, 99, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Dayah, M. Periodic Table—Ptable. Available online: https://ptable.com/?lang=en (accessed on 12 April 2022).
- Xiangliang, P. Micrologically Induced Carbonate Precipitation as a Promising Way to in Situ Immobilize Heavy Metals in Groundwater and Sediment. Res. J. Chem. Environ. 2009, 13, 3–4. [Google Scholar]
- LaGrega, M.D.; Buckingham, P.; Evans, J. Hazardous Waste Management, 2nd ed.; Waveland Press, Inc.: Long Grove, IL, USA, 1994. [Google Scholar]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- Lai, Y.; Yu, J.; Liu, S.; Liu, J.; Wang, R.; Dong, B. Experimental Study to Improve the Mechanical Properties of Iron Tailings Sand by Using MICP at Low pH. Constr. Build. Mater. 2021, 273, 121729. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Özyurt, N. Improved Strength and Durability of Fly Ash-Amended Concrete by Microbial Calcite Precipitation. Ecol. Eng. 2011, 37, 554–559. [Google Scholar] [CrossRef]
- Fu, T.; Saracho, A.C.; Haigh, S.K. Microbially Induced Carbonate Precipitation (MICP) for Soil Strengthening: A Comprehensive Review. Biogeotechnics 2023, 1, 100002. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut. 2019, 9, 191203. [Google Scholar] [CrossRef]
- Jiang, N.-J.; Wang, Y.-J.; Chu, J.; Kawasaki, S.; Tang, C.-S.; Cheng, L.; Du, Y.-J.; Shashank, B.S.; Singh, D.N.; Han, X.-L.; et al. Bio-Mediated Soil Improvement: An Introspection into Processes, Materials, Characterization and Applications. Soil Use Manag. 2022, 38, 68–93. [Google Scholar] [CrossRef]
- Dejong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.; et al. Biogeochemical Processes and Geotechnical Applications: Progress, Opportunities and Challenges. Géotechnique 2013, 63, 287–301. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S. Chapter 13—Stabilization/Solidification of Mining Waste via Biocementation. In Low Carbon Stabilization and Solidification of Hazardous Wastes; Tsang, D.C.W., Wang, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 201–209. ISBN 978-0-12-824004-5. [Google Scholar]
- Basic Properties of Building Decorative Materials, Chapter 2. In Building Decorative Materials; Li, Y.; Ren, S. (Eds.) Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2011; pp. 10–24. ISBN 978-0-85709-257-1. [Google Scholar]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Microbial Concrete: Way to Enhance the Durability of Building Structures. J. Mater. Civ. Eng. 2011, 23, 730–734. [Google Scholar] [CrossRef]
- Nemati, M.; Voordouw, G. Modification of Porous Media Permeability, Using Calcium Carbonate Produced Enzymatically in Situ. Enzyme Microb. Technol. 2003, 33, 635–642. [Google Scholar] [CrossRef]
- Soongswang, P.; Tia, M.; Bloomquist, D.G.; Meletiou, C.; Sessions, L.M. Efficient Test Setup for Determining the Water-Permeability of Concrete. Transp. Res. Rec. 1988, 1204, 77–82. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Maest, A.; Nordstrom, D.K. A Geochemical Examination of Humidity Cell Tests. Appl. Geochem. 2017, 81, 109–131. [Google Scholar] [CrossRef]
- ASTM International D5744; 18 Standard Test Method for Laboratory Weathering of Solid Materials Using a Humidity Cell. ASTM International: West Conshohocken, PA, USA, 2018.
- Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A. A Review of Microbial Precipitation for Sustainable Construction. Constr. Build. Mater. 2015, 93, 1224–1235. [Google Scholar] [CrossRef]
- Achal, V.; Mukerjee, A.; Sudhakara Reddy, M. Biogenic Treatment Improves the Durability and Remediates the Cracks of Concrete Structures. Constr. Build. Mater. 2013, 48, 1–5. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-Ruwisch, R.; Shahin, M.A. Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation. Can. Geotech. J. 2013, 50, 81–90. [Google Scholar] [CrossRef]
- Montoya, B.M.; DeJong, J.T. Stress-Strain Behavior of Sands Cemented by Microbially Induced Calcite Precipitation. J. Geotech. Geoenvironmental Eng. 2015, 141, 04015019. [Google Scholar] [CrossRef]
- Ferris, F.G.; Stehmeier, L.G. Bacteriogenic Mineral Plugging Patent number 5,143,155, 1 September 1992.
- Ivanov, V.; Chu, J. Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Rev. Environ. Sci. Biotechnol. 2008, 7, 139–153. [Google Scholar] [CrossRef]
- Joshi, S.; Goyal, S.; Mukherjee, A.; Reddy, M.S. Microbial Healing of Cracks in Concrete: A Review. J. Ind. Microbiol. Biotechnol. 2017, 44, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Huang, L.; Gomez, M.G. Thermal Conductivity of MICP-Treated Sands at Varying Degrees of Saturation. Géotechnique Lett. 2019, 9, 15–21. [Google Scholar] [CrossRef]
- Venuleo, S.; Laloui, L.; Terzis, D.; Hueckel, T.; Hassan, M. Microbially Induced Calcite Precipitation Effect on Soil Thermal Conductivity. Géotechnique Lett. 2016, 6, 39–44. [Google Scholar] [CrossRef]
- Meyer, F.D.; Bang, S.; Min, S.; Stetler, L.D.; Bang, S.S. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina Pasteurii for Fugitive Dust Control. In Geo-Frontiers 2011: Advances in Geotechnical Engineering; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 4002–4011. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, X.; Zhao, Y.; Fan, Y.; Wu, M.; Cheng, W.; Wang, P.; Wang, S. Coal Dust Consolidation Using Calcium Carbonate Precipitation Induced by Treatment with Mixed Cultures of Urease-Producing Bacteria. Water. Air. Soil Pollut. 2020, 231, 442. [Google Scholar] [CrossRef]
- Tang, C.-S.; Yin, L.; Jiang, N.; Zhu, C.; Zeng, H.; Li, H.; Shi, B. Factors Affecting the Performance of Microbial-Induced Carbonate Precipitation (MICP) Treated Soil: A Review. Environ. Earth Sci. 2020, 79, 94. [Google Scholar] [CrossRef]
- Jiang, N.-J.; Soga, K. The Applicability of Microbially Induced Calcite Precipitation (MICP) for Internal Erosion Control in Gravel–Sand Mixtures. Géotechnique 2017, 67, 42–55. [Google Scholar] [CrossRef]
- Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A. Application of Microbially Induced Calcite Precipitation in Erosion Mitigation and Stabilisation of Sandy Soil Foreshore Slopes: A Preliminary Investigation. Eng. Geol. 2016, 201, 96–105. [Google Scholar] [CrossRef]
- Riveros, G.A.; Sadrekarimi, A. Liquefaction Resistance of Fraser River Sand Improved by a Microbially-Induced Cementation. Soil Dyn. Earthq. Eng. 2020, 131, 106034. [Google Scholar] [CrossRef]
- Montoya, B.M.; Dejong, J.T.; Boulanger, R.W. Dynamic Response of Liquefiable Sand Improved by Microbial-Induced Calcite Precipitation. In Bio- and Chemo-Mechanical Processes in Geotechnical Engineering; Conference Proceedings; Emerald Publishing: Leeds, UK, 2014; pp. 125–135. ISBN 978-0-7277-6053-1. [Google Scholar]
- Hammes, F.; Seka, A.; de Knijf, S.; Verstraete, W. A Novel Approach to Calcium Removal from Calcium-Rich Industrial Wastewater. Water Res. 2003, 37, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Okyay, T.O.; Rodrigues, D.F. Biotic and Abiotic Effects on CO2 Sequestration during Microbially-Induced Calcium Carbonate Precipitation. FEMS Microbiol. Ecol. 2015, 91, fiv017. [Google Scholar] [CrossRef] [PubMed]
- Okyay, T.O.; Nguyen, H.N.; Castro, S.L.; Rodrigues, D.F. CO2 Sequestration by Ureolytic Microbial Consortia through Microbially-Induced Calcite Precipitation. Sci. Total Environ. 2016, 572, 671–680. [Google Scholar] [CrossRef]
- Bai, H.; Liu, D.; Zheng, W.; Ma, L.; Yang, S.; Cao, J.; Lu, X.; Wang, H.; Mehta, N. Microbially-Induced Calcium Carbonate Precipitation by a Halophilic Ureolytic Bacterium and Its Potential for Remediation of Heavy Metal-Contaminated Saline Environments. Int. Biodeterior. Biodegrad. 2021, 165, 105311. [Google Scholar] [CrossRef]
- He, J.; Chen, X.; Zhang, Q.; Achal, V. More Effective Immobilization of Divalent Lead than Hexavalent Chromium through Carbonate Mineralization by Staphylococcus Epidermidis HJ2. Int. Biodeterior. Biodegrad. 2019, 140, 67–71. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, J.-Y. An Optimum Condition of MICP Indigenous Bacteria with Contaminated Wastes of Heavy Metal. J. Mater. Cycles Waste Manag. 2019, 21, 239–247. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Guo, H. Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Synergistic Role of Bacterial Urease and Carbonic Anhydrase in Carbonate Mineralization. Appl. Biochem. Biotechnol. 2014, 172, 2552–2561. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X. Characterization of Urease and Carbonic Anhydrase Producing Bacteria and Their Role in Calcite Precipitation. Curr. Microbiol. 2011, 62, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Chuo, S.C.; Mohamed, S.F.; Mohd Setapar, S.H.; Ahmad, A.; Jawaid, M.; Wani, W.A.; Yaqoob, A.A.; Mohamad Ibrahim, M.N. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials 2020, 13, 4993. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Gao, Z.; Di, J.; Wang, D.; Yang, Z.; Wang, Y.; Guo, X.; Li, K. Experimental Study on Solidification and Remediation of Lead–Zinc Tailings Based on Microbially Induced Calcium Carbonate Precipitation (MICP). Constr. Build. Mater. 2023, 369, 130611. [Google Scholar] [CrossRef]
- Zou, C.; Xiao, M.; Jiang, Q.; Wang, Z.; Zheng, C.; Wang, W. Properties and Mechanisms of Steel Slag Strengthening Microbial Cementation of Cyanide Tailings. Chemosphere 2024, 346, 140645. [Google Scholar] [CrossRef]
- Behzadipour, H.; Sadrekarimi, A. Effect of Microbial-Induced Calcite Precipitation on Shear Strength of Gold Mine Tailings. Bull. Eng. Geol. Environ. 2023, 82, 331. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Z.; Wu, L.; Yu, Q.; Zheng, H.; Tian, Y.; He, G. Experimental Study on the Solidification of Uranium Tailings and Uranium Removal Based on MICP. Sustainability 2023, 15, 12387. [Google Scholar] [CrossRef]
- Lv, X.; Zhong, Y.; Fu, G.; Wu, Y.; Xu, X. Revealing Heavy Metal-Resistant Mechanisms and Bioremediation Potential in a Novel Croceicoccus Species Using Microbial-Induced Carbonate Precipitation. J. Mar. Sci. Eng. 2023, 11, 2195. [Google Scholar] [CrossRef]
- Hu, X.; Yu, C.; Shi, J.; He, B.; Wang, X.; Ma, Z. Biomineralization Mechanism and Remediation of Cu, Pb and Zn by Indigenous Ureolytic Bacteria B. Intermedia TSBOI. J. Clean. Prod. 2024, 436, 140508. [Google Scholar] [CrossRef]
- Ali, A.; Li, M.; Su, J.; Li, Y.; Wang, Z.; Bai, Y.; Ali, E.F.; Shaheen, S.M. Brevundimonas diminuta Isolated from Mines Polluted Soil Immobilized Cadmium (Cd2+) and Zinc (Zn2+) through Calcium Carbonate Precipitation: Microscopic and Spectroscopic Investigations. Sci. Total Environ. 2022, 813, 152668. [Google Scholar] [CrossRef]
- Weyl, P.K. The Change in Solubility of Calcium Carbonate with Temperature and Carbon Dioxide Content. Geochim. Cosmochim. Acta 1959, 17, 214–225. [Google Scholar] [CrossRef]
- Brečević, L.; Nielsen, A.E. Solubility of Amorphous Calcium Carbonate. J. Cryst. Growth 1989, 98, 504–510. [Google Scholar] [CrossRef]
- Yong, R.N.; Mulligan, C.N.; Fukue, M. Sustainable Practices in Geoenvironmental Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-0-429-16839-0. [Google Scholar]
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S. Monitoring and Analysis of Selenium as an Emerging Contaminant in Mining Industry: A Critical Review. Sci. Total Environ. 2020, 698, 134339. [Google Scholar] [CrossRef] [PubMed]
Energy Pathway | Type | Microbial Pathway | Microbial Group | Reactions * | References |
---|---|---|---|---|---|
Heterotrophic | Enzyme-driven | Urea hydrolysis (urease enzyme) | Ureolytic bacteria | [21,22] | |
CO2 hydration (CA enzyme) | Genetic families (α-, β-, and γ-classes) | [15,23] | |||
Redox-driven | Denitrification | NRB | [24] | ||
Sulfate reduction | SRB | [24] | |||
Iron reduction | IRB | [16] | |||
Ammonification | Myxobacteria | [17] | |||
Heterotrophic or autotrophic | Methane oxidation | Methanogens | [17] | ||
Autotrophic | Photosynthesis-driven | Photosynthesis | Cyanobacteria algae | [17] |
Ion | Abbreviation | Charge | Calculated Radius (pm) | Series |
---|---|---|---|---|
Calcium | Ca | +2 | 194 | Alkaline Earth Metals |
Strontium | Sr | +2 | 219 | Alkaline Earth Metals |
Lead | Pb | +2 | 154 | Post-transition Metal |
Cadmium | Cd | +2 | 161 | Transition Metal |
Copper | Cu | +2 | 145 | Transition Metal |
Indicator | Definition | Test |
---|---|---|
Permeability and hydraulic conductivity | Provides information on flow rate through the materials (e.g., tailings), whereby a larger permeability coefficient means fluids are flowing rapidly through the tailings [56]. | Water permeability |
Comprehensive strength | This is the capacity by which a material (e.g., tailings) can withstand a load. | The oedometer test |
The direct shear box test | ||
The triaxial test | ||
The pocket cone penetrometer test | ||
The needle penetration test | ||
Water absorption | Testing is used to examine the resistance toward water penetration (e.g., rainfall, capillary rise in groundwater, and slope runoff [37]). | The sorptivity test |
Leaching tests | These tests are required to demonstrate a reduction in leachate quantity and a reduction in contaminant concentration. | The five-stage Tessier sequential extraction method |
Column leaching | ||
Humidity cell tests | ||
Slaking behavior | This is a physiochemical property establishing material impact to W/D cycles common to external environments. It can also be used to indicate resistance to erosion. | The slake test |
Reference | Sample | Microorganism | Nutrient Medium | Speculated Mechanism of Immobilization | |
---|---|---|---|---|---|
Sample Type | Target Metal(loid) | ||||
[42] | Mining area near Urumqi, China | Cu | Kocuria flava 1 | NB 3, cementation solution [urea (2%), CaCl2 (25 mM)] | -Involvement of functional groups. -Metal complexation. -Incorporation into CaCO3 crystal. |
[41] | Mining area near Urumqi, China | Pb | Kocuria flava 1 | NB 3, cementation solution [urea (2%), CaCl2 (25 mM)] | -PbCO3, PbO, PbO2, Pb3(CO3)2(OH)2 precipitates. -Transformation of Pb into geochemically stable calcite. |
[40] | Mine tailings from Xinjiang Uyghur Autonomous Region, China | Sr | Halomonas sp. 1 | NB [Peptone (10 g/L), beef extract (1.5 g/L), yeast extract (1.5 g/L), NaCl (5 g/L)], cementation solution [urea (2%), CaCl2 (25 mM)] | -Sr co-precipitation with CaCO3 (SrCO3) via substitution or inclusion. -Calcite–strontianite solid precipitates. |
[35] | Mine tailings from Jeongeup, Jeollabuk-do, Korea | Pb | Bacillus sp. 1 | LB agar plates | - Pb(NO3)2 conversion into PbS and PbSiO3. -CaCO3 precipitation. -Absorption of Pb onto CaCO3 precipitates. -Ca2+ substitution with Pb2+ in CaCO3 lattice. -Pb inclusion through interstices and defects in CaCO3 precipitates. |
[21] | Carpenter Snow Creek Mining District in the Little Belt Mountains near Neihart, Montana | As Cd Pb Cu Zn | 95.15% Sporosarcona 1 & 2.75% Acidovorax 1 | NB 3 (10 mL/L), yeast extract (0.5 g/L), urea (10 g/L), cementation solution [yeast extract (0.5 g/L), urea (20 g/L), CaCl2*2H2O (49 g/L)] | -CaCO3 precipitation. -CO32− complexes (i.e., Cu–carbonate complexes which decrease Cu2+ toxicity). -Co-precipitation of metals. |
[39] | Mining area in Gangwondo, Korea | Cd | Lysinibacillus sphaericus 1 | NB [Beef extract (3 g/L), peptone (5 g/L), urea (20 g/L), micro agar (10 g/L) containing cycloheximide (100 μg/mL)], cementation solution [CdCl2·5H2O (50 mM)] | -CaCO3 and CdCO3 precipitation. -Cd adsorption onto calcite surface. -Ca-Cd solid solution at the surface (i.e., surface crust). |
[38] | Abandoned metal mine sites in Gangwondo, Korea | Pb | Enterobacter cloacae 1 | NB [Beef extract (3 g/L), peptone (5 g/L), urea (20 g/L), micro agar (10 g/L) containing cycloheximide (100 μg/mL)], cementation solution [PbCl2 (1 M)] | -Reduced permeability caused by plugging effect of CaCO3 precipitates. -PbCO3 precipitation. |
[37] | Abandoned Kabwe Mine of Central Province, Zambia | Pb | Pararhodobacter sp. 2 | NB [Hipolypeptone (5.0 g/L), yeast extract (1.0 g/L), and FePO4 (0.1 g/L)], cementation solution [urea (0.5 M), CaCl2 (0.5 M), NaHCO3 (0.02 M), NH4Cl (0.2 M), and nutrient broth (3 g/L)] | -CaCO3 precipitation on the surface and in between sand grains. -CaCO3 bridging causing particle binding and reducing pore space. -Decreased water absorption, hydraulic conductivity, and slaking. -Increased material strength. -Pb immobilization within treated samples preventing water-soluble Pb leachate. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilcox, S.M.; Mulligan, C.N.; Neculita, C.M. Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste. Toxics 2024, 12, 107. https://doi.org/10.3390/toxics12020107
Wilcox SM, Mulligan CN, Neculita CM. Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste. Toxics. 2024; 12(2):107. https://doi.org/10.3390/toxics12020107
Chicago/Turabian StyleWilcox, Samantha M., Catherine N. Mulligan, and Carmen Mihaela Neculita. 2024. "Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste" Toxics 12, no. 2: 107. https://doi.org/10.3390/toxics12020107
APA StyleWilcox, S. M., Mulligan, C. N., & Neculita, C. M. (2024). Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste. Toxics, 12(2), 107. https://doi.org/10.3390/toxics12020107