Effect of Roasting and Brewing on the Antioxidant and Antiproliferative Activities of Tartary Buckwheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Roasting of Buckwheat
2.3. Extraction
2.3.1. Cold Brewing
2.3.2. Hot Brewing
2.4. Determination of Total Polyphenol and Flavonoid Contents
2.5. Assessment of Antioxidant Activities
2.5.1. Fe2+-Chelating Activity Assay
2.5.2. DPPH-Radical-Scavenging Activity Assay
2.5.3. ABTS-Radical-Scavenging Activity Assay
2.5.4. Alkyl-Radical-Scavenging Activity Assay
2.6. Assays of Antiproliferative Activity
2.6.1. Cell Culture
2.6.2. Cell Viability Assay
2.7. Quantification of Phenolic Compounds
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yields, Total Polyphenol, and Flavonoid Contents of TB Teas
3.2. Antioxidant Activities of TB Teas
3.3. Antiproliferative Activities of TB Teas
3.4. Phenolic Contents of the TB Teas
3.5. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, X.; Qin, P.; Shan, F.; Ren, G. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract. Ind. Crop. Prod. 2013, 49, 312–317. [Google Scholar] [CrossRef]
- Lee, C.C.; Shen, S.R.; Lai, Y.J.; Wu, S.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct. 2013, 4, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Ho, C.-T. Antioxidant activities of buckwheat extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Cai, Y.; Corke, H.; Li, W. Buckwheat. In Encyclopedia of Grain Science; Wrigley, C.W., Corke, H., Walker, C.E., Eds.; Elsevier Academic Press: Oxford, UK, 2004; Volume 1, pp. 120–128. [Google Scholar]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Kulcharyk, P.A.; Heinecke, J.W. Hypochlorous acid produced by the myeloperoxidase system of human phagocytes induces covalent cross-links between DNA and protein. Biochemistry 2001, 40, 3648–3656. [Google Scholar] [CrossRef]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Shosuke, K.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2015, 16, 193–217. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.N.; Gomes, A.; Oudot, C.; Dias-Pedroso, D.; Rodriguez-Mateos, A.; Vieira, H.L.; Brenner, C. Pure polyphenols applications for cardiac health and disease. Curr. Pharm. Des. 2018, 24, 2137–2156. [Google Scholar] [CrossRef] [Green Version]
- Fuller, M.; Rao, N.Z. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee. Sci. Rep. 2017, 7, 17979. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-Q.; Zou, C.; Gao, Y.; Chen, J.-X.; Wang, F.; Chen, G.-S.; Yin, J.-F. Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas. Food Chem. 2017, 236, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, L.; Liao, C.; Chen, L.; Wang, J.; Zeng, L. Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology. Food Chem. 2018, 269, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Giménez, R.; Rufián-Henares, J.A.; Pastoriza, S. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: Relationship with sensory properties. Food Chem. 2018, 248, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-D.; Liu, E.-H.; Mau, J.-L. Effect of different brewing methods on antioxidant properties of steaming green tea. LWT Food Sci. Technol. 2008, 41, 1616–1623. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M. Acidity and Antioxidant Activity of Cold Brew Coffee. Sci. Rep. 2018, 8, 16030. [Google Scholar] [CrossRef] [Green Version]
- Saklar, S.; Ertas, E.; Ozdemir, I.S.; Karadeniz, B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J. Food Sci. Technol. 2015, 52, 6639–6646. [Google Scholar] [CrossRef] [Green Version]
- Cheung, L.M.; Cheung, P.C.; Ooi, V.E. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Hiramoto, K.; Johkoh, H.; Sako, K.; Kikugawa, K. DNA breaking activity of the carbon-centered radical generated from 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. Commun. 1993, 19, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 1987, 47, 936–942. [Google Scholar] [PubMed]
- Elsorady, M.; Ali, S. Antioxidant activity of roasted and unroasted peanut skin extracts. Int. Food Res. J. 2018, 25, 43–50. [Google Scholar]
- Nam, J.-S.; Jang, H.-L.; Rhee, Y.H. Antioxidant Activities and Phenolic Compounds of Several Tissues of Pawpaw (Asimina triloba [L.] Dunal) Grown in Korea. J. Food Sci. 2017, 82, 1827–1833. [Google Scholar] [CrossRef]
- Chinnapun, D. Antioxidant activity and DNA protection against oxidative damage of bambara groundnut seeds (Vigna subterranea (L.) Verdc.) as affected by processing methods. Int. J. Food Prop. 2018, 21, 1661–1669. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Chang, X.; Guo, X.; Brennan, C.S.; Li, T.; Fu, X.; Liu, R.H. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophae rhamnoides L.) berries as affected by in vitro digestion. Food Funct. 2017, 8, 4229–4240. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Li, Y.; Lu, K.; Yin, R.; Ming, J. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food Funct. 2017, 8, 177–188. [Google Scholar] [CrossRef]
- Qin, P.; Wu, L.; Yao, Y.; Ren, G. Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Res. Int. 2013, 50, 562–567. [Google Scholar] [CrossRef]
- Fabjan, N.; Rode, J.; Kosir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary Buckwheat (Fagopyrum tataricum Gaertn.) as a Source of Dietary Rutin and Quercitrin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef]
- Santos, B.L.; Silva, A.R.; Pitanga, B.P.S.; Sousa, C.S.; Grangeiro, M.S.; Fragomeni, B.O.; Coelho, P.L.C.; Oliveira, M.N.; Menezes-Filho, N.J.; Costa, M.F.D.; et al. Antiproliferaive, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem. 2011, 127, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-D.; Ma, Y.-J.; Parry, J.; Gao, J.-M.; Yu, L.-L.; Wang, M. Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules 2011, 16, 9850–9867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Cho, M.L.; Kim, D.B.; Shin, G.H.; Lee, J.H.; Lee, J.S.; Park, S.-O.; Lee, S.-J.; Shin, H.M.; Lee, O.H. The antioxidant activity and their major antioxidant compounds from Acanthopanax senticosus and A. koreanum. Molecules 2015, 20, 13281–13295. [Google Scholar] [CrossRef] [PubMed]
Roasting Condition | Brew Method | Extraction Yield (%) | Total Polyphenol Content (mg GAE (1)/g Dry Weight) | Total Flavonoid Content (mg RE (2)/g Dry Weight) |
---|---|---|---|---|
NRTB (3) | RTLT (4) | 2.12 | 3.58 ± 0.31 (5) a (6) | 1.86 ± 0.28 a |
HTST | 0.23 | 4.83 ± 0.40 b | 2.59 ± 0.51 a | |
RTB | RTLT | 4.81 | 11.07 ± 0.55 c | 6.03 ± 0.93 c |
HTST | 0.28 | 4.98 ± 0.44 b | 3.47 ± 0.84 b |
(mg/g Dry Weight) | NRTB (1) | RTB | ||
---|---|---|---|---|
RTLT (2) | HTST | RTLT | HTST | |
Phenolic acids | ||||
Gallic acid | 0.04 ± 0.02 (3) a (4) | 0.06 ± 0.03 a | 1.00 ± 0.16 b | 0.44 ± 0.04 b |
Protocatechuic acid | 0.20 ± 0.02 a | 4.00 ± 0.20 c | 5.11 ± 0.10 d | 1.49 ± 0.30 b |
4-Hydroxybenzoic acid | 0.20 ± 0.01 a | 0.52 ± 0.03 c | 0.91 ± 0.04 d | 0.48 ± 0.03 b |
Flavonols | ||||
Rutin | ND (5) | 35.36 ± 1.10 a | 94.09 ± 17.41 b | 40.26 ± 2.94 a |
Quercetin | 1.04 ± 0.48 a | 154.87 ± 8.58 b | 1.18 ± 0.44 a | 1.09 ± 0.40 a |
Flavan-3-ols | ||||
Catechin | 0.14 ± 0.09 a | 0.37 ± 0.08 a | 10.73 ± 2.47 c | 4.08 ± 0.82 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.-y.; Choi, Y.; Hong, K.-H.; Chung, Y.S.; Cho, S.K. Effect of Roasting and Brewing on the Antioxidant and Antiproliferative Activities of Tartary Buckwheat. Foods 2020, 9, 1331. https://doi.org/10.3390/foods9091331
Ryu J-y, Choi Y, Hong K-H, Chung YS, Cho SK. Effect of Roasting and Brewing on the Antioxidant and Antiproliferative Activities of Tartary Buckwheat. Foods. 2020; 9(9):1331. https://doi.org/10.3390/foods9091331
Chicago/Turabian StyleRyu, Ji-yeon, Yoonseong Choi, Kun-Hwa Hong, Yong Suk Chung, and Somi Kim Cho. 2020. "Effect of Roasting and Brewing on the Antioxidant and Antiproliferative Activities of Tartary Buckwheat" Foods 9, no. 9: 1331. https://doi.org/10.3390/foods9091331
APA StyleRyu, J.-y., Choi, Y., Hong, K.-H., Chung, Y. S., & Cho, S. K. (2020). Effect of Roasting and Brewing on the Antioxidant and Antiproliferative Activities of Tartary Buckwheat. Foods, 9(9), 1331. https://doi.org/10.3390/foods9091331