Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Protocol and Search Strategy
2.2. Study Selection and Eligibility Criteria
2.3. Data Extraction Process and Quality Assessment
3. Results
Study Selection and Characteristics
Authors Study Period Country/Location | Study Population | Sample Size | Age Range (Years) | Air Pollutants | Duration | Exposure Assessment | Main Results |
---|---|---|---|---|---|---|---|
Alderete et al., 2014–2016 USA [45] | Overweight and obese adolescents | 43 (42% female) | 17–19 | Traffic related air-pollution (TRAP), measured as modeled NOx exposure | long-term (12 months) | California Line Source Dispersion Model | Decreased Bacteroidaceae (r = − 0.48; p = 0.001) and increased Coriobacteriaceae (r = 0.48; p < 0.001) were associated with TRAP exposure and explained 24% and 29% of its correlation with fasting glucose levels (r = 0.45; p = 0.04). |
Du et al., 2019 China [40] | Healthy subjects | 2507 (63% female) | 40–63 | Air-pollution related to increasing levels of urbanization | long-term (>6 months) | Degree of urbanization: rural and urban area (MR, mountainous rural; MU, mountainous urban; PR, plain rural; PU, plain urban) | Lower diversity of gut microbiota with higher levels of urbanization, characterized by gradually decreasing Firmicutes and Actinobacteria and increasing Proteobacteria, as urbanization deepened (MR -> MU -> PR -> PU). |
Fouladi et al., 2014–2017 USA [39] | Overweight young adults | 101 (42% female) | 17–22 | NO2, PM10, PM2.5, O3, total NOx | long-term (12 months) | U.S. Environmental Protection Agency’s Air Quality System; California Line Source Dispersion Model for NOx levels | Decreased Shannon’s diversity index, with higher relative abundance of Bacteroides caecimuris, as well as different metabolic pathways, such as L-ornithine de novo biosynthesis. Pantothenate and coenzyme A biosynthesis I were correlated to O3 exposure for 24 h. Moreover, NO2 exposure correlated to fewer taxa. Interestingly, O3 exposure was responsible for up to 11.2% variability of the gut bacterial composition. |
Gan et al., 2017–2018 China [38] | Pregnant women | 916 | 20–44 | SO2, NO2, O3, PM10, PM2.5 | long-term (3, 6, 9 months) | National Air Quality Monitoring Stations | An altered gut microbiota was significantly associated with air pollution exposure during pregnancy, increasing the risk of various APOs (Adverse Pregnancy Outcomes, such as pre-term birth, post-term birth, low birth weight, macrosomia fetus, birth defect, pathological caesarean section, and post-partum haemorrhage) by 1.07–1.36-fold (p < 0.05). Eggerthella spp., Phascolarctobacterium spp. and Clostridium spp. seemed to be partially responsible of the effects of air pollutants (PM2.5, PM10, O3, NO2, and SO2) on APOs. Micrococcaceae was responsible for 11.39%, 64.90% and 54.80% of the correlation between SO2, PM2.5, PM10, and POTB, respectively, whereas Rothia spp. Was responsible for 11.97%, 67.80%, and 54.50%, respectively. Parabacteroides spp. were instead responsible for 53.0% of the correlation between PM2.5 and pre-term birth. |
Li et al., 2018–2019 China (Danliu community of Jinan, with no factories within at least 5 km) [37] | Healthy elderly subjects | 76 (51% female) | 55–74 | PM2.5 | 3 days | Real-time personal exposure measured via MicroPEM sensors | PM2.5 exposure was significantly associated with more than 20 gut microbial species. More than 600 metabolites (Human Metabolome Database) were identified via untargeted metabolomic analysis, and 253 of them showed a statistically significant (FDRB-H < 0.05) association with PM2.5 exposure. Four different tryptophan metabolites were significantly associated with PM2.5 exposure. |
Liu et al., 2015–2016 China (14 districts of Guangdong Province) [36] | Adults | 6627 (55% female) | 18 and older (average mean = 52 years old) | PM2.5, SO2, NO2, CO | long-time (two years) | Spatiotemporal land-use regression model | Impaired Fasting Glucose (IFG) and type 2 diabetes were at a higher risk in individuals exposed to PM2.5 and PM1 long term. Alterations in the gut microbiota may partially be responsible for the effects of PM. Firmicutes, Proteobacteria, and Verrucomicrobia were negatively associated with the levels of PM and the risk of diabetes. Some Firmicutes spp., such as Lachnospiraceae and Clostridiaceae, were responsible for more than 10% of PMS’ effects on type 2 diabetes. |
Vari et al., 2015 Finland (rural and urban area of Lahti city) [44] | Elderly people | 62 (48% female) | 65–79 | PAHs | 28 days | Passive sampling device placed in rural area (n = 30) and urban area (n = 32) of Lahti | Location of households close to broad-leaved and mixed forests might favour the functional potential of human gut microbiota, increasing orthologues for peroxisome proliferator-activated receptor (PPAR) pathway. These households had lower PAH levels, suggesting the capture of gaseous PAHs by broad-leaved trees. In fact, forests reduce the negative health risks induced by PAH pollution and may balance the commensal microbiota. |
Yi et al., 2017–2019 China (Anhui Mental Health Center) [43] | Subjects with schizophrenia | 248 (63% female) | 18 and older (average mean = 37 years old) | PM2.5, PM10, O3, NO2, SO2 and CO | long-term (12 months) | Spatially interpolated by Inverse Distance Weighted interpolation algorithm b (individual exposure estimates of air pollutants) | Nitrogen dioxide (NO2), carbonic oxide (CO), ozone (O3), particulate matter with lower diameter than 10 μm (PM10), and fine particulate matter (PM2.5) induced 2.68% to 10.77% of the gut microbiome alterations in schizophrenia patients (p < 0.05). Network correlation analysis showed the correlation between air pollutants, markers of liver function, and Firmicutes, Actinobacteria, and Proteobacteria. |
Zhao et al., 2018–2019 China (Danliu community in Shandong Province) [42] | Elderly subjects | 76 (51% female) | 60–69 | PM2.5 | 3 days | Real-time personal exposure via MicroPEM sensors | Increased risk of higher insulin resistance (IR) index was significantly associated with PM2.5 exposure. The gut microbiota (Shuttleworthia) was responsible for 37.83% of PM2.5 total effect on sphingolipid metabolism, suggesting that it may contribute to systemic inflammation and altered sphingolipid metabolism via alterations of the gut microbiota. |
Zheng et al., 2017 China (Beijing) [41] | 11 asthmatic children and 10 healthy children | 21 (38% female) | 5–12 | PM2.5, PM10, NO2, SO2, O3 | 5 days | Monitoring station. Air Quality Index (clean day < 100; smog day > 100) in according to Technical Regulation on Ambient Air Quality Index, Ministry of Environmental Protection | Gut microbiota composition varied between clean and smog days amongst all children (PERMANOVA, p = 0.03). The gut microbiota of asthmatic children was characterized, in smog days, by a decrease in the levels of Bifidobacteriaceae, Erysipelotrichaceae, and Clostridium sensu-stricto 1 and an increase in Streptococcaceae, Porphyromonadaceae, Rikenellaceae, Bacteroidales S24-7 group, and Bacteroides (Wilcoxon test, p < 0.05). By contrast, healthy children experienced a decrease in Fusicatenibacter and an increase in Rikenellaceae and Terrisporobacter (Wilcoxon test, p < 0.05). The abundance of some bacteria belonging to Firmicutes was negatively correlated with PM2.5, PM10, NO2, and SO2 (multiple linear regression, p < 0.05). |
Author | Year | Study Design | 16S rDNA Sequencing Region | Primers | Sequencing Platform |
---|---|---|---|---|---|
Alderete et al. [45] | 2018 | Cross-sectional study | V4 | 515F; 806R | Illumina Miseq v3 |
Liu et al. [36] | 2019 | Cross-sectional study | V4 | Not reported | Not reported |
Fouladi et al. [39] | 2020 | Cross-sectional study | WGS | -- | Illumina HiSeq 4000 |
Zheng et al. [41] | 2020 | Cross-sectional study | V4 | 515F; 806R | Illumina HiSeq 2500 |
Du et al. [40] | 2021 | Cross-sectional study | V3–4 | 341F; 805R | Illumina Miseq |
Yi et al. [43] | 2021 | Cross-sectional study | V3–4 | 338F; 806R | Illumina MiSeq 300 |
Vari et al. [44] | 2021 | Cross-sectional study | V4 | 515F; 806R | Illumina MiSeq |
Gan et al. [38] | 2022 | Cohort study | V5 | 515F; 807R | Illumina Miseq |
Li et al. [37] | 2022 | Cross-sectional study | V4; V3–4; V4–5 | Not reported | Illumina HiSeq 2500 |
Zhao et al. [42] | 2022 | Cross-sectional study | V4; V3–4; V4–5 | 515F; 806R | Illumina HiSeq 2500 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. 7 Million Premature Deaths Annually Linked to Air Pollution. 2014. Available online: https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution (accessed on 27 July 2022).
- World Health Organization. World Health Organization Ambient (Outdoor) Air Quality and Health. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 27 July 2022).
- Shin, S.; Bai, L.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; van Donkelaar, A.; Lavigne, E.; Weichenthal, S.; Copes, R.; Martin, R.V.; et al. Air Pollution as a Risk Factor for Incident Chronic Obstructive Pulmonary Disease and Asthma. A 15-Year Population-Based Cohort Study. Am. J. Respir. Crit. Care Med. 2021, 203, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H.; Cirach, M.; Mueller, N.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M.J.; Rojas-Rueda, D. Outdoor Air Pollution and the Burden of Childhood Asthma across Europe. Eur. Respir. J. 2019, 54, 1802194. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, N.; Foissac, F.; Urien, S.; Guedj, R.; Carbajal, R.; Tréluyer, J.-M.; Chappuy, H. Fine Particulate Pollution and Asthma Exacerbations. Arch. Dis. Child. 2018, 103, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, M.; Ji, M.; Fan, J.; Xie, J.; Wei, X.; Jiang, X.; Xu, J.; Chen, L.; Yin, R.; et al. Air Pollution, Genetic Factors, and the Risk of Lung Cancer: A Prospective Study in the UK Biobank. Am. J. Respir. Crit. Care Med. 2021, 204, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chang, Z.; Wu, J.; Li, W. Air Pollution and Lung Cancer Incidence in China: Who Are Faced with a Greater Effect? Environ. Int. 2019, 132, 105077. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air Pollution and Lung Cancer Incidence in 17 European Cohorts: Prospective Analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Kaufman, J.D.; Elkind, M.S.V.; Bhatnagar, A.; Koehler, K.; Balmes, J.R.; Sidney, S.; Burroughs Peña, M.S.; Dockery, D.W.; Hou, L.; Brook, R.D.; et al. Guidance to Reduce the Cardiovascular Burden of Ambient Air Pollutants: A Policy Statement from the American Heart Association. Circulation 2020, 142, e432–e447. [Google Scholar] [CrossRef]
- Verhoeven, J.I.; Allach, Y.; Vaartjes, I.C.H.; Klijn, C.J.M.; de Leeuw, F.-E. Ambient Air Pollution and the Risk of Ischaemic and Haemorrhagic Stroke. Lancet Planet. Health 2021, 5, e542–e552. [Google Scholar] [CrossRef]
- Xue, Y.; Chu, J.; Li, Y.; Kong, X. The Influence of Air Pollution on Respiratory Microbiome: A Link to Respiratory Disease. Toxicol. Lett. 2020, 334, 14–20. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Cheng, S. Industrial Agglomeration and Haze Pollution: Evidence from China. Sci. Total. Environ. 2022, 845, 157392. [Google Scholar] [CrossRef]
- Vignal, C.; Guilloteau, E.; Gower-Rousseau, C.; Body-Malapel, M. Review Article: Epidemiological and Animal Evidence for the Role of Air Pollution in Intestinal Diseases. Sci. Total Environ. 2021, 757, 143718. [Google Scholar] [CrossRef] [PubMed]
- Albano, G.D.; Montalbano, A.M.; Gagliardo, R.; Anzalone, G.; Profita, M. Impact of Air Pollution in Airway Diseases: Role of the Epithelial Cells (Cell Models and Biomarkers). Int. J. Mol. Sci. 2022, 23, 2799. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, L.; Zhang, Y.; Zhao, Y.; Liu, Y. Air Pollution: A Culprit of Lung Cancer. J. Hazard. Mater. 2022, 434, 128937. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Cavallero, S.; Hsiai, T.; Li, R. Impact of Air Pollution on Intestinal Redox Lipidome and Microbiome. Free Radic. Biol. Med. 2020, 151, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.A.; Barajas, B.; Kleinman, M.; Wang, X.; Bennett, B.J.; Gong, K.W.; Navab, M.; Harkema, J.; Sioutas, C.; Lusis, A.J.; et al. Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress. Circ. Res. 2008, 102, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, N.; Spangler, E.C.; Gray, G.M.; Livinski, A.A.; Sampson, J.N.; Dawsey, S.M.; Jones, R.R. Exposure to Outdoor Particulate Matter Air Pollution and Risk of Gastrointestinal Cancers in Adults: A Systematic Review and Meta-Analysis of Epidemiologic Evidence. Environ. Health Perspect. 2022, 130, 36001. [Google Scholar] [CrossRef]
- Hirota, J.A.; Carlsten, C.; Sadatsafavi, M.; Kaplan, G.; Hirota, S.A. Airway Diseases and Inflammatory Bowel Diseases: Is It Something in the Air (Pollution)? Eur. Respir. J. 2015, 46, 287–288. [Google Scholar] [CrossRef]
- Mutlu, E.A.; Comba, I.Y.; Cho, T.; Engen, P.A.; Yazıcı, C.; Soberanes, S.; Hamanaka, R.B.; Niğdelioğlu, R.; Meliton, A.Y.; Ghio, A.J.; et al. Inhalational Exposure to Particulate Matter Air Pollution Alters the Composition of the Gut Microbiome. Environ. Pollut. 2018, 240, 817–830. [Google Scholar] [CrossRef]
- Ribière, C.; Peyret, P.; Parisot, N.; Darcha, C.; Déchelotte, P.J.; Barnich, N.; Peyretaillade, E.; Boucher, D. Oral Exposure to Environmental Pollutant Benzo[a]Pyrene Impacts the Intestinal Epithelium and Induces Gut Microbial Shifts in Murine Model. Sci. Rep. 2016, 6, 31027. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.; Saffari, A.; Jacobs, J.; Baek, K.I.; Hough, G.; Larauche, M.H.; Ma, J.; Jen, N.; Moussaoui, N.; et al. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Sci. Rep. 2017, 7, 42906. [Google Scholar] [CrossRef] [Green Version]
- Filardo, S.; Scalese, G.; Virili, C.; Pontone, S.; di Pietro, M.; Covelli, A.; Bedetti, G.; Marinelli, P.; Bruno, G.; Stramazzo, I.; et al. The Potential Role of Hypochlorhydria in the Development of Duodenal Dysbiosis: A Preliminary Report. Front. Cell Infect. Microbiol. 2022, 12, 854904. [Google Scholar] [CrossRef] [PubMed]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and Maintenance of Skin Barrier Function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; di Pietro, M.; Porpora, M.G.; Recine, N.; Farcomeni, A.; Latino, M.A.; Sessa, R. Diversity of Cervical Microbiota in Asymptomatic Chlamydia Trachomatis Genital Infection: A Pilot Study. Front. Cell Infect. Microbiol. 2017, 7, 321. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; di Pietro, M.; Tranquilli, G.; Latino, M.A.; Recine, N.; Porpora, M.G.; Sessa, R. Selected Immunological Mediators and Cervical Microbial Signatures in Women with Chlamydia Trachomatis Infection. mSystems 2019, 4, e00094-19. [Google Scholar] [CrossRef] [PubMed]
- Ceccarani, C.; Foschi, C.; Parolin, C.; D’Antuono, A.; Gaspari, V.; Consolandi, C.; Laghi, L.; Camboni, T.; Vitali, B.; Severgnini, M.; et al. Diversity of Vaginal Microbiome and Metabolome during Genital Infections. Sci. Rep. 2019, 9, 14095. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; del Chierico, F. The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef]
- Sadrekarimi, H.; Gardanova, Z.R.; Bakhshesh, M.; Ebrahimzadeh, F.; Yaseri, A.F.; Thangavelu, L.; Hasanpoor, Z.; Zadeh, F.A.; Kahrizi, M.S. Emerging Role of Human Microbiome in Cancer Development and Response to Therapy: Special Focus on Intestinal Microflora. J. Transl. Med. 2022, 20, 301. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Yang, S.; Lu, J.; Jin, X.; Wu, M. Diet-Gut Microbiota-Epigenetics in Metabolic Diseases: From Mechanisms to Therapeutics. Biomed. Pharmacother. 2022, 153, 113290. [Google Scholar] [CrossRef]
- Bailey, M.J.; Naik, N.N.; Wild, L.E.; Patterson, W.B.; Alderete, T.L. Exposure to Air Pollutants and the Gut Microbiota: A Potential Link between Exposure, Obesity, and Type 2 Diabetes. Gut Microbes 2020, 11, 1188–1202. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 20 July 2022).
- McPheeters, M.L.; Kripalani, S.; Peterson, N.B.; Idowu, R.T.; Jerome, R.N.; Potter, S.A.; Andrews, J.C. Quality Improvement Interventions to Address Health Disparities; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012.
- Mirzayi, C.; Renson, A.; Genomic Standards Consortium; Massive Analysis and Quality Control Society; Zohra, F.; Elsafoury, S.; Geistlinger, L.; Kasselman, L.J.; Eckenrode, K.; van de Wijgert, J.; et al. Reporting Guidelines for Human Microbiome Research: The STORMS Checklist. Nat. Med. 2021, 27, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, X.; Xu, Y.; Wu, W.; Tang, W.; Chen, Z.; Ji, G.; Peng, J.; Jiang, Q.; Xiao, J.; et al. Gut Microbiota Partially Mediates the Effects of Fine Particulate Matter on Type 2 Diabetes: Evidence from a Population-Based Epidemiological Study. Environ. Int. 2019, 130, 104882. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Fang, J.; Tang, S.; Du, H.; Zhao, L.; Wang, Y.; Deng, F.; Liu, Y.; Du, Y.; Cui, L.; et al. PM2.5 Exposure Associated with Microbiota Gut-Brain Axis: Multi-Omics Mechanistic Implications from the BAPE Study. Innovation 2022, 3, 100213. [Google Scholar] [CrossRef]
- Gan, Q.; Ye, W.; Zhao, X.; Teng, Y.; Mei, S.; Long, Y.; Ma, J.; Rehemutula, R.; Zhang, X.; Zeng, F.; et al. Mediating Effects of Gut Microbiota in the Associations of Air Pollutants Exposure with Adverse Pregnancy Outcomes. Ecotoxicol. Environ. Saf. 2022, 234, 113371. [Google Scholar] [CrossRef] [PubMed]
- Fouladi, F.; Bailey, M.J.; Patterson, W.B.; Sioda, M.; Blakley, I.C.; Fodor, A.A.; Jones, R.B.; Chen, Z.; Kim, J.S.; Lurmann, F.; et al. Air Pollution Exposure Is Associated with the Gut Microbiome as Revealed by Shotgun Metagenomic Sequencing. Environ. Int. 2020, 138, 105604. [Google Scholar] [CrossRef]
- Du, Y.; Ding, L.; Na, L.; Sun, T.; Sun, X.; Wang, L.; He, S.; Wang, Z.; Lu, Z.; Li, F.; et al. Prevalence of Chronic Diseases and Alterations of Gut Microbiome in People of Ningxia China During Urbanization: An Epidemiological Survey. Front. Cell Infect. Microbiol. 2021, 11, 707402. [Google Scholar] [CrossRef]
- Zheng, P.; Zhang, B.; Zhang, K.; Lv, X.; Wang, Q.; Bai, X. The Impact of Air Pollution on Intestinal Microbiome of Asthmatic Children: A Panel Study. BioMed Res. Int. 2020, 2020, 5753427. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, J.; Tang, S.; Deng, F.; Liu, X.; Shen, Y.; Liu, Y.; Kong, F.; Du, Y.; Cui, L.; et al. PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. Environ. Health Perspect. 2022, 130, 027007. [Google Scholar] [CrossRef]
- Yi, W.; Ji, Y.; Gao, H.; Pan, R.; Wei, Q.; Cheng, J.; Song, J.; He, Y.; Tang, C.; Liu, X.; et al. Does the Gut Microbiome Partially Mediate the Impact of Air Pollutants Exposure on Liver Function? Evidence Based on Schizophrenia Patients. Environ. Pollut. 2021, 291, 118135. [Google Scholar] [CrossRef]
- Vari, H.K.; Roslund, M.I.; Oikarinen, S.; Nurminen, N.; Puhakka, R.; Parajuli, A.; Grönroos, M.; Siter, N.; Laitinen, O.H.; Hyöty, H.; et al. Associations between Land Cover Categories, Gaseous PAH Levels in Ambient Air and Endocrine Signaling Predicted from Gut Bacterial Metagenome of the Elderly. Chemosphere 2021, 265, 128965. [Google Scholar] [CrossRef]
- Alderete, T.L.; Jones, R.B.; Chen, Z.; Kim, J.S.; Habre, R.; Lurmann, F.; Gilliland, F.D.; Goran, M.I. Exposure to Traffic-Related Air Pollution and the Composition of the Gut Microbiota in Overweight and Obese Adolescents. Environ. Res. 2018, 161, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.; Hughes, M.R.; Li, Y.; Cait, A.; Hirst, M.; Mohn, W.W.; McNagny, K.M. Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Front. Immunol. 2021, 12, 628453. [Google Scholar] [CrossRef]
- Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell Infect. Microbiol. 2020, 10, 9. [Google Scholar] [CrossRef]
- Dang, A.T.; Marsland, B.J. Microbes, Metabolites, and the Gut–Lung Axis. Mucosal. Immunol. 2019, 12, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Hu, L.-W.; Bai, Z. Human Exposure Assessment for Air Pollution. In Ambient Air Pollution and Health Impact in China; Dong, G., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1017, pp. 27–57. [Google Scholar]
- Lu, J.; Zhang, L.; Zhai, Q.; Zhao, J.; Zhang, H.; Lee, Y.-K.; Lu, W.; Li, M.; Chen, W. Chinese Gut Microbiota and Its Associations with Staple Food Type, Ethnicity, and Urbanization. NPJ Biofilms Microbiomes 2021, 7, 71. [Google Scholar] [CrossRef]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The Effect of Air Pollution on Deaths, Disease Burden, and Life Expectancy across China and Its Provinces, 1990-2017: An Analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef]
- Dujardin, C.E.; Mars, R.A.T.; Manemann, S.M.; Kashyap, P.C.; Clements, N.S.; Hassett, L.C.; Roger, V.L. Impact of Air Quality on the Gastrointestinal Microbiome: A Review. Environ. Res. 2020, 186, 109485. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filardo, S.; Di Pietro, M.; Protano, C.; Antonucci, A.; Vitali, M.; Sessa, R. Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review. Toxics 2022, 10, 579. https://doi.org/10.3390/toxics10100579
Filardo S, Di Pietro M, Protano C, Antonucci A, Vitali M, Sessa R. Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review. Toxics. 2022; 10(10):579. https://doi.org/10.3390/toxics10100579
Chicago/Turabian StyleFilardo, Simone, Marisa Di Pietro, Carmela Protano, Arianna Antonucci, Matteo Vitali, and Rosa Sessa. 2022. "Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review" Toxics 10, no. 10: 579. https://doi.org/10.3390/toxics10100579
APA StyleFilardo, S., Di Pietro, M., Protano, C., Antonucci, A., Vitali, M., & Sessa, R. (2022). Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review. Toxics, 10(10), 579. https://doi.org/10.3390/toxics10100579