In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells
Abstract
:1. Introduction
2. Methods and Materials
2.1. Reagents
2.2. Sample Collection and Preparation
2.3. Maintenance of Skin Cells and MTT Assay
2.4. Reactive Oxygen Species (ROS) Detection
2.5. Determination of TNF-α and IL-1α Content by Sandwich ELISA
2.6. RT-qPCR
2.7. Cell Viability and IL-1α and TNF-α Levels in 3D Epidermal Cells
2.8. Data Analysis
3. Results
3.1. Effect of Different Environmental Factors on Cell Viability
3.2. Effects of Environmental Factors on ROS Levels and the mRNA Expression of Collagen Genes in FB Cells
3.3. Effects of Environmental Factors on the Levels of TNF-α and IL-1α in HaCaT Cells
3.4. Effect of O3 on Cell Viability and IL-1α and TNF-α Release in 3D Epidermal Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schurer, N.Y.; Elias, P.M. The biochemistry and function of stratum corneum lipids. Adv. Lipid Res. 1991, 24, 27–56. [Google Scholar]
- Araviiskaia, E.E.; Bieber, B.T.; Gontijo, G.; Viera, M.S.; Marrot, L.; Chubere, B.; Derno, B. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. 2019, 33, 1496–1505. [Google Scholar] [CrossRef]
- Lee, K.J.; Park, K.H.; Hahn, J.H. Alleviation of ultraviolet-B radiation-induced photoaging by a TNFR antagonistic peptide TNFR2-SKE. Mol. Cells 2019, 42, 151–160. [Google Scholar]
- Mokrzyrński, K.; Krzsztyńska-kuleta, O.; Zawrotniak, M.; Sarna, M. Fine particulate matter-induced oxidative stress mediated by UVA-visible light leads to keratinocyte damage. Int. J. Mol. Sci. 2021, 22, 10645. [Google Scholar] [CrossRef]
- Magnani, N.D.; Muresan, X.M.; Belmonte, G.; Cervellati, F.; Sticozzi, C.; Pecorelli, A.; Miracco, C.; Marchini, T.; Evelson, P.; Valacchi, G. Skin damage mechanisms related to airborne particulate matter. Exposure 2016, 149, 227–236. [Google Scholar] [CrossRef]
- Clunes, L.A.; Bridges, A.; Alexis, N.; Tarran, R. In vivo versus in vitro airway surface liquid nicotine levels following cigarette smoke exposure. J. Anal. Toxicol. 2008, 32, 201–207. [Google Scholar] [CrossRef]
- Torres, S.; Merino, C.; Paton, B.; Correig, X.; Ramírez, N. Biomarkers of exposure to secondhand and thirdhand tobacco smoke: Recent advances and future perspectives. Int. J. Environ. Public Health 2018, 15, 2693. [Google Scholar] [CrossRef]
- Doshi, D.N.; Hanneman, K.K.; Cooper, K.D. Smoking and skin aging in identical twins. Arch. Dermatol. 2007, 143, 1543–1546. [Google Scholar] [CrossRef]
- Egawa, M.; Kohno, Y.; Kumano, Y. Oxidative effects of cigarette smoke on the human skin. Int. J. Cosmet. Sci. 1999, 21, 83–98. [Google Scholar] [CrossRef]
- Liu, J.L.; Fu, M.Y.; Miao, J.Y.; Sun, Y.L.; Zhu, R.G.; Liu, C.Y.; Bi, R.C.; Wang, S.; Cao, X.Y. The toxicity of cooking oil fumes on human bronchial epithelial cells through ROS-mediated MAPK, NF-kappa B signaling pathways and NLRP3 inflammasome. Environ. Toxicol. 2022, 37, 1071–1080. [Google Scholar] [CrossRef]
- Chen, K.C.; Tsai, S.W.; Shie, R.H.; Zeng, C.; Yang, H.Y. Indoor air pollution increases the risk of lung cancer. Int. J. Environ. Res. Public Health 2022, 19, 1164. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Jeng, S.N.; Kang, Z.C.; Lee, H. Identification of benzo[α]pyrene 7,8-diol 9, 10-epoxide N2-deoxyguanosine in human lung adenocarcinoma cells exposed to cooking oil fumes from frying fish under domestic conditions. Chem. Res. Toxicol. 2000, 13, 1046–1050. [Google Scholar] [CrossRef]
- Kazemiparkouhi, F.; Eum, K.D.; Wang, B.; Manjourides, J.; Suh, H.H. Long-term ozone exposures and cause-specific mortality in a US Medicare cohort. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Fuks, K.B.; Hüls, A.; Sugiri, D.; Altug, H.; Vierktter, A.; Abramson, M.J.; Goebel, J.; Wagner, G.G.; Demuth, I.; Krutmann, J.; et al. Tropospheric ozone and skin aging: Results from two German cohort studies. Environ. Int. 2019, 124, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; van der Vliet, A.; Schock, B.C.; Okamoto, T.; Obermuller-Jevic, U.; Cross, C.E.; Packer, L. Ozone exposure activates oxidative stress responses in murine skin. Toxicology 2002, 179, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Pambianchi, E.; Pecorelli, A.; Woodby, B.; Messano, N.; Therrien, J.-P.; Lila, M.A.; Valacchi, G. Redox regulation of cutaneous inflammasome by ozone exposure. Free Radic. Biol. Med. 2020, 152, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.T.; Li, X.M.; Liu, E.M.; Xiong, W.K.; Wang, S.; Zhu, R.; Ding, Y.B.; Zhong, Z.H. Association of early-life factors and indoor environmental exposure with asthma among children: A case-control study in Chongqing, China. World J. Pediatr. 2022, 18, 186–195. [Google Scholar] [CrossRef]
- Gao, J.W.; Qiu, Z.W.; Cheng, W.; Gao, H.O. Children’s exposure to BC and PM pollution, and respiratory tract deposits during commuting trips to school. Ecotoxicol. Environ. Saf. 2022, 232, 113253. [Google Scholar] [CrossRef]
- Lin, H.; Long, Y.; Su, Y.J.; Song, K.; Li, C.L.; Ding, N. Air pollution and hospital admissions for critical illness in emergency department: A tertiary-center research in Changsha, China, 2016–2020. Environ. Sci. Pollut. Res. 2022, 29, 21440–21450. [Google Scholar] [CrossRef]
- Ma, Y.S.; Deng, L.J.; Ma, P.; Wu, Y.; Yang, X.; Xiao, F.; Deng, Q.H. In vivo respiratory toxicology of cooking oil fumes: Evidence, mechanisms and prevention. J. Hazard. Mater. 2021, 402, 123455. [Google Scholar] [CrossRef]
- Aikaterini, V.-A.; Robert, P. Environmental factors influencing the transmission of the coronavirus 2019: A review. Environ. Chem. Lett. 2022, 20, 1603–1610. [Google Scholar]
- Mondal, S.; Chaipitakporn, C.; Kumar, V.; Wangler, B.; Gurajala, S.; Dhaniyala, S.; Sur, S. COVID-19 in New York state: Effects of demographics and air quality on infection and fatality. Sci. Total Environ. 2022, 807, 150536. [Google Scholar] [CrossRef]
- Weaver, A.K.; Head, J.R.; Gould, C.F.; Carlton, E.J.; Remais, J.V. Environmental factors influencing COVID-19 incidence and severity. Annu. Rev. Public Health 2022, 43, 271–291. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Lee, Y.I.; Jang, S.; Song, S.Y.; Lee, W.J.; Lee, J.H. Particulate matter-induced atmospheric skin aging is aggravated by UVA and inhibited by a topical L-ascorbic acid compound. Photodermatol. Photoimmunol. Photomed. 2022, 38, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Warke, M.; English, M.; De Marchi, L.; Sarkar, R.P.; Kannan, S.; Datta, R.; Rao, S. In-vitro cell culture model to determine toxic effects of soil arsenic due to direct dermal exposure. Environ. Technol. Innov. 2022, 28, 102949. [Google Scholar] [CrossRef]
- Prieux, R.; Eeman, M.; Rothen-Rutishauser, B.; Valacchi, G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol. In Vitro 2020, 62, 104664. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.L.; Tang, Q.Q.; Sun, S.; Zhang, X.L.; Huang, Y.Y.; Xu, L.B. Insight into the mechanism of tetrachlorobisphenol A (TCBPA)-induced proliferation of breast cancer cells by GPER-mediated signaling pathways. Environ. Pollut. 2021, 375, 116636. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.L.; Sun, S.; Xu, J.; Feng, C.L.; Yu, Y.X.; Xu, G.; Wu, M.H.; Peng, W. Low-concentration BPAF- and BPF- induced cell biological effects are mediated by ROS in MCF-7 breast cancer cells. Environ. Sci. Pollut. Res. 2018, 25, 3200–3208. [Google Scholar] [CrossRef]
- Lei, B.L.; Xu, L.B.; Huang, Y.Y.; Liu, Y.; Yu, M.J.; Tang, Q.Q. Chlorobisphenol A activated kisspeptin/GPR54-GnRH neuroendocrine signals through ERα and GPER pathway in neuronal GT1-7 cells. Ecotoxicol. Environ. Saf. 2022, 233, 113290. [Google Scholar] [CrossRef]
- Fuyuno, Y.; Uchi, H.; Yasumatsu, M.; Morino-Koga, S.; Tanaka, Y.; Mitoma, C.; Furue, M. Perillaldehyde inhibits AHR signaling and activates NRF2 antioxidant pathway in human Keratinocytes. Oxid. Med. Cell Longev. 2018, 2018, 9524657. [Google Scholar] [CrossRef]
- Lim, G.E.; Park, J.E.; Cho, Y.H.; Lim, D.; Kim, A.J.; Moh, S.H.; Lee, J.H.; Lee, J.S. Alpha-neoendorphin can reduce UVB-induced skin photoaging by activating cellular autophagy. Arch. Biochem. Biophys. 2020, 689, 108437. [Google Scholar] [CrossRef] [PubMed]
- Abolhasani, R.; Araghi, F.; Tabary, M.; Aryannejad, A.; Mashinchi, B.; Robati, R.M. The impact of air pollution on skin and related disorders: A comprehensive review. Dermatol. Ther. 2021, 34, e14840. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.M.; Chen, C.W.; Lin, T.Y.; Kuo, Y.H. N-phenetyl caffeamide and photodamage: Protecting skin by inhibiting type I procollagen degradation and stimulating collagen synthesis. Food Chem. Toxicol. 2014, 72, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Zouboulis, C.C.; Tan, J.; Andersen, M.L.; Katta, R.; Lyu, X.; Aguilar, L.; Kerob, D.; Morita, A.; Krutmann, J.; et al. Adult skin acute stress responses to short-term environmental and internal aggression from exposome factors. J. Eur. Acad. Dermatol. 2021, 35, 1963–1975. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M. The chemical components of Tobacco and Tobacco smoke. Chromatographia 2010, 71, 977. [Google Scholar] [CrossRef]
- Ernster, V.L.; Grady, D.; Mike, R.; Black, D.; Selby, J.; Kerlikowske, K. Facial wrinkling in men and women, by smoking status. Am. J. Public Health 1995, 85, 78–82. [Google Scholar] [CrossRef]
- Oppeltz, R.F.; Jatoi, I. Tobacco and the escalating global cancer burden. J. Oncol. 2011, 2011, 408104. [Google Scholar] [CrossRef]
- Ding, R.; Li, J.; Zhang, Q.; Zhang, C.; Li, N.; Sun, S.; Li, C.L.; Shen, C.W.; Zhao, Q.H.; Chen, H.B.; et al. Vitamin D-3 protects intrauterine growth restriction induced by cooking oil fume derived fine particulate matters. Ecotoxicol. Environ. Saf. 2022, 229, 113103. [Google Scholar] [CrossRef]
- Hyun, Y.J.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Zhen, A.X.; Cho, S.J.; Kang, H.K.; Koh, Y.S.; Ahn, M.J.; Kim, T.H.; et al. 3,4-dicaffeoylquinic acid protects human keratinocytes against environmental oxidative damage. J. Funct. Foods 2019, 52, 430–441. [Google Scholar] [CrossRef]
- Pecorelli, A.; Woodby, B.; Prieux, R.; Valacchi, G. Involvement of 4-hydroxy-2- nonenal in pollution-induced skin damage. Biofactors 2019, 45, 536–547. [Google Scholar] [CrossRef]
- Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P. Redox regulation of NLRP3 Inflammasomes: ROS as trigger or Effector. Antioxid. Redox Sign 2015, 22, 1111–1129. [Google Scholar] [CrossRef] [PubMed]
- Soeur, J.; Belaȉdi, J.-P.; Chollet, C.; Denat, L.; Dimitrov, A.; Jones, C.; Perez, P.; Zanini, M.; Zobiri, O.; Mezzache, S.; et al. Photo-pollution stress in skin: Traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J. Dermatol. Sci. 2017, 86, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Krueger, J.G. Atopic dermatitis and psoriasis: Two different immune diseases or one spectrum. Curr. Opin. Immunol. 2017, 48, 68–73. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hara, H.; Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 2016, 41, 1012–1021. [Google Scholar] [CrossRef]
- Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013, 13, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.Y.; Bi, S.Y.; Liu, J.; Xu, W.S.; Zhou, G.Q.; Liu, Y.; Chen, C.Y. C60(OH)n-loaded nanofibrous membranes protect HaCat cells from ROS-associated damage. Chin. Chem. Lett. 2017, 28, 1889–1892. [Google Scholar] [CrossRef]
- Romani, A.; Cervellati, C.; Muresan, X.M.; Belmonte, G.; Pecorelli, A.; Cervellati, F.; Benedusi, M.; Evelson, P.; Valacchi, G. Keratinocytes oxidative damage mechanisms related to airborne particle matter exposure. Mech. Ageing Dev. 2018, 172, 86–95. [Google Scholar] [CrossRef]
- Song, I.B.; Gu, H.; Han, H.J.; Lee, N.Y.; Cha, J.Y.; Dong, Y.K.; Kwon, J. Effects of 7-MEGATM 500 on oxidative stress, inflammation, and skin regeneration in H2O2-treated skin cells. Toxicol. Res. 2018, 34, 103–110. [Google Scholar] [CrossRef]
- De Luca, C.; Valacchi, G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediat. Inflamm. 2010, 2010, 321494. [Google Scholar] [CrossRef]
- Valacchi, G.; Muresan, X.M.; Sticozzi, C.; Belmonte, G.; Pecorelli, A.; Cervellati, F. Ozone-induced damage in 3D-Skin Model is prevented by topical vitamin C and vitamin E compound mixtures application. J. Dermatol. Sci. 2016, 82, 209–212. [Google Scholar] [CrossRef]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef] [PubMed]
- Darawsha, A.; Trachtenberg, A.; Levy, J.; Sharoni, Y. The protective effect of carotenoids, polyphenols, and estradiol on dermal fibroblasts under oxidative stress. Antioxidants 2021, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Duchnik, E. Oxidative stress and skin diseases: Possible role of physical activity. Asian Pac. J. Cancer Prev. 2014, 15, 561–568. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Yang, Y.; Zhang, X.; Lei, B.; Chen, T.; Chen, Y. In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells. Toxics 2024, 12, 108. https://doi.org/10.3390/toxics12020108
Fu M, Yang Y, Zhang X, Lei B, Chen T, Chen Y. In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells. Toxics. 2024; 12(2):108. https://doi.org/10.3390/toxics12020108
Chicago/Turabian StyleFu, Minghui, Yingxin Yang, Xiaolan Zhang, Bingli Lei, Tian Chen, and Yuanqi Chen. 2024. "In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells" Toxics 12, no. 2: 108. https://doi.org/10.3390/toxics12020108
APA StyleFu, M., Yang, Y., Zhang, X., Lei, B., Chen, T., & Chen, Y. (2024). In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells. Toxics, 12(2), 108. https://doi.org/10.3390/toxics12020108