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Abstract: Freshwater lake eutrophication is a global concern causing adverse effects on aquatic
ecosystems. The degradation of lake aquatic–terrestrial ecotones, which are the transitional zones
between terrestrial and water ecosystems, contributes to eutrophication. These ecotones play vital
roles in nutrient cycling, runoff control, biodiversity conservation, and habitat provision. In the
past three decades, the research on lake aquatic–terrestrial ecotones has focused on techniques
for managing contaminants and runoff purification. This paper reviews the recent studies on the
restoration ability of eutrophic water bodies in lake aquatic–terrestrial ecotones in recent years
regarding three aspects: the establishment, restoration mechanism, and improvement of restoration
function. In addition, ecological factors such as lakeshore height, water level, surface runoff, shallow
groundwater level, and rainfall intensity have impacts on the restoration capacity of lake aquatic–
terrestrial ecotones.

Keywords: eutrophication; lake aquatic–terrestrial ecotones; bioremediation; plant community; in
situ treatment

1. Introduction

The deterioration of lake water environments, especially the increase in freshwater lake
eutrophication, is prevalent worldwide [1]. Eutrophication drives a series of adverse effects
such as algal blooms, aquatic vegetation decline, fish mortality, and eventual ecosystem
degradation and collapse [2]. One main cause of eutrophication is the degradation of lake
aquatic–terrestrial ecotones and the loss of their ecological functions [3]. Aquatic–terrestrial
ecotones are areas between terrestrial ecosystems and water ecosystems [4]. They play
crucial roles in hydrological, biological, and geochemical cycles linking terrestrial and
aquatic ecosystems, including the transport and transformation of nutrients (including
nitrogen and phosphorus) [5], runoff control, microclimate regulation, and biodiversity pro-
tection [6]. Ecotones protect lake ecosystems by reducing pollutant inputs, and they are an
indispensable organic component of a healthy lake ecosystem [7]. Lake aquatic–terrestrial
ecotones can be both a sink and source of nutrients [8], as well as a species source (gene pool)
and important habitat for lake wildlife [9]. A special property of lake aquatic–terrestrial
ecotones includes seasonal variations in water levels that create anaerobic conditions for
flora and fauna that are essential to these zones [10]. The characteristics and special sta-
tus of lake aquatic–terrestrial ecotones in watershed ecosystems with low operational
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and maintenance costs have recently received attention from international ecological and
environmental communities [11].

There are many lakes in the world, and most freshwater lakes experience varying
degrees of eutrophication [12–14]. Detailed information on the distribution of lakes across
the world and China is shown in Figure 1. Freshwater lake ecosystems are not only valuable
human resources but also crucial environmental systems [15]. Therefore, studying the
ecological restoration effects of lake aquatic–terrestrial ecotones on eutrophication is of
great significance. Chinese research on lake aquatic–terrestrial ecotones began in the early
21st century [16], mainly focusing on freshwater lakes such as Erhai Lake, Taihu Lake,
Dianchi Lake, and the Three Gorges Reservoir [17–20]. This research led to the development
of practical techniques such as low-biomass grass planting, buffer zone protection, and
surface runoff purification. Similar research on lake aquatic–terrestrial ecotones in America,
Europe, and Japan has focused on controlling contaminants in agricultural runoff [21–23].
That is why some of the research has focused on streams and rivers, which are far more
numerous than lakes, and because most people live along them, they face more pollution
from agricultural nonpoint sources than lakes. In recent years, foreign research has focused
more on the maintenance and management of lake aquatic–terrestrial ecotones [24]. Nsenga
et al. [25] found that extreme weather can affect the design implementation process of
lake aquatic–terrestrial ecotones, and cold weather possesses the most detrimental impact.
Rinku et al. [26] proposed an integrated approach to managing lake aquatic–terrestrial
ecotones. The knowledge framework of lake aquatic–terrestrial ecotones has expanded
in recent years. However, progress at the global scale has been limited, mainly due to the
extensive functional and structural diversity of these zones. Improving our understanding
requires the reasonable characterization of the extent of lake aquatic–terrestrial ecotones
based on multiple factors such as lake type, width, rainfall, vegetation type, soil properties,
slope, and adjacent land use. Through a thorough analytical exploration of the literature,
this paper explores the ecological restoration potential of lake aquatic–terrestrial ecotones
and provides insights into their management and conservation in combating freshwater
lake eutrophication.
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2. Bioremediation of Lake Aquatic–Terrestrial Ecotones
2.1. Design and Application of Lake Aquatic–Terrestrial Ecotones

The effectiveness of aquatic–terrestrial ecotones in reducing nonpoint source pollu-
tion has been recognized and utilized for a long time [27–30]. When establishing a lake
aquatic–terrestrial ecotone, a wide lake aquatic–terrestrial ecotone with a reasonable vege-
tation density is considered a “natural barrier” for preventing nonpoint source pollution
in a lake. However, due to land resources and geographical constraints, it is not always
possible to grow the most effective vegetation types or indiscriminately expand the width
of a lake ecotone to improve its effectiveness in preventing nonpoint source pollution.
According to a relevant retrieval from the Web of Science, there are mainly four methods for
determining the widths of lake ecotones, including shallow-water lakes, deep-water lakes,
and freshwater lakes. Detailed information is shown in Table 1. Borin et al. [31] found that
nitrate-nitrogen in surface runoff decreased from 50% to 20% when the broadband of a
lakeshore intersection zone was reduced from 16 to 8 m. Haycock et al. [32] identified that
the most nitrate is removed within the first 8 m of entering the riparian zone, with overall
interception rates of greater than 80% for sediment and 50% for total phosphorus in buffer
zones of greater than 10 m.

Table 1. Methods for determining the widths of lake ecotones.

Method Applicable Scope References

A hydrographic aquatic–terrestrial ecotones model Deep-water lakes [33,34]

Ratio method: the maximum ratio of environmental
benefits obtained from land structure adjustment

around lakes to investment funds
Freshwater lakes [35]

Numerical simulation method: using waves with
numerical simulation Large shallow lakes [36]

Determining the width of a lake ecotone through
nutrient removal rate (TN, TP) Freshwater lakes [37]

Plants are the main biological component of lake ecotones. The use of vegetated
buffer zones to control external nutrient inputs is key to mitigating eutrophication [38].
The riparian vegetation composition impacts the overall plant community [39]. Plants
adsorb, enrich, and degrade pollutants through their roots, stems, and leaves. Plants
rely on their metabolism combined with the action of microorganisms to absorb large
amounts of harmful substances such as nitrogen, phosphorus, and suspended matter in
eutrophic water bodies [40]. Plant communities involve various plant species and create
habitats for organisms, and the vegetation in lake ecotones can effectively increase the
phosphorus content in sediments, gradually migrating the phosphorus fraction to favor
plant growth and uptake [41]. Vegetation increases the phosphorus storage capacity of
sediments in the interlaced zones of rivers and lake banks. Increased riparian vegetation
improves ecological functions such as nutrient sorption, sedimentation, and retention in
the interlaced zones, further reducing nutrient inputs from land to water bodies to improve
lake water quality [42].

When establishing powerful plant communities, aquatic plants are key to repairing
eutrophication. The deep-water area to the shoreline encompasses various vegetation zones,
including the submerged vegetation zone, floating-leaf vegetation zone, floating vegetation
zone, and emergent vegetation zone, and involves a multi-seasonal composite structure
of aquatic plant communities. Constructing four levels of vegetation zones enables land-
based pollutants to be effectively filtered and retained, purifies water quality, and improves
water transparency. Over time, nitrogen and phosphorus are removed from eutrophic
water bodies by harvesting the above-ground biomass [43]. Plant species significantly
influence the ability of lake ecotones to remediate nutrient loads [44]. As shown in Table 2,
different plants have different removal rates for high levels of nitrogen and phosphorus in
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eutrophic water bodies. Aquatic plant selection should initially focus on common species
suitable for the local geography, climate, and conditions with a reasonable planting density
to form a diverse plant community [19]. One study demonstrated that the long-term
soaking of vegetation releases large amounts of dissolved organic matter (DOM) into the
water [45]. This provides nutrients for bloom-forming species, which may promote the
rapid reproduction of these algae, instigating blooms [45]. Consequently, exploring the
effects of more DOM sources on algal growth could significantly enhance capacities for
bloom control [46].

Table 2. Detailed information on removal rates of different types of plants.

Plant Species Removal Rate/% Reference

Vallisneria natans TN-81.2/TP-90.8
Potamogeton distinctus TN-86.6/TP-86.2 [47]

Hydrilla verticillata TN-75.6/TP-81.3
Eichhornia crassipes TN-42.44/TP-96.44 [48]

Pandanus NO3
−N-100/PO4

3−P-64 [49]
Nelumbonucifera TN-76.87/TP-76.47 [50]

Phragmites australis TN-69 [51]

The most effective riparian vegetation buffer zone pattern includes terrestrial areas
that combine tree infestation–grass patterns. Hu et al. [52] found that buffer strips with
herbaceous plants were effective in retaining surface water and pollution runoff, with a
removal rate of over 30% for both runoff pollutants and retained surface seepage pollutants.
Yan et al. [53] identified that natural vegetation is more effective than artificial vegetation
in absorbing pollutants, which is probably due to natural selection and local adaptation.
Terrestrial mixed forests with grasses are better at absorbing runoff pollutants than wood-
land or grassland in isolation. Poeppl et al. [54] revealed that a mixture of wetland and
forest cover with natural vegetation planted in a buffer strip significantly reduced runoff
sediment inputs into the water body. Forested riparian buffer strips with well-developed
root systems can absorb more nutrients, remove nitrate more effectively, and stabilize
stream banks, thereby reducing streambank erosion. A more complex plant community
structure results in an improved ecological buffer function in a lake ecotone.

Numerous factors such as plant biomass, temperature, light conditions, plant type,
purification time, water velocity, and the physicochemical properties of the water can
affect plant efficiency in removing pollutants. The higher the plant biomass [55], the more
nutrients can be removed. Longer root systems can increase the favorable conditions
for the microbial decomposition of organic matter. Aquatic plant selection incorporating
some strong aquatic plants with developed root systems can improve the slope fixation
capacity. Increased concentrations of allelochemicals released by plants into the water can
also increase algae suppression over time. Screening for the optimal vegetation suited to
local conditions is particularly important in the ecological restoration of eutrophic water
bodies. Therefore, the type of ecotone vegetation cover is important, and the sediment
and hydrology of the buffer zone warrant consideration. Additionally, plant selection
should screen for flood- and drought-tolerant species. One plant species can have differ-
ent nutrient removal effects under different environmental conditions. Therefore, relying
on a single plant may not achieve improved degradation of all types of nutrients in all
conditions [56], so plant combinations are needed. However, special attention should be
paid to the growth characteristics of plants and their affinity and aggressiveness with other
species in plant configurations. Fast-growing species should be propagated in appropriate
proportions to restrict conflicts with slower-growing species. Slower-growing species may
require planting in larger proportions to develop a successful plant mix. Plant selection and
configuration should be considered on a site-specific basis (e.g., following the current ripar-
ian structure and river water quality) to sustainably enhance new ecosystems in riparian
zones [57]. Currently, little information is available on riparian vegetation characteristics
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(composition, density, and layout). Understanding riparian vegetation requires special-
ized research to optimize plant configurations and identify locally appropriate riparian
vegetation configuration patterns for sustained pollution control.

2.2. Bioremediation Mechanisms

A lake ecotone’s vegetation buffer zone has a minimum width requirement to ef-
fectively control or reduce pollutants and achieve water purification. The main action
mechanisms include the retention of pollutants in runoff, absorption by vegetation, ad-
sorption by soil, and degradation of pollutants by microorganisms [58]. Furthermore, the
agglomerated structure of a lake ecotone increases the mechanical strength and impact
resistance of the inter-rooted soil, allowing soil consolidation and slope protection [59].
Plants in lake ecotones promote nutrient uptake, deposition, and infiltration by altering
the runoff velocity and increasing the hydraulic residence time [60]. When plants reach
saturation with adsorbed nutrients, the phosphorus sorption capacity in lake ecotones
decreases with an increasing hydraulic residence time. Plant roots can promote runoff
filtration. When runoff-carrying pollutants pass through the vegetation buffer zone, the
dissolved pollutants enter the soil with the infiltrated water and are absorbed by the plant
roots. Moreover, a more developed root system from a high biomass of vegetation in a lake
ecotone enables increased plant root uptake and microbial degradation, thus improving
the retention efficiency of pollutants in runoff [61]. The roots of many plants can secrete a
variety of organic compounds. This is especially evident in phosphorus-deficient condi-
tions, wherein aquatic plants continuously secrete large amounts of low-molecular-weight
organic compounds into the growth medium, providing large amounts of nutrients and en-
ergetic substances for inter-rooted microorganisms and altering microbial activity, biomass,
and ecological distributions.

Microbial degradation plays a crucial role in the removal of nitrogen and phosphorus in
lake ecotones. As the decomposers in ecosystems, microorganisms contribute significantly
to pollutant removal and nutrient recycling. In high-nutrient ecosystems, microorganisms
particularly influence nitrogen dynamics because plants cannot be directly absorbed and
used by plants. Soil microorganisms convert organic nitrogen into inorganic nitrogen
through processes such as ammonification, nitrification, and denitrification, thereby pro-
moting the biogeochemical nitrogen cycle in water bodies. Phosphorus removal in lake
ecotones primarily occurs through soil particle deposition, sorption, and plant uptake of
dissolved and particulate phosphorus. Particle sedimentation is a significant process in the
removal of particulate phosphorus during surface runoff, overland flow, and floodplain in-
undation, especially when the runoff carries a high concentration of dissolved phosphorus
into lake ecotones [62]. Soluble phosphorus enters a lake through various pathways, includ-
ing microbial assimilation and uptake, soil humus uptake, and infiltration into groundwater.
Additionally, solid phosphorus can be deposited in lake ecotones through sedimentation
when mixed with other suspended solid particles in surface runoff [63]. Plant roots and
leaf surfaces can also intercept and capture solid phosphorus through adsorption from
surface runoff. Furthermore, microorganisms contribute to the decomposition of organic
phosphorus, providing nutrients for plant growth and development.

2.3. Improvement of Ecological Restoration Effect and Management of Lake Ecotones

Lake ecotones are rich in microbial species, including bacteria, mycobiota, actino-
mycete, protozoa, and metazoans. Among them, bacteria are one of the most abundant and
complex taxa. The number of bacteria per gram of soil can be in the hundreds of millions
or even billions. Microorganisms are usually adsorbed on solid surfaces, including those of
plants [64]. Plants in lake ecotones can remove nitrogen and phosphorus through direct
absorption and indirectly through increased microbial activity by altering the redox poten-
tial within the wetland. Kickuth’s root zone theory states that plants in lake ecotones can
transport the oxygen produced via photosynthesis to the root zone through sparse tissue,
so that an aerobic zone is formed near the root zone, with areas farther away from the root
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zone becoming anoxic, and areas that are even further becoming anaerobic [65]. Therefore,
bacteria in this zone can include aerobic bacteria, anaerobic bacteria, facultative anaerobic
bacteria, and other species. There are distinct aerobic and anaerobic bacterial communities
in a lake ecotone. Moreover, the local microbial population is the result of a combination
of dissolved oxygen content, chemicals released by plants, and soil properties. Annually,
the microbial population in a lake ecotone is low in spring, starts to increase in summer,
reaches a maximum in autumn, and then decreases in winter. In this population, facultative
anaerobic bacteria (which can survive in both anaerobic and aerobic conditions) are the
optimal species for pollutant degradation. The facultative anaerobic bacteria isolated by
Smirnova et al. had a high degradation efficiency for cellulose in plants and produced
limited nitrogen fixation [66].

Pollutants serve as carbon and energy sources for the growth and reproduction of mi-
croorganisms or produce intermediate metabolites that provide essential nutrients, thereby
stimulating the secretion of active enzymes for pollutant degradation [67]. During nitrogen
and phosphorus removal, microorganisms control the efficiency of nitrogen pollutant miti-
gation by directly participating in the mineralization and ammonia oxidation of organic
matter and driving ecosystem services in vegetated buffer ecosystems. Recent findings
suggest that plant root secretions can stimulate plant-associated microorganisms, thereby
enhancing the biodegradation of pollutants in lake ecotones [68]. Inter-rhizosphere mi-
croorganisms are the most sensitive soil microbial community to plant community changes
and are also the nutrient regulator between soil and root systems. Inter-rhizosphere
bacteria in soil play key roles in plant growth, development, and environmental adapta-
tion. Studies on nitrate removal in wetlands and riparian zones have demonstrated that
rhizosphere bacterial metabolism is linked to the removal of these inorganic nutrients,
primarily through denitrification [69]. Therefore, studying the diversity of inter-root soil
bacterial communities and their functions deepens our understanding of the relationships
between plants and soil microorganisms and provides guidance for the bioremediation of
degraded ecosystems [70].

Microorganisms are the main carriers and bearers of nitrogen- and phosphorus-
containing pollutants and organic pollutants in eutrophic water bodies. Enhancing the
performance and function of microorganisms involved in nitrogen and phosphorus re-
moval in lake ecotones is crucial for ecological restoration. To enhance the capacity of
microorganisms in the lake ecotones of eutrophic water bodies, strategies could include
introducing new bacteria, leveraging the diverse physiological characteristics of different
microorganisms, systematically screening for optimal bacteria, combining multiple mi-
crobial strains into a composite microbial treatment, and employing suitable bacterium
encapsulation technology (to enhance their overall ecological effectiveness). Wu et al. [71]
found that chlorophyll a, total nitrogen, total phosphorus, and the permanganate index
in the water column decreased after inputting effective microbial flora, while the dis-
solved oxygen content and transparency of the water column increased accordingly. Chen
et al. [72] used microbial eco-remediators in a eutrophic artificial landscape lake, causing
the water column chlorophyll a (Chla), COD, and TP concentrations to decrease by 73.03%,
50.62%, and 65.48%, respectively. Gao et al. [73] identified the highest degradation rates
of micro-ecological agents for CODCr, TP, and TN as 33.57%, 83.33%, and 42.98% in the
overlying water, respectively, and 31.16% for TN and 19.53% for organic carbon in the
substrate. It can be seen that adding microbial communities is a crucial step in establish-
ing a microbial augmentation system. In addition, if indigenous microbial strains can be
screened from eutrophic water bodies, they will have better remediation effects compared
with commercial strains. Indigenous microbial communities have a greater capacity for
adaptation to lake environments, enabling faster acclimatization [74]. Even the addition of
some effective microbial communities can increase dissolved oxygen in water bodies [75].

Nevertheless, the practical applications of adding microbial communities to enhance
microbial systems in eutrophic water bodies face certain limitations. These include the
susceptibility of microorganisms to washout by flowing water, their short action durations,
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and the challenge of stabilizing treated water due to predation by other organisms in
stagnant water. Furthermore, the lack of carriers for adsorption, growth, and reproduction
makes their preservation and transport difficult [76]. Fortunately, the emergence and ad-
vancement of microbial immobilization treatment technology have effectively addressed
these challenges. Currently, microbial immobilization technology holds promise for the
remediation of eutrophic water bodies. Immobilized microorganisms exhibit effective inhi-
bition of algae proliferation, thereby contributing to water purification. Encapsulation is the
most extensively studied immobilization method [77]. Among various materials, studies
have demonstrated the effectiveness of sodium alginate in immobilizing bacteria [78–80].
Further research should investigate the mechanisms of mutual influence between microbial
communities and their interactions across various aspects including microbial growth and
metabolism. Additionally, research is needed to assist in screening high-quality strain
combinations and exploring the best mixing ratio to stimulate the maximum advantage of
each microbial community to achieve ideal degradation and pollutant removal.

In the management of lake ecotones, implementing an optimal plant harvesting
program is equally important for the long-term control of pollutants in the lake ecotones [81].
Nutrients and other pollutants absorbed by plants are released into the water when plants
die and decay, especially over winter. Conversely, fallen leaves and wood can serve as
organic matter, an essential source of carbon (energy) for the river food web to facilitate the
removal of pollutants. In addition, periodic selective harvesting may encourage the growth
of smaller plants that may absorb nutrients more rapidly than mature plants. Therefore, we
must assess the appropriate trade-offs between the risks and benefits of plant harvesting.
Further research into and development of appropriate plant-harvesting strategies is critical
for continued contaminant control [82].

3. Influences of Ecological Factors on the Role of Lake Aquatic–Terrestrial Ecotones
3.1. Lakeshore Height

The height of the lakeshore can influence the lakeshore moisture conditions. Many
riparian ecosystem functions, such as chemical reduction, are related to soil moisture. The
soils on high lakeshores (h ≥ 1 m) are influenced by the distance from the water table.
The impact on biogeochemical processes, such as denitrification in the topsoil, may be
reduced with low soil moisture. Conversely, riparian soils with high riparian vegetation
and low soil moisture can act as surface runoff sinks. However, in the riparian soil on a
low lakeshore (h ≤ 0.3 m), short vegetation very close to the water table can become very
shallow seepage zones. This can lead to high moisture conditions with saturated terrestrial
flows, reducing the biogeochemical processing of many elements.

The soil matrix potential in medium–high lake aquatic–terrestrial ecotones is more
variable than in low lake aquatic–terrestrial ecotones due to greater changes in groundwater
levels. However, a more accurate prediction of soil moisture conditions relies on correlating
riparian height with detailed field descriptions, including various local factors such as soil
type. Lakeshore height can be easily assessed in the field, ensuring its place as one of the
riparian characteristics that environmental managers include when predicting the potential
of lake aquatic–terrestrial ecosystem services [83].

3.2. Water Levels

Lake aquatic–terrestrial ecotones are characterized as both terrestrial and aquatic
ecosystems. Annually, plants growing in these areas may be completely submerged in
water at some stage during the growing season, but they can be exposed to drought stress
at other times. Changes in water level can lead to changes in redox conditions in lake
ecotones, and they can also exert some stress on the growth of plants. Moreover, when
there is a significant difference in the lake water level, there are significant differences in
the soil microbial communities in vegetation buffer zones [84–86]. At high water levels
(a high water level for a deep lake is 40–50 m, and a high water level for a shallow
lake is 10–20 m), the soil redox potential is the main factor affecting the soil microbial
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community composition in the vegetated buffer zone. At low water levels (a low water
level for a deep lake is 20–30 m, and a low water level for a shallow lake is <10 m), total
nitrogen better explains the changes in the soil microbial community composition [84].
Zhang et al. [87] suggested that the wet bacterial network is more stable and complex
than the dry bacterial network. In summer, due to the high temperatures during this
time, the vegetation in a lakeside ecotone quickly recovers and reaches its growth peak at
the end of summer [88,89], absorbing and fixing large amounts of nutrients from the soil
and water. When a portion (or even all) of the vegetation in lake ecotones is flooded, the
vegetation is subjected to prolonged inundation stress, causing leaves to fall and decompose
and potentially releasing large amounts of organic matter and nutrients into the water
column [90]. As an endogenous factor, inundation may increase nutrients in the reservoir,
becoming a pollution source and deteriorating water quality. However, at high water levels,
the denitrification rate increases with the intensity of the inundation. This is because the
denitrification rate doubles and the efficiency of nitrogen removal by plants increases with
periodic flooding compared with non-flooding due to the denitrification process favoring
anoxic/anaerobic conditions [91].

There is a close relationship between water levels and carbon emissions in lake eco-
tones. Carbon is absorbed by vegetation during the growing season and released into the
surrounding environment during the high-water-level season. At low elevations, GHG
emissions are greater in lake aquatic–terrestrial ecotones than in permanently flooded areas,
and at high elevations, GHG emissions are greater in permanently exposed areas than in
permanently flooded areas [92]. The wet/dry cycle affects nutrient release by altering both
the sediment properties (including water content and porosity) and the oxygen conditions
in the riparian zone, influencing greenhouse gas production [93]. To mitigate the contri-
bution of vegetation residues to GHG emissions, appropriate vegetation regulation and
management strategies (such as harvesting, grazing, and reusing harvested biomass as
potential fertilizer) should be implemented prior to flooding to reduce carbon emissions
from riparian zones [94].

3.3. Surface Runoff

Lake ecotone management of sediment and pollutants for surface runoff is crucial,
particularly in areas with significant soil erosion within the watershed [95]. However, the
effectiveness of lake ecotones in retaining sediments and pollutants is influenced by the
runoff intensity and flow velocity. A higher rainfall intensity and runoff volume result
in increased kinetic energy, which can limit the capacity of an ecotone to manage sedi-
ments and particulate pollutants. Similarly, higher runoff velocities hinder the interaction
between pollutants and vegetation in ecotones, reducing the efficiency of pollutant reten-
tion [96]. Moreover, the pattern of the runoff flow also plays a key role in an ecotone’s
ability to manage sediments and pollution. Concentrated runoff patterns enhance the
vegetation–soil–microbe interactions in the buffer zone system, thereby improving the
retention efficiency [97]. Concentrated flow through lake ecotones leads to significantly
higher pollutant removal rates compared with uniform flow. This is due to the intensified
vegetation–soil–microbe interactions in the buffer zone systems, which enhance pollutant
retention [97]. The presence of vegetation in lake ecotones increases soil roughness, ef-
fectively reducing the runoff velocity and thereby diminishing the transport capacity of
the surface runoff containing pollutants, such as nitrogen and phosphorus. This reduc-
tion facilitates the deposition of coarse particles that are predominantly transported in
large masses.

3.4. Shallow Groundwater Level

A seasonal shallow water table surrounds an aquatic–terrestrial ecosystem. Carluer et al. [98]
revealed that the shallow water table (<1.8 m) is an important factor affecting the perfor-
mance of a lake aquatic–terrestrial ecotone. The direction and location of the groundwater
flow can impact the reduction efficiency of the lakeshore intersection zone, which is related
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to the soil saturation phenomenon caused by the shallow groundwater table [99]. Ground-
water levels rise and fall in the soil’s internal water-saturated layer and non-water-saturated
layer. The two parts of the soil layer work closely together, affecting the internal structure of
the soil, soil moisture, and microbial community succession patterns, resulting in changes
in the water and solutes in the soil layer. Conversely, in engineering, soil stress mainly
includes effective stress and void water pressure, which can be transformed into each other
under certain conditions. Therefore, changes in groundwater levels lead to changes in
soil stress and void water pressure, which lead to soil deformation. The soil deformation
precedes changes in the soil permeability coefficient, further affecting the transport of
pollutants. Lauvernet et al. [100] identified that the rise and fall in water tables alter the
importance of different factors (the length of lake ecotones, soil properties, etc.) that affect
the vegetation performance of lake ecotones over a range of depths. In the absence of
a water table, the surface runoff reduction efficiency is highly sensitive to saturated soil
hydraulic conductivity. Conversely, when a shallow water table is present, the effect of
saturated soil hydraulic conductivity on surface runoff decreases as the influence of the
water table depth increases.

3.5. Rainfall Intensity

Rainfall is important in generating surface source pollution. Rainfall generates runoff
that scours and leaches pollutants from the land surface and carries them into water bodies,
causing pollution. When the rainfall intensity exceeds the surface infiltration intensity,
surface runoff is generated. The intensity and temporal characteristics of rainfall determine
the temporal characteristics of surface source pollution [101]. Konapala et al. [102] showed
that in areas with high rainfall seasonality, seasonal rainfall will be more erratic in the
future. Conversely, areas with lower rainfall seasonality will experience increased rainfall
during the rainy season. Shen et al. [103] showed that frequent rainfall increased soil water
content, which in turn affected the sediment and pollution retention of lake ecotones.

4. Conclusions and Prospects

Since many lakes suffer from eutrophication worldwide, the potential of lake aquatic–
terrestrial ecotones needs to be explored and used for maintaining and improving lake
water quality. We can also learn from the research conducted on river riparian zones in
order to select transferable knowledge and identify the limitations of the effects of lake
aquatic–terrestrial ecotones. Furthermore, in response to the characteristics of slow water
exchange and easy diffusion of pollutants in lakes, aquatic–terrestrial ecotones suitable for
lakes could be designed. Future research could be dedicated to the following areas:

(1) Understanding ecological dynamics: Conducting in-depth studies to comprehend
the ecological dynamics of lakeside ecotones, including nutrient cycling, pollutant
diffusion, and species interactions. This understanding will inform the development
of targeted management strategies.

(2) Ecosystem restoration techniques: Investigating and developing effective techniques
for restoring and enhancing lakeside ecotones. This involves exploring vegetation pat-
terns, buffer zone designs, and restoration methods that maximize pollutant removal
and enhance ecological resilience.

(3) Integrated management approaches: Promoting the adoption of integrated manage-
ment approaches that consider the interconnectedness of various factors affecting
lakeside ecotones, such as water quality, sedimentation, and nutrient inputs. This holistic
approach will facilitate more comprehensive and efficient ecosystem management.

(4) Monitoring and assessment: Implementing robust monitoring and assessment pro-
grams to evaluate the effectiveness of management strategies and track the ecological
health of lakeside ecotones over time. This data-driven approach will enable adaptive
management practices and continual improvement.
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