Role of Lake Aquatic–Terrestrial Ecotones in the Ecological Restoration of Eutrophic Water Bodies
Abstract
:1. Introduction
2. Bioremediation of Lake Aquatic–Terrestrial Ecotones
2.1. Design and Application of Lake Aquatic–Terrestrial Ecotones
2.2. Bioremediation Mechanisms
2.3. Improvement of Ecological Restoration Effect and Management of Lake Ecotones
3. Influences of Ecological Factors on the Role of Lake Aquatic–Terrestrial Ecotones
3.1. Lakeshore Height
3.2. Water Levels
3.3. Surface Runoff
3.4. Shallow Groundwater Level
3.5. Rainfall Intensity
4. Conclusions and Prospects
- (1)
- Understanding ecological dynamics: Conducting in-depth studies to comprehend the ecological dynamics of lakeside ecotones, including nutrient cycling, pollutant diffusion, and species interactions. This understanding will inform the development of targeted management strategies.
- (2)
- Ecosystem restoration techniques: Investigating and developing effective techniques for restoring and enhancing lakeside ecotones. This involves exploring vegetation patterns, buffer zone designs, and restoration methods that maximize pollutant removal and enhance ecological resilience.
- (3)
- Integrated management approaches: Promoting the adoption of integrated management approaches that consider the interconnectedness of various factors affecting lakeside ecotones, such as water quality, sedimentation, and nutrient inputs. This holistic approach will facilitate more comprehensive and efficient ecosystem management.
- (4)
- Monitoring and assessment: Implementing robust monitoring and assessment programs to evaluate the effectiveness of management strategies and track the ecological health of lakeside ecotones over time. This data-driven approach will enable adaptive management practices and continual improvement.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glibert, P.M.; Burford, M.A. Globally Changing Nutrient Loads and Harmful Algal Blooms Recent Advances, New Paradigms, and Continuing Challenges. Oceanography 2017, 30, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Amorim, C.A.; Moura, A.D. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Sci. Total Environ. 2021, 758, 143605. [Google Scholar] [CrossRef]
- Xie, A.B.; Chen, H.; You, S.H. Advance of Nitrogen Removal in Constructed Wetland. In Proceedings of the 5th Annual International Conference on Material Science and Environmental Engineering (MSEE), Xiamen, China, 15–17 December 2017. [Google Scholar]
- Hennings, N.; Becker, J.N.; Guillaume, T.; Damris, M.; Dippold, M.A.; Kuzyakov, Y. Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations. Catena 2021, 196, 104941. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Chen, Z.L.; Li, L.; Shao, Y. Response of dominant plant species to periodic flooding in the riparian zone of the Three Gorges Reservoir (TGR), China. Sci. Total Environ. 2020, 747, 141101. [Google Scholar] [CrossRef]
- Deere, N.J.; Bicknell, J.E.; Mitchell, S.L.; Afendy, A.; Baking, E.L.; Bernard, H.; Chung, A.Y.C.; Ewers, R.M.; Heroin, H.; Joseph, N.; et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 2022, 20, 459–466. [Google Scholar] [CrossRef]
- Yan, Z.W.; Lv, T.; Liu, Y.; Xing, B.; Chao, C.X.; Li, Y.; Wu, L.; Wang, L.G.; Liu, C.H.; Yu, D. Responses of soil phosphorus cycling and bioavailability to plant invasion in river-lake ecotones. Ecol. Appl. 2023, 33, e2843. [Google Scholar] [CrossRef]
- Mander, U.; Tournebize, J.; Tonderski, K.; Verhoeven, J.T.A.; Mitsch, W.J. Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments. Ecol. Eng. 2017, 103, 296–300. [Google Scholar] [CrossRef]
- Arif, M.; Li, J.J.; Tahir, M.; Jie, Z.; Li, C.X. Environmental literacy scenarios lead to land degradation and changes in riparian zones: Implications for policy in China. Land Degrad. Dev. 2023, 34, 156–172. [Google Scholar] [CrossRef]
- Penton, C.R.; Deenik, J.L.; Popp, B.N.; Bruland, G.L.; Engstrom, P.; Louis, D.S.; Tiedje, J. Importance of sub-surface rhizosphere-mediated coupled nitrification-denitrification in a flooded agroecosystem in Hawaii. Soil Biol. Biochem. 2013, 57, 362–373. [Google Scholar] [CrossRef]
- Urbanic, G.; Politti, E.; Rodriguez-Gonzalez, P.M.; Payne, R.; Schook, D.; Alves, M.H.; Andelkovic, A.; Bruno, D.; Chilikova-Lubomirova, M.; Di Lonardo, S.; et al. Riparian Zones-From Policy Neglected to Policy Integrated. Front. Environ. Sci. 2022, 10, 868527. [Google Scholar] [CrossRef]
- Cheng, L.J.; Gao, X.Y.; Wang, G.W.; Ding, Z.; Xue, B.; Zhang, C.; Liu, J.L.; Jiang, Q.F. Intensified sensitivity and adaptability of zooplankton Bosminidae in subtropical shallow freshwater lakes with increasing trophic level. Front. Ecol. Evol. 2023, 11, 1632. [Google Scholar] [CrossRef]
- Huang, X.L.; Xu, X.; Guan, B.H.; Liu, S.L.; Xie, H.M.; Li, Q.S.; Li, K.Y. Transformation of Aquatic Plant Diversity in an Environmentally Sensitive Area, the Lake Taihu Drainage Basin. Front. Plant Sci. 2020, 11, 513788. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.N.; Lyu, H.M. Sustainable development and environmental restoration in Lake Erhai, China. J. Clean. Prod. 2020, 258, 120758. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhang, J.X.; Zhao, Q.; Zhou, Q.H.; Li, N.N.; Wang, Y.L.; Xie, S.G.; Liu, Y. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States. Microb. Ecol. 2016, 71, 257–265. [Google Scholar] [CrossRef]
- Chen, F.X.; Lu, S.Y.; Hu, X.Z.; He, Q.; Feng, C.P.; Xu, Q.J.; Chen, N.; Ngo, H.H.; Guo, H.M. Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China. Ecol. Eng. 2019, 134, 56–64. [Google Scholar] [CrossRef]
- Wu, Y.S.; Li, Y.; Gao, X.; Pan, J.; Wang, N.; Cheng, Y.W.; Yang, C.G.; Yang, Y.C. Sewage Treatment System Planning for Dianchi Urban Wetland Park in Kunming. In Proceedings of the 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS), Electr Network, Kunming, China, 26–28 February 2021. [Google Scholar]
- Wang, S.H.; Wu, C.; Xiao, D.R.; Wang, J.; Cheng, X.P.; Guo, F.B. Temporal changes in wetland plant communities with decades of cumulative water pollution in two plateau lakes in China’s Yunnan Province (vol 14, pg 1677, 2017). J. Mt. Sci. 2022, 19, 2136. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.R.; Zhang, L.; Ni, L.Y.; Zhao, H.C.; Jiao, L.X.; Yang, S.W.; Guo, L.G.; Shen, J.Z. Ecological degeneration of the Erhai Lake and prevention measures. Environ. Earth Sci. 2015, 74, 3839–3847. [Google Scholar] [CrossRef]
- New, T.; Xie, Z.Q. Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 2008, 17, 3149–3163. [Google Scholar] [CrossRef]
- Cardinali, A.; Carletti, P.; Nardi, S.; Zanin, G. Design of riparian buffer strips affects soil quality parameters. Appl. Soil Ecol. 2014, 80, 67–76. [Google Scholar] [CrossRef]
- Habibiandehkordi, R.; Quinton, J.N.; Surridge, B.W.J. Enhancing soluble phosphorus removal within buffer strips using industrial by-products. Environ. Sci. Pollut. Res. 2014, 21, 12257–12269. [Google Scholar] [CrossRef]
- Weigelhofer, G.; Fuchsberger, J.; Teufl, B.; Welti, N.; Hein, T. Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in Agricultural Catchments. J. Environ. Qual. 2012, 41, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Stutter, M.I.; Chardon, W.J.; Kronvang, B. Riparian Buffer Strips as a Multifunctional Management Tool in Agricultural Landscapes: Introduction. J. Environ. Qual. 2012, 41, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Kumwimba, M.N.; Huang, J.L.; Dzakpasu, M.; De Silva, K.; Ohore, O.E.; Ajibade, F.O.; Li, X.Y.; Su, J.J.; Muyembe, D.K.; Huang, K.X. An updated review of the efficacy of buffer zones in warm/temperate and cold climates: Insights into processes and drivers of nutrient retention. J. Environ. Manag. 2023, 336, 117646. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, A.K.; Singh, G.S. Managing riparian zones for river health improvement: An integrated approach. Landsc. Ecol. Eng. 2021, 17, 195–223. [Google Scholar] [CrossRef]
- Zheng, P.R.; Li, C.H.; Ye, C.; Wang, H.; Wei, W.W.; Zheng, Y.; Zheng, X.Y. Characteristic and affecting factors of wetland herbs’ distribution in the radiant belt toward land of lake-terrestrial ecotone in Tibet, China. Environ. Sci. Eur. 2022, 34, 14. [Google Scholar] [CrossRef]
- Czernas, K.; Krupa, D. Phytopsammon and phytoplankton of land/water ecotone of mesotrophic lake in the Polesie Region (Eastern Poland). Pol. J. Ecol. 2003, 51, 183–194. [Google Scholar]
- Huang, X.L.; Hu, B.Q.; Wang, P.; Chen, X.L.; Xu, B. Microbial diversity in lake-river ecotone of Poyang Lake, China. Environ. Earth Sci. 2016, 75, 965. [Google Scholar] [CrossRef]
- Dillaha, T.A.; Reneau, R.B.; Mostaghimi, S.; Lee, D. Vegetative Filter Strips for Agricultural Nonpoint Source Pollution Control. Trans. ASAE 1989, 32, 513–519. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple functions of buffer strips in farming areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Haycock, N.E.; Pinay, G. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. J. Environ. Qual. 1993, 22, 273–278. [Google Scholar] [CrossRef]
- Dorioz, J.M.; Wang, D.; Poulenard, J.; Trevisan, D. The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agric. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Dindaroglu, T.; Reis, M.; Akay, A.E.; Tonguc, F. Hydroecological approach for determining the width of riparian buffer zones for providing soil conservation and water quality. Int. J. Environ. Sci. Technol. 2015, 12, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.H.; Duan, L.J.; Wang, J.P.; Peng, J.Y.; Zheng, B.H. Determining the width of lake riparian bu ff er zones for improving water quality base on adjustment of land use structure. Ecol. Eng. 2020, 158, 106001. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Nayak, A.C.; Corona, J.; Parmar, R.; Srinivasan, R.; Mendoza, K.; Johnston, J.M. Holistic Sustainability Assessment of Riparian Buffer Designs: Evaluation of Alternative Buffer Policy Scenarios Integrating Stream Water Quality and Costs. Sustainability 2022, 14, 12278. [Google Scholar] [CrossRef]
- Cao, X.Y.; Song, C.L.; Xiao, J.; Zhou, Y.Y. The Optimal Width and Mechanism of Riparian Buffers for StormWater Nutrient Removal in the Chinese Eutrophic Lake Chaohu Watershed. Water 2018, 10, 1489. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, K.; Fan, Z.; Li, F.; Wang, J.; Wang, S.; Tang, Y. Nitrogen pollutant removal by riparian buffer zone: A review. Chin. J. Ecol. 2020, 39, 665–677. [Google Scholar]
- Mendez-Rojas, D.M.; Escobar, F.; Lopez-Barrera, F. Forest cover and heterogeneous pastures shape the diversity of predatory rove beetles in tropical riparian habitats. Basic Appl. Ecol. 2021, 50, 192–202. [Google Scholar] [CrossRef]
- Zak, D.; Stutter, M.; Jensen, H.S.; Egemose, S.; Carstensen, M.V.; Audet, J.; Strand, J.A.; Feuerbach, P.; Hoffmann, C.C.; Christen, B.; et al. An Assessment of the Multifunctionality of Integrated Buffer Zones in Northwestern Europe. J. Environ. Qual. 2019, 48, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Rezania, S.; Kamyab, H.; Rupani, P.F.; Park, J.; Nawrot, N.; Wojciechowska, E.; Yadav, K.K.; Ghahroud, M.L.; Mohammadi, A.A.; Thirugnana, S.T.; et al. Recent advances on the removal of phosphorus in aquatic plant-based systems. Environ. Technol. Innov. 2021, 24, 101933. [Google Scholar] [CrossRef]
- Thiele, J.; Albert, C.; Hermes, J.; von Haaren, C. Assessing and quantifying offered cultural ecosystem services of German river landscapes. Ecosyst. Serv. 2020, 42, 101080. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, W.Z.; Luo, X.Z.; Wang, S.B.; Yang, X.Y.; He, J.; Nie, E. Design and Application of Plant Ecological Space Technology in Water Eutrophication Control. J. Environ. Eng. 2019, 145, 04018142. [Google Scholar] [CrossRef]
- Bannister, J.W.; Clairmont, L.K.; Stevens, K.J.; Slawson, R.M. Exposure to elevated nutrient load results in structural and functional changes to microbial communities associated with riparian wetland plants Phalaris arundinaceae and Veronica anagallis-aquatica. Rhizosphere 2021, 18, 100350. [Google Scholar] [CrossRef]
- Xiao, L.W.; Zhu, B.; Kumwimba, M.N.; Jiang, S.W. Plant soaking decomposition as well as nitrogen and phosphorous release in the water-level fluctuation zone of the Three Gorges Reservoir. Sci. Total Environ. 2017, 592, 527–534. [Google Scholar] [CrossRef]
- Xiang, R.; Liu, T.T.; Chu, Z.S.; Wang, X.; Zheng, B.H.; Jia, H.F. Effects of dissolved organic matter derived from two herbs on the growth, physiology, and physico-chemical characteristics of four bloom-forming algae species. J. Environ. Manag. 2023, 336, 117559. [Google Scholar] [CrossRef]
- Zexiang, L.E.I. Study on the Purification of Eutrophicated Water with Aquatic Macmphytes. J. Anhui Agric. Sci. 2006, 34, 553–554. [Google Scholar]
- Zhiyong, Z.; Jianchu, Z.; Haiqin, L.I.U.; Liugen, C.; Shaohua, Y.A.N. Apparent removal contributions of Eichhornia crassipes to nitrogen and phosphorous from eutrophic water under different hydraulic loadings. Jiangsu J. Agric. Sci. 2011, 27, 288–294. [Google Scholar]
- Han, P.; Kumar, P.; Ong, B.L. Remediation of nutrient-rich waters using the terrestrial plant, Pandanus amaryllifolius Roxb. J. Environ. Sci. 2014, 26, 404–414. [Google Scholar] [CrossRef]
- Pan, B.; Yang, G.; Mu, L.; Ma, Y.; Li, J. Removal Ability of Floating Macrophytes on N and P from Eutrophicated Water. Bull. Bot. Res. 2015, 35, 462–466. [Google Scholar]
- Toyama, T.; Nishimura, Y.; Ogata, Y.; Sei, K.; Mori, K.; Ike, M. Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments. Environ. Technol. 2016, 37, 478–485. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Chu, Z. Reduction effect of non-point pollution in Erhai Lake Basin through sward buffer strips. Chin. J. Environ. Eng. 2015, 9, 4138–4144. [Google Scholar]
- Yan, L.; Lei, Z.; Liu, S.; Chen, G.; Wei, Y. Researches on Removal Efficiency of Ammonium Nitrogen Pollutant of Different Vegetation Configuration of Riparian Buffer Strips. World Sci-Tech R D 2011, 33, 46. [Google Scholar]
- Poeppl, R.E.; Keiler, M.; von Elverfeldt, K.; Zweimueller, I.; Glade, T. The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geogr. Ann. Ser. Phys. Geogr. 2012, 94, 511–529. [Google Scholar] [CrossRef]
- Rezania, S.; Taib, S.M.; Din, M.F.M.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef]
- Li, H.; Wu, W.; Luo, F.; Huang, W.; Zhang, M. The Comparison of Removal Effect of Total Nitrogen and Total Phosphorus in Simulated EutrophicWater Among 4 Kinds of Emergent Plants, 4 Kinds of Submerged Plants and Their Mixed Communities. Wetl. Sci. 2016, 14, 163–172. [Google Scholar]
- Ye, F.; Ma, M.H.; Wu, S.J.; Jiang, Y.; Zhu, G.B.; Zhang, H.; Wang, Y. Soil properties and distribution in the riparian zone: The effects of fluctuations in water and anthropogenic disturbances. Eur. J. Soil Sci. 2019, 70, 664–673. [Google Scholar] [CrossRef]
- Liang, S.; Yuan, X.; Lu, X.; Xu, G.; Qin, Y.; Jiang, Y. Soil physico-chemical properties and distribution characteristics in an aquaticterrestrial ecotone of the Lijiang River, southwest China. Acta Ecol. Sin. 2019, 39, 2752–2761. [Google Scholar]
- Wang, Y.; Guo, X.; Lu, S.; Liu, X.; Wang, X. Review of nitrogen removal in low-polluted water by constructed wetlands:Performance, mechanism, and influencing factors. J. Agric. Resour. Environ. 2021, 38, 722–734. [Google Scholar]
- Hoffmann, C.C.; Kjaergaard, C.; Uusi-Kamppa, J.; Hansen, H.C.B.; Kronvang, B. Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Sun, F.; Li, X.; Gao, H.; Yuan, P. Research progress in riverine ecological buffer zone for control of agricultural non-point source pollution. Chin. J. Environ. Eng. 2022, 16, 25–39. [Google Scholar]
- Kieckbusch, J.J.; Schrautzer, J. Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Sci. Total Environ. 2007, 380, 3–12. [Google Scholar] [CrossRef]
- Han, L.; Liu, S.; Huang, M.; Ma, J.; Wei, J.; Hu, W. Review of simulation research in hydrology and water quality based on HSPF model. J. East China Norm. Univ. Nat. Sci. 2015, 2, 40–47. [Google Scholar]
- Zhou, Q.X.; Liu, Y.X.; Li, T.; Zhao, H.Z.; Alessi, D.S.; Liu, W.T.; Konhauser, K.O. Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. Geochim. Cosmochim. Acta 2020, 290, 124–136. [Google Scholar] [CrossRef]
- Winter, M.; Kickuth, R. Elimination of sulfur-compounds from waste-water by the root zone process. 2. mode of formation of sulfur deposits. Water Res. 1989, 23, 547–560. [Google Scholar] [CrossRef]
- Smirnova, I.E.; Saubenova, M.G. Use of celluloselytic nitrogen-fixing bacteria in the enrichment of roughage with protein. Prikl. Biokhimiia Mikrobiol. 2001, 37, 86–89. [Google Scholar]
- Wen, J.W.; Gao, D.W.; Zhang, B.; Liang, H. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. International Biodeterior. Biodegrad. 2011, 65, 600–604. [Google Scholar] [CrossRef]
- Casas, M.E.; Matamoros, V. Linking plant-root exudate changes to micropollutant exposure in aquatic plants (Lemna minor and Salvinia natans). A prospective metabolomic study. Chemosphere 2022, 287, 132056. [Google Scholar] [CrossRef]
- Wang, S.Y.; Pi, Y.X.; Jiang, Y.Y.; Pan, H.W.; Wang, X.X.; Wang, X.M.; Zhou, J.M.; Zhu, G.B. Nitrate reduction in the reed rhizosphere of a riparian zone: From functional genes to activity and contribution. Environ. Res. 2020, 180, 108867. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Sun, H.-Z.; Yang, X. Structure and Functional Diversity of Bacterial Community in Rhizosphere Soil of Typical Vegetation in the Riparian Zone Along the Downstream of Songhua River. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 2182–2191. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, Z.; Hua, J.; Yin, Y.; Xue, J. Study on the N Purification of Eutrophic Water by Floating Plant-sediment-microbial System. J. Ecol. Rural. Environ. 2021, 37, 1341–1351. [Google Scholar]
- Chen, W.; Liao, Y.; Wang, M.; Zheng, X.; Wang, J.; Liu, Y.; Chen, M. Research progress on ecological restoration of water eutrophication. Appl. Chem. Ind. 2022, 51, 531–537. [Google Scholar]
- Gao, Y.; Li, Z.; Liu, Y.; Xie, J.; Guo, Z.; Jia, L.; Gao, S.; Li, Y.; Wang, G. Laboratory Simulation of the Aquatic–Terrestrial Interface to Support Ecological Remediation of Baiyangdian Lake Using Microbial Agents. J. Hydroecology 2022, 43, 19–28. [Google Scholar]
- Pan, D.W.; Shan, M.J.; Wang, Y.Q.; Lv, Y.L. Study on Purification of Eutrophic Lake Using Biological Agents. In Proceedings of the International Conference on Mechanical Engineering and Materials Science, Cheju, Republic of Korea, 24–25 September 2011; pp. 269–273. [Google Scholar]
- Han, Y.; Li, M. Phyto-microremediation technology on treatment of eutrophic water. Technol. Water Treat. 2012, 38, 1. [Google Scholar]
- Sun, X.; Liu, Y.; Wang, F.; Tan, L.; Zhang, H. Application of Immobilized Microorganism Technology for the Biotreatment of Eutrophic Water. J. Ecol. Rural. Environ. 2020, 36, 433–441. [Google Scholar]
- Dong, Y.W.; Miao, J.Z.; Chen, A.H. Research on Immobilized Ammonia-oxidizing Bacteria by Sodium Alginate. In Proceedings of the International Conference on Advanced Nano-Technology and Biomedical Material (ANTBM), Guangzhou, China, 29–30 June 2014; pp. 283–287. [Google Scholar]
- Liu, E.; Liu, X.; Wang, X.; Lu, S.; Zeng, X. Study on efficiency of purifying the aquacultural waste water with immobilized alga-bacteria system and immobilization conditions optimization. J. Shanghai Ocean. Univ. 2017, 26, 422–431. [Google Scholar]
- He, Q.C.; Shen, Y.P.; Li, R.; Peng, T.; Chen, N.; Wu, Z.J.; Feng, C.P. Rice washing drainage (RWD) embedded in poly(vinyl alcohol)/sodium alginate as denitrification inoculum for high nitrate removal rate with low biodiversity. Bioresour. Technol. 2022, 355, 127288. [Google Scholar] [CrossRef]
- Lee, J.; Cho, M.H. Removal of nitrogen in wastewater by polyvinyl alcohol (PVA)-immobilization of effective microorganisms. Korean J. Chem. Eng. 2010, 27, 193–197. [Google Scholar] [CrossRef]
- Jablonska, E.; Winkowska, M.; Wisniewska, M.; Geurts, J.; Zak, D.; Kotowski, W. Impact of vegetation harvesting on nutrient removal and plant biomass quality in wetland buffer zones. Hydrobiologia 2021, 848, 3273–3289. [Google Scholar] [CrossRef]
- He, Y.; Wang, P.; Sheng, H.; Wang, D.; Huang, M.; Cao, C. Sustainability of riparian zones for non-point source pollution control in Chongming Island: Status, challenges, and perspectives. J. Clean. Prod. 2020, 244, 118804. [Google Scholar] [CrossRef]
- Salemi, L.F.; da Costa Silva, R.W.; Fernandes, R.P.; de Andrade, T.M.B.; Camargo, P.B.; Martinelli, L.A.; de Moraes, J.M. Can streambank height indicate soil moisture regime of riparian zones? A case study in deep soils of a first-order watershed in Southeast Brazil. Phys. Geogr. 2022, in press. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.Y.; Rao, C.; Jiang, C.; Tan, Y.C.; Yu, T.; Yu, E.J.; Wu, P. Soil microbial community dynamics indicate disruption of nitrogen cycling by pollution in vegetation buffer zones. Pedobiologia 2021, 85–86, 150722. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Asada, T.; Hassan, F.M.; Warner, B.G.; Douabul, A.; Al-Hilli, M.R.A.; Alwan, A.A. Vegetation Response to Re-flooding in the Mesopotamian Wetlands, Southern Iraq. Wetlands 2010, 30, 177–188. [Google Scholar] [CrossRef]
- Tsybekmitova, G.T.; Radnaeva, L.D.; Tashlykova, N.A.; Shiretorova, V.G.; Bazarova, B.B.; Tulokhonov, A.K.; Matveeva, M.O. Phytocenosis biodiversity at various water levels in mesotrophic Lake Arakhley, Lake Baikal basin, Russia. PeerJ 2021, 9, 11628. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, Y.; Sun, X.X.; Adams, J.M.; Wang, L.F.; Zhang, H.J.; Chu, H.Y. More Robust Co-Occurrence Patterns and Stronger Dispersal Limitations of Bacterial Communities in Wet than Dry Seasons of Riparian Wetlands. Msystems 2023, 8, e01187-22. [Google Scholar] [CrossRef]
- Hilal, M.G.; Yu, Q.L.; Zhou, R.; Wang, Y.J.; Feng, T.S.; Li, X.K.; Li, H. Exploring microbial communities, assessment methodologies and applications of animal’s carcass decomposition: A review. FEMS Microbiol. Ecol. 2021, 97, fiab098. [Google Scholar] [CrossRef]
- He, D.; Ren, L.J.; Wu, Q.L.L. Growing season drives the compositional changes and assembly processes of epiphytic bacterial communities of two submerged macrophytes in Taihu Lake. FEMS Microbiol. Ecol. 2020, 96, fiaa025. [Google Scholar] [CrossRef]
- Arif, M.; Behzad, H.M.; Tahir, M.; Li, C.X. Environmental literacy affects riparian clean production near major waterways and tributaries. Sci. Total Environ. 2022, 834, 155476. [Google Scholar] [CrossRef]
- Yao, L.; Gong, Y.; Ye, C.; Shi, W.; Zhang, K.; Du, M.; Zhang, Q. Soil denitrification rates are more sensitive to hydrological changes than restoration approaches in a unique riparian zone. Funct. Ecol. 2022, 36, 2056–2068. [Google Scholar] [CrossRef]
- Miller, B.L.; Chen, H.; He, Y.; Yuan, X.; Holtgrieve, G.W. Magnitudes and Drivers of Greenhouse Gas Fluxes in Floodplain Ponds During Drawdown and Inundation by the Three Gorges Reservoir. J. Geophys. Res. Biogeosci. 2019, 124, 2499–2517. [Google Scholar] [CrossRef]
- De Carlo, N.D.; Oelbermann, M.; Gordon, A.M. Carbon dioxide emissions: Spatiotemporal variation in a young and mature riparian forest. Ecol. Eng. 2019, 138, 353–361. [Google Scholar] [CrossRef]
- Bai, X.; Cheng, C.; Xu, Q.; Tang, B.; He, Q.; Li, H. Regulating autogenic vegetation in the riparian zone reduces carbon emissions: Evidence from a microcosm study. Sci. Total Environ. 2022, 840, 156715. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.; Zhang, X.; Bao, S. Study on flood and sediment yield under extreme precipitation in the Wuding River Basin of the Yellow River. J. Sediment Res. 2020, 45, 47–52. [Google Scholar]
- Florio, A.; Brefort, C.; Gervaix, J.; Berard, A.; Le Roux, X. The responses of NO2− and N2O-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net N2O production. Soil Biol. Biochem. 2019, 136, 107524. [Google Scholar] [CrossRef]
- Lee, K.H.; Isenhart, T.M.; Schultz, R.C.; Mickelson, S.K. Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J. Environ. Qual. 2000, 29, 1200–1205. [Google Scholar] [CrossRef]
- Carluer, N.; Lauvernet, C.; Noll, D.; Munoz-Carpena, R. Defining context-specific scenarios to design vegetated buffer zones that limit pesticide transfer via surface runoff. Sci. Total Environ. 2017, 575, 701–712. [Google Scholar] [CrossRef]
- Arora, K.; Mickelson, S.K.; Helmers, M.J.; Baker, J.L. Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff1. J. Am. Water Resour. Assoc. 2010, 46, 618–647. [Google Scholar] [CrossRef]
- Lauvernet, C.; Munoz-Carpena, R. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips—Part 2: Model coupling, application, factor importance, and uncertainty. Hydrol. Earth Syst. Sci. 2018, 22, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Parvin, S.; Uddin, S.; Tausz-Posch, S.; Armstrong, R.; Fitzgerald, G.; Tausz, M. Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: A FACE study on lentil (Lens culinaris) and faba bean (Vicia faba). Crop Pasture Sci. 2019, 70, 244–253. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Shen, H.O.; Wen, L.L.; He, Y.F.; Hu, W.; Li, H.L.; Che, X.C.; Li, X. Rainfall and inflow effects on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. J. Mt. Sci. 2018, 15, 2182–2191. [Google Scholar] [CrossRef]
Method | Applicable Scope | References |
---|---|---|
A hydrographic aquatic–terrestrial ecotones model | Deep-water lakes | [33,34] |
Ratio method: the maximum ratio of environmental benefits obtained from land structure adjustment around lakes to investment funds | ||
Freshwater lakes | [35] | |
Numerical simulation method: using waves with numerical simulation | Large shallow lakes | [36] |
Determining the width of a lake ecotone through nutrient removal rate (TN, TP) | Freshwater lakes | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Liu, R.; Zhou, X.; Zhang, J.; Song, M.; Zou, P.; Bi, X.; Li, S. Role of Lake Aquatic–Terrestrial Ecotones in the Ecological Restoration of Eutrophic Water Bodies. Toxics 2023, 11, 560. https://doi.org/10.3390/toxics11070560
Dai T, Liu R, Zhou X, Zhang J, Song M, Zou P, Bi X, Li S. Role of Lake Aquatic–Terrestrial Ecotones in the Ecological Restoration of Eutrophic Water Bodies. Toxics. 2023; 11(7):560. https://doi.org/10.3390/toxics11070560
Chicago/Turabian StyleDai, Tingting, Rui Liu, Xingxing Zhou, Jing Zhang, Mengting Song, Ping Zou, Xiaoyi Bi, and Shuibing Li. 2023. "Role of Lake Aquatic–Terrestrial Ecotones in the Ecological Restoration of Eutrophic Water Bodies" Toxics 11, no. 7: 560. https://doi.org/10.3390/toxics11070560