Safety, Quality and Analytical Authentication of ḥalāl Meat Products, with Particular Emphasis on Salami: A Review
Abstract
:1. Ḥalāl Meat Products and Regulations in Europe
2. Ḥalāl Salami Processing
2.1. Ḥalāl Raw Material
2.2. Preservatives
2.3. Sensory Profile
2.4. Biogenic Amines
2.5. Use of Spices and/or Plant Extracts
2.6. Halāl Casing
3. Food Safety in Ḥalāl Assurance
4. Authentication of ḥalāl Meat for Salami and Other Meat Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pew, R.C. “The Changing Global Religious Landscape”, Demographic projections. 2017. Available online: http://assets.pewresearch.org/wp-content/uploads/sites/11/2017/04/07092755/FULL-REPORT-WITH-APPENDIXES-A-AND-B-APRIL-3.pdf (accessed on 15 June 2020).
- Grand, V.R. Halal Food and Beverage Market Size Report by Product (Meat & Alternatives, Milk & Milk Products, Fruits & Vegetables, Grain Products), by Region, and Segment Forecasts (2018). (Grand View Research). 2017. Available online: https://www.grandviewresearch.com/industry-analysis/halal-food-market2018-2025 (accessed on 15 June 2020).
- Pew, R.C. Europe’s Growing Muslim Population. Available online: https://www.pewforum.org/2017/11/29/europes-growing-muslim-population/ (accessed on 3 August 2020).
- Aoun, I.; Tournois, L. Building holistic brands: An exploratory study of Ḥuild cosmetics. J. Islam. Mark. 2015, 6, 109–132. [Google Scholar] [CrossRef]
- Mursyidi, A. The role of chemical analysis in the ḥalāl authentication of food and pharmaceutical products. J. Food Pharm. Sci. 2013, 1, 1–4. [Google Scholar]
- Codex Alimentarius. Joint FAO/WHO Codex Alimentarius Commission: General Guideline for Use of the Term “halal”; Codex Alimentarius: Rome, Italy, 1997. [Google Scholar]
- Jagadeesan, P.; Salem, S. Progress and challenges associated with Halal authentication of consumer packaged goods. J. Sci. Food Agric. 2017, 97, 4672–4678. [Google Scholar]
- Soon, J.M.; Chandia, M.; Regenstein, J.M. Halal integrity in the food supply chain. Br. Food J. 2017, 119, 39–51. [Google Scholar] [CrossRef]
- Riaz, M.N.; Chaudry, M.M. Ḥalāl Food Production, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 41–58. [Google Scholar]
- Ahmad, A.N.; Ungku Zainal Abidin, U.F.; Othman, M.; Abdul Rahman, R. Overview of the halal food control system in Malaysia. Food Control 2018, 90, 352–363. [Google Scholar] [CrossRef]
- Gagaoua, M.; Boudechicha, H.-R. Ethnic meat products of the North African and Mediterranean countries: An overview. J. Ethn. Foods 2018, 5, 83–98. [Google Scholar] [CrossRef]
- Ermis, E. Halal status of enzymes used in food industry. Trends Food Sci. Technol. 2007, 64, 69–73. [Google Scholar] [CrossRef]
- Bohme, K.; Calo-Mata, P.; Barros-Velazquez, J.; Ortea, I. Recent applications of omics-based technologies to main topics in food authentication. Trends Anal. Chem. 2019, 110, 221–232. [Google Scholar] [CrossRef]
- Regulation (EC) n. 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union 2009, L 303, 1–30.
- Fuseini, A.; Wotton, S.B.; Hadley, P.J.; Knowles, T.G. The perception and acceptability of pre-slaughter and post-slaughter stunning for Halal production: The views of UK Islamic scholars and Halal consumers. Meat Sci. 2017, 123, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Aghwan, Z.A.; Bello, A.U.; Abubakar, A.A.; Imlan, J.C.; Sazili, A.Q. Efficient halal bleeding, animal handling, and welfare: A holistic approach for meat quality. Meat Sci. 2016, 121, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Velarde, A.; Rodriguez, P.; Dalmau, A.; Fuentes, C.; Llonch, P.; von Holleben, K.V.; Anil, M.H.; Lambooij, J.B.; Pleiter, H.; Yesildere, T.; et al. Religious slaughter: Evaluation of current practices in selected countries. Meat Sci. 2014, 96, 278–287. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, P.; Vitelli, N.; Cenci Goga, B.; Nucera, D.; Pedonese, F.; Guidi, A.; Armani, A. Meat from cattle slaughtered without stunning sold in the conventional market without appropriate labelling: A case study in Italy. Meat Sci. 2017, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nuthall, K. ECJ Advised non-Stunned Halal and Kosher Meat can be Labelled Organic. Available online: https://www.globalmeatnews.com (accessed on 26 September 2018).
- Regulation (EC) n. 178/2002 of the European Parliament and of the Council of 28 January 2002 on laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Communities 2002, L 31, 1–24.
- Regulation (EC) n. 852/2004 of the European Parliament and of the Council of 29 April 2004 on the hygiene of foodstuffs. Off. J. Eur. Union 2004, L 139, 1–54.
- Regulation (EC) n. 853/2004 of the European Parliament and of the Council of 29 April 2004 on laying down specific hygiene rules for on the hygiene of foodstuffs. Off. J. Eur. Union 2004, L 139, 1–54.
- Regulation (EC) n. 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Off. J. Eur. Union 2004, L 338, 4–17.
- Regulation (EC) n. 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) n. 608/2004. Off. J. Eur. Union 2011, L 304, 18–63.
- Demeyer, D.; Raemaekers, M.; Rizzo, A.; Holck, A.; De Smedt, A.; ten Brink, B.; Hagen, B.; Montel, C.; Zanardi, E.; Murbrekk, E.; et al. Control of bioflavour and safety in fermented sausages: First results of a European project. Food Res. Int. 2000, 33, 171–180. [Google Scholar] [CrossRef]
- Tieko Nassu, R.; Guaraldo Goncalves, L.; da Silva, M.A.A.P.; Beserra, F.J. Oxidative stability of fermented goat meat sausages with different levels of natural antioxidant. Meat Sci. 2003, 63, 43–49. [Google Scholar] [CrossRef]
- Gregory, N.G.; von Wenzlawonzlawowicz, M.; Alam, R.M.; Anil, H.M.; Yesildere, T.; Silva-Fletcher, A. False aneurysms in carotid arteries of cattle and water buffalo during shechita and ḥalāl slaughter. Meat Sci. 2008, 79, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Linares, M.B.; Bórnez, R.; Vergara, H. Effect of different stunning systems on meat quality of light lamb. Meat Sci. 2007, 76, 675–681. [Google Scholar] [CrossRef]
- Danso, A.S.; Richardson, R.I.; Khalid, R. Assessment of the meat quality of lamb M. longissimus thoracis et lumborum and M. triceps brachii following three different Ḥalāl slaughter procedures. Meat Sci. 2017, 127, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.M.; Abdelgadir, M.A.; Sulieman, A.M.E. Impact of Halal and Non-halal Slaughtering on the Microbiological Characteristics of Broiler Chicken Meat and Sausages. Food Public Health 2014, 4, 223–228. [Google Scholar] [CrossRef]
- Matos, R.A.; Menezes, C.M.; Ramos, E.M.; Ramos, A.L.S.; Gomide, L.A.M. Effects of fermentation types in final quality of mutton cooked fermented sausages. Bol. Ceppa 2007, 25, 225–234. [Google Scholar]
- Paulos, K.; Rodrigues, S.; Oliveira, A.F.; Leite, A.; Pereira, E.; Teixeira, A. Sensory characterization and consumer preference mapping of fresh sausages manufactured with goat and sheep meat. J. Food Sci. 2015, 80, S1568–S1573. [Google Scholar] [CrossRef] [Green Version]
- Cunha de Andrade, J.; Silveira Nalério, E.; Giongo, C.; Dutra de Barcellos, M.; Ares, G.; Deliza, R. Consumer sensory and hedonic perception of sheep meat coppa under blind and informed conditions. Meat Sci. 2018, 137, 201–210. [Google Scholar] [CrossRef]
- Mushi, D.E.; Thomassen, M.S.; Kifaro, G.C.; Eik, L.O. Fatty acid composition of minced meat, longissimus muscle and omental fat from Small East African goats finished on different levels of concentrate supplementation. Meat Sci. 2010, 86, 337–342. [Google Scholar] [CrossRef]
- Martuscelli, M.; Fantini, A.; Bucci, I.; Mastrocola, D. Halal dry fermented goat meat and sheep sausages: Market research and economic prospects. Ind. Aliment. 2019, 58, 11–19. [Google Scholar]
- Aktas, N.; Genccelep, H. Effect of starch type and its modifications on physicochemical properties of bologna-type sausage produced with sheep tail fat. Meat Sci. 2006, 74, 404–408. [Google Scholar] [CrossRef]
- Bakker, W.A.M.; Houben, J.H.; Koolmees, P.A.; Bindrich, U.; Sprehe, L. Effect of initial mild curing, with additives, of hog and sheep sausage casings on their microbial quality and mechanical properties after storage at different temperatures. Meat Sci. 1999, 51, 163–174. [Google Scholar] [CrossRef]
- Ahmad, S.; Srivastava, P.K. Quality and shelf life evaluation of fermented sausages of buffalo meat with different levels of heart and fat. Meat Sci. 2007, 75, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Changwei, M.; Song, H.; Li, H.; Wang, Z.; Xiao, S. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices. Meat Sci. 2011, 88, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Galgano, F.; Favati, F.; Schirone, M.; Martuscelli, M.; Crudele, M.A. Influence of indigenous starter cultures on the free fatty acids content during ripening in artisanal sausages produced in the Basilicata region. Food Technol. Biotechnol. 2003, 41, 253–258. [Google Scholar]
- Parente, E.; Martuscelli, M.; Gardini, F.; Grieco, S.; Crudele, M.A.; Suzzi, G. Evolution of microbial population and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 2001, 90, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Kurt, Ş.; Ceylan, H.G. Effects of olive leaf extract on the oxidation stability and microbiological quality of dry fermented sausage (sucuk). Carpathian J. Food Sci. Technol. 2017, 9, 178–188. [Google Scholar]
- Sezer, Y.; Bozkurt, H. Use of novel casing in sucuk production: Antimicrobials incorporated into multilayer plastic film. Acta Aliment. 2019, 48, 1–8. [Google Scholar] [CrossRef]
- Çiçek, Ü.; Köse, T. Physical and biochemical quality parameters of fermented beef sausages: Bez Sucuk. Acta Aliment. Hung 2016, 45, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Çiçek, Ü.; Polat, N. Investigation of physicochemical and sensorial quality of a type of traditional meat product: Bez sucuk. LWT-Food Sci. Technol. 2016, 65, 145–151. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Martínez, S.; Franco, I.; Carballo, J. Biogenic amine content during the manufacture of dry-cured lac ón, a Spanish traditional meat product: Effect of some additives. Meat Sci. 2007, 77, 287–293. [Google Scholar] [CrossRef]
- Zakaria, M.Z.; Nordin, N.; Malik, A.M.A.; Elias, S.J.; Shahuddin, A.Z. Fuzzy expert systems (fes) for halal food additive. Indones J. Electr. Eng. Comput. Sci. 2019, 13, 1073–1078. [Google Scholar] [CrossRef]
- Karahalil, E. Principles of halal-compliant fermentations: Microbial alternatives for the halal food industry. Trends Food Sci. Technol. 2020, 98, 1–9. [Google Scholar] [CrossRef]
- Eduardo dos Santos, C.; Braun, C.L.K.; Fagundes, M.B.; Gularte, M.A.; Wagner, R.; Padilha da Silva, W.; Fiorentini, Â.M. Development of fermented sausage produced with mutton and native starter cultures. Lebenson Wiss Technol. 2018, 95, 23–31. [Google Scholar] [CrossRef]
- Kurtovic, I.; Marshall, S.N.; Cleaver, H.L.; Miller, M.R. The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. Food Chem. 2016, 199, 323–329. [Google Scholar] [CrossRef]
- Domínguez, R.; Agregán, R.; Lorenzo, J.M. Role of commercial starter cultures on microbiological, physicochemical characteristics, volatile compounds and sensory properties of dry-cured foal sausage. Asian Pac. J. Trop. Dis. 2016, 6, 396–403. [Google Scholar] [CrossRef]
- Kargozari, M.; Moini, S.; Basti, A.A.; Emam-Djomeh, Z.; Ghasemlou, M.; Revilla, I.; Gandomi, M.H.; Carbonell-Barrachina, A.A.; Szumny, A. Development of Turkish dry-fermented sausages (sucuk) reformulated with camel meat and hump fat and evaluation of physicochemical, textural, fatty acid and volatile compound profiles during ripening. LWT-Food Sci. Technol. 2014, 59, 849–858. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, R.; Shi, L.; Zhang, F.; Chang, J.; Chu, X. Effects of spices on the formation of biogenic amines during the fermentation of dry fermented mutton sausages. Food Chem. 2020, 321, 126723. [Google Scholar] [CrossRef]
- LaTorre-Moratalla, M.L.; Bover-Cid, S.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Control of biogenic amines in fermented sausageg: Role of starter cultures. Front. Microbiol. 2012, 3, 169. [Google Scholar] [CrossRef] [Green Version]
- Tasic, T.; Ikonic, P.; Jokanovic, M.; Mandic, A.; Tomovic, V.; Sojic, B.; Skaljac, S. Content of Vasoactive Amines in Sremski Kulen and Sremska Kobasica Traditional Dry Fermented Sausages From Vojvodina. Procedia Food Sci. 2015, 5, 282–284. [Google Scholar] [CrossRef] [Green Version]
- Ekici, K.; Omer, A.K. The determination of some biogenic amines in Turkish fermented sausages consumed in Van. Toxicol. Rep. 2018, 5, 639–643. [Google Scholar] [CrossRef]
- Çiçek, Ü.; Tokatli, K. Biogenic Amine Formation in “Bez Sucuk,” a Type of Turkish Traditional Fermented Sausage Produced with Different Meat: Fat Ratios. Korean J. Food Sci. Anim. Resour. 2018, 38, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ding, B.; Zhang, H.; Kong, B.; Xiong, Y.L. Textural and sensorial quality protection in frozen dumplings through the inhibition of lipid and protein oxidation with clove and rosemary extracts. J. Sci. Food Agric. 2019, 99, 4739–4747. [Google Scholar] [CrossRef] [PubMed]
- Serio, A.; Chiarini, M.; Tettamanti, E.; Paparella, A. Electronic Paramagnetic Resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett. Appl. Microbiol. 2010, 51, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Gan, R.Y.; Shah, N.P.; Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 2018, 92, 437–443. [Google Scholar] [CrossRef]
- Erdemir, E.; Aksu, M.I. Changes in the composition of free amino acid during production of pastirma cured with different levels of sodium nitrite. J. Food Process. Preserv. 2017, 41. [Google Scholar] [CrossRef]
- Abd-Elghany, S.M.; El-Makhzangy, A.M.; El-Shawaf, A.-G.M.; El-Mougy, R.M.; Sallam, K.I. Improving safety and quality of Egyptian pastrami through alteration of its microbial, community. LWT-Food Sci. Technol. 2020, 118, 108872. [Google Scholar] [CrossRef]
- Suleman, R.; Whang, Z.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D. Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat; current challenges and future prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yim, D.G.; Lee, D.Y.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Jang, A.; Park, T.S.; Jin, S.K.; Hur, S.J. Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci. Technol. 2020, 99, 568–579. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Adzaly, N.Z.; Jackson, A.; Villalobos-Carvajal, R.; Kang, I.; Almenar, E. Development of a novel sausage casing. J. Food Eng. 2015, 152, 24–31. [Google Scholar] [CrossRef]
- Marcos, B.; Gou, P.; Arnau, J.; Guàrdia, M.D.; Comaposada, J. Co-extruded alginate as an alternative to collagen casings in the production of dry-fermented sausages: Impact of coating composition. Meat Sci. 2020, 169, 108184. [Google Scholar] [CrossRef] [PubMed]
- Soysal, Ç.; Bozkurt, H.; Dirican, E.; Güçlü, M.; Bozhüyük, E.D.; Uslu, A.E.; Kaya, S. Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control 2015, 54, 294–299. [Google Scholar] [CrossRef]
- Cerrillo, J.L.; Palomares, A.E.; Rey, F. Silver exchanged zeolites as bactericidal additives in polymeric materials. Microporous Mesoporous Mater. 2020, 305, 110367. [Google Scholar] [CrossRef]
- Martuscelli, M.; Lupieri, L.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Prediction of the salt content from water activity analysis in dry-cured ham. J. Food Eng. 2017, 200, 29–39. [Google Scholar] [CrossRef]
- Grandin, T. Auditing animal welfare and making practical improvements in beef-, pork- and sheep-slaughter plants. Anim. Welf. 2012, 21, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Afifi, M.; Halim, A.; Mahyeddin, M.; Salleh, M. The possibility of uniformity on ḥalāl standards in Organization of Islamic Countries (OIC) country. World Appl. Sci. J. 2012, 17, 6–10. [Google Scholar]
- Abd Rahman, A.; Barau Singhry, H.; Hizam Hanafiah, M.; Abdul, M. Influence of perceived benefits and traceability system on the readiness for Ḥalāl Assurance System implementation among food manufacturers. Food Control 2017, 73, 1318–1326. [Google Scholar] [CrossRef]
- Demirci, N.M.; Soon, J.M.; Wallace, C.A. Positioning food safety in Ḥalāl Assurance. Food Control 2016, 70, 257–270. [Google Scholar] [CrossRef]
- Nasir, K.M.; Pereira, A.A. Defensive dining: Notes on the public dining experiences in Singapore. Contemp. Islam 2008, 2, 61–73. [Google Scholar] [CrossRef]
- Ahmad, A.N.; Abdul Rahman, R.; Othman, M.; Ungku Zainal Abidin, U.F. Critical success factors affecting the implementation of ḥalāl food management systems: Perspective of ḥalāl executives, consultants and auditor. Food Control 2017, 74, 70–78. [Google Scholar] [CrossRef]
- Khan Khattak, J.Z.; Mir, A.; Anwar, Z.; Mustatab Wahedi, H.; Abbas, G.; Khan Kattak, H.Z.; Ismatullah, H. Concept oh Ḥalāl food and biotechnology. Adv. J. Food Sci. Technol. 2011, 3, 385–389. [Google Scholar]
- Ballin, N.Z. Authentication of meat and meat products. Meat Sci. 2010, 86, 577–587. [Google Scholar] [CrossRef]
- Thomson Reuters. State of the Global Islamic Economy 2014-2015 Report; Thomson Reuters: Toronto, YYZ, Canada, 2015. [Google Scholar]
- Zhao, J.; Chen, A.; You, X.; Xu, Z.; Zhao, Y.; He, W.; Zhao, L.; Yang, S. A panel of SNP markers for meat traceability of Halal beef in the Chinese market. Food Control 2018, 87, 94–99. [Google Scholar] [CrossRef]
- Che Man, Y.B.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and chocolate products using fourier transform infrared spectroscopy. Food Chem. 2005, 90, 815–819. [Google Scholar] [CrossRef]
- Syahariza, Z.A.; Che Man, Y.B.; Selamat, J.; Bakar, J. Detection of lard adulteration in cake formulation by Fourier Transform Infrared (FTIR) Spectroscopy. Food Chem. 2005, 92, 365–371. [Google Scholar] [CrossRef]
- Che Man, Y.B.; Aida, A.; Raha, A.; Son, R. Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for ḥalāl verification. Food Control 2007, 18, 885–889. [Google Scholar] [CrossRef]
- Murugaiah, C.; Mohd Noor, Z.; Mastakim, M.; Bilung, L.M.; Selamat, J.; Radu, S. Meat species identification and Ḥalāl authentication analysis using mitochondrial DNA. Meat Sci. 2009, 83, 57–61. [Google Scholar] [CrossRef]
- Nurjuliana, M.; Che Man, Y.B.; Mat Hashim, D.; Mohamed, A.K. Rapid identification of pork for ḥalāl authentication using the electric nose and gas chromatography mass spectrometer with headspace analyser. Meat Sci. 2011, 88, 638–644. [Google Scholar] [CrossRef]
- Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. LC-QTOF-MS identification of rabbit-specific peptides for authenticating the species composition of meat products. Food Chem. 2020, 329, 127185. [Google Scholar] [CrossRef]
- Köppel, R.; van Velsen, F.; Ganeshan, A.; Pietsch, K.; Weber, S.; Graf, C.; Murmann, P.; Hochegger, R.; Licina, A. Multiplex real-time PCR for the detection and quantification of DNA from chamois, roe, deer, pork and beef. Eur. Food Res. Technol. 2020, 246, 1007–1015. [Google Scholar] [CrossRef]
- Mei, M.; Chen, R.; Gao, X.; Cao, Y.; Weng, W.; Duan, Y.; Tan, X.; Liu, Z. Establishment and application of a 10-plex liquid bead array for the simultaneous rapid detection of animal species. J. Sci. Food Agric. 2020, 100, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolny, S.; Blaschitz, M.; Weinmaier, T.; Pechatschek, J.; Cichna-Markl, M.; Indra, A.; Hufnagl, P.; Hochegger, R. Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food. Food Chem. 2019, 272, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-J.; Zhou, G.-Y.; Ren, H.-W.; Xu, Y.; Yang, Y.; Guo, L.-H.; Liu, N. Peptide biomarkers identified by LC–MS in processed meats of five animal species. J. Food Compos. Anal. 2018, 73, 47–54. [Google Scholar] [CrossRef]
- Ali, M.-E.; Ahamad, M.N.U.; Asing, M.A.M.H.; Sultana, S. Multiplex polymerase chain reaction-restriction fragment length polymorphism assay discriminates of rabbit, rat and squirrel meat in frankfurter products. Food Control 2018, 84, 148–158. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B. Analysis of pig derivatives for ḥalāl authentication studies. Food Rev. Int. 2012, 28, 97–112. [Google Scholar] [CrossRef]
- Nakyinsige, K.; Man, Y.B.; Sazili, A.Q. Ḥalāl authenticity issues in meat and meat products. Meat Sci. 2012, 91, 207–214. [Google Scholar] [CrossRef]
- Cammà, C.; Domenico, M.D.; Monaco, F. Development and validation of fast Real-Time PCR assays for species identification in raw and cooked meat mixtures. Food Control 2012, 23, 400–404. [Google Scholar] [CrossRef]
- Lo, Y.-T.; Shaw, P.-C. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 2018, 2401, 767–774. [Google Scholar] [CrossRef]
- Doi, H.; Watanabe, E.; Shibata, H.; Tanabe, S. A reliable enzyme-linked immunosorbent assay for the determination of bovine and porcine gelatin in processed foods. J. Agric. Food Chem. 2009, 57, 1721–1726. [Google Scholar] [CrossRef]
- Montowska, M.; Pospiech, E. Species-specific expression of various proteins in meat tissue: Protemic analysis of raw and cooked meat and meat products made from beef, pork ans selected poultry species. Food Chem. 2013, 136, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Sarah, S.A.; Faradalila, W.N.; Salwani, M.S.; Amin, I.; Karsani, S.A.; Sazili, A.Q. LC-QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination. Food Chem. 2016, 199, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Compagnone, D.; Fusella, G.C.; Del Carlo, M.; Pittia, P.; Martinelli, E.; Tortora, L.; Paolesse, R.; Di Natale, C. Gold nanoparticles-peptide based gas sensor arrays for the detection of food aromas. Biosens. Bioelectron. 2013, 42, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Montowska, M.; Rao, W.; Alexander, M.R.; Tucker, G.A.; Barrett, D.A. Tryptic digestion coupled with ambient desorption electrospray ionization and liquid extraction surface analysis mass spectrometry enabling identification of skeletal muscle proteins in mixtures and distinguishing between beef, pork, horse, chicken, and Turkey meat. Anal. Chem. 2014, 86, 4479–4487. [Google Scholar]
- Von Bargen, C.; Dojahn, J.; Waidelich, D.; Humpf, H.U.; Brockmeyer, J. New sensitive high-performance liquid chromatography–tandem mass spectrometry method for the detection of horse and pork in ḥalāl beef. J. Agric. Food Chem. 2013, 61, 11986–11994. [Google Scholar] [CrossRef]
- Von Bargen, C.; Brockmeyer, J.; Humpf, H.U. Meat authentication: A new HPLC–MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. J. Agric. Food Chem. 2014, 62, 9428–9435. [Google Scholar] [CrossRef]
- Kurniawati, E.; Rohman, A.; Triyana, K. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Sci. 2014, 96, 94–98. [Google Scholar] [CrossRef]
- Xu, L.; Cai, C.B.; Cui, H.F.; Ye, Z.H.; Yu, X.P. Rapid discrimination of pork in Ḥalal and non-Ḥalal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat Sci. 2012, 92, 506–510. [Google Scholar] [CrossRef]
- Rohman, A.; Sismindari; Erwanto, Y.; Che Man, Y.B. Analysis of pork adulteration on beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 2011, 88, 91–95. [Google Scholar] [CrossRef]
- Leng, T.; Li, F.; Xiong, L.; Xiong, Q.; Zhu, M.; Chen, Y. Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 2020, 113, 107203. [Google Scholar] [CrossRef]
- Mabood, F.; Boqué, R.; Alkindi, A.Y.; Al-Harrasi, A.; Al Amri, I.S.; Boukra, S.; Jabeen, F.; Hussain, J.; Abbas, G.; Naureen, Z.; et al. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Sci. 2020, 163, 108084. [Google Scholar] [CrossRef] [PubMed]
- Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Rogberg-Munoz, A.; Wei, S.; Ripoli, M.V.; Guo, B.L.; Carino, M.H.; Lirón, J.P.; Prando, A.J.; Vaca, R.J.; Peral-García, P.; Wei, Y.M.; et al. Effectiveness of a 95 SNP panel for the screening of breed label fraud in the Chinese meat market. Meat Sci. 2016, 111, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Demirhan, Y.; Ulca, P.; Senyuva, H.Z. Detection of porcine DNA in gelatine and gelatine-containing processed food products-ḥalāl/Kosher authentication. Meat Sci. 2012, 90, 686–689. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliviera, M.B.P.P.; Mafra, I. A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products. Meat Sci. 2013, 94, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Ulca, P.; Balta, H.; Çağın, I.; Senyuva, H.Z. Meat species identification and Ḥalāl authentication using PCR analysis of raw and cooked traditional Turkish food. Meat Sci. 2013, 94, 280–284. [Google Scholar] [CrossRef]
- Ali, M.E.; Hashim, U.; Mustafa, S.; Che Man, Y.B. Swine-specific PCR-RFLP assay targeting mitochondrial cytochrome B gene for semiquantitative detection of pork in commercial meat products. Food Anal. Methods 2012, 5, 613–623. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, I.; Lee, S.Y.; Hong, Y.; Kim, H.Y. Quantitative detection of pork in commercial meat products by TaqMan ® real-time PCR assay targeting the mitochondrial D-loop region. Food Chem. 2016, 210, 102–106. [Google Scholar] [CrossRef]
- Cai, Y.; He, Y.; Lv, R.; Chen, H.; Wang, Q.; Pan, L. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLoS ONE 2017, 12, e0181949. [Google Scholar] [CrossRef] [Green Version]
- Cottenet, G.; Blancpain, C.; Chuah, P.F.; Cavin, C. Evaluation and application of a next generation sequencing approach for meat species identification. Food Control 2020, 110, 107003. [Google Scholar] [CrossRef]
- Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.; Rahman, I.A.; Santos, J.H.; Ahmed, M.U. Meat species identification using DNA-redox electrostatic interactions and non-specific adsorption on graphene biochips. Food Control 2016, 61, 70–78. [Google Scholar] [CrossRef]
- Amaral, J.S.; Santos, C.G.; Melo, V.S.; Oliveira, M.B.P.P.; Mafra, I. Authentication of a traditional game meat sausage (Alheira) by species-specific PCR assays to detect hare, rabbit, red deer, pork and cow meats. Food Res. Int. 2014, 60, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, M.J.; Hong, Y.; Kim, H.Y. Development of a rapid on-site detection method for pork in processed meat products using real-time loop-mediated isothermal amplification. Food Control 2016, 66, 53–61. [Google Scholar] [CrossRef]
- Roy, S.; Wei, S.X.; Ying, J.L.Z.; Safavieh, M.; Ahmed, M.U. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes. Biosens. Bioelectron. 2016, 86, 346–352. [Google Scholar] [CrossRef]
- Safavieh, M.; Kanakasabapathy, M.K.; Tarlan, F.; Ahmed, M.U.; Zourob, M.U.; Asghar, W.; Shafiee, H. Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater. Sci. Eng. 2016, 2, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Lavelli, V. High-warranty traceability system in the poultry meat supply chain: A medium-sized enterprise case study. Food Control 2013, 33, 148–156. [Google Scholar] [CrossRef]
- Arana, A.; Soret, B.; Lasa, I.; Alfonso, L. Meat traceability using DNA markers: Application to the beef industry. Meat Sci. 2002, 61, 367–373. [Google Scholar] [CrossRef]
- Goffaux, F.; China, B.; Dams, L.; Clinquart, A.; Daube, G. Development of a genetic traceability test in pig based on single nucleotide polymorphism detection. Forensic Sci. Int. 2005, 151, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Fazdillah, N.A.; Rohman, A.; Arief Salleh, R.; Amin, I.; Shuhaimi, M.; Farahwahida, M.Y.; Rashidi, O.; Mohammad Aizat, J.; Khatib, A. Authentication of butter from lard adultertationusing high-resolution of nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Int. J. Food Prop. 2017, 20, 2147–2156. [Google Scholar] [CrossRef] [Green Version]
- Stefano, A. On “Valutazione Dell’autenticità dei Prodotti Carnei Halal: Uso di Metodi Rapidi e Innovativi nei Processi di Trasformazione dei Salumi”. Bachelor’s Thesis, University of the Study of Teramo, Teramo TE, Italy, 2012. [Google Scholar]
- Long, K.D.; Yu, H.; Cunningham, B.T. Smartphone instrument for portable enzyme-linked immunosorbent assay. Biomed. Opt. Express 2014, 5, 3792–3806. [Google Scholar] [CrossRef] [Green Version]
- Orduna, R.A.; Ghosh, D.; Husby, E.; Yang, C.T.; Beaudry, F. Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Husseini de Araújo, S. Assembling halal meat and poultry production in Brazil: Agents, practices, power and sites. Geoforum 2019, 100, 220–228. [Google Scholar] [CrossRef]
- Wibowo, M.W.; Ahmad, F.S. Non-Muslim Consumers’ Halal Food Product Acceptance Model. Procedia Econ. Financ. 2016, 37, 276–283. [Google Scholar] [CrossRef] [Green Version]
Subject | Law | Regulation Issue |
---|---|---|
Food safety | Regulation (EC) n. 178/2002 [20] | on laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety; |
Food hygiene | Regulation (EC) n. 852/2004 [21] | on the hygiene of foodstuffs; |
Regulation (EC) n. 853/2004 [22] | laying down specific hygiene rules for food of animal origin; | |
Food contact materials | Regulation (EC) n. 1935/2004 [23] | on materials and articles intended to come into contact with food; |
Animal slaughter (including ritual one) | Regulation (EC) n. 1099/2009 [14] | on the protection of animals at the time of killing; |
Label statement | Regulation (EC) n. 1169/2011 [24] | on the provision of food information to consumers; |
Methods | Aim | References |
---|---|---|
Immunoassay (ELISA) | Porcine gelatin determination in processed foods | [97] |
Isoelectric focusing (IEF) | Meat authentication in raw and cooked meat products | [98] |
Chromatography and mass spectrometry (MS) | Meat authentication | [13,79] |
Meat species determination | [99] | |
Electric nose (EN) | Pork fat detection | [100] |
Pork meat detection | [66] | |
Mass spectrometry soft ionization | Identification of muscle proteins of different species | [101] |
Horse and pork meat detection | [102] | |
Horse and pork meat detection in highly processed food | [103] | |
Fourier transform infrared spectroscopy (FTIR); | Lard detection | [104] |
Pork detection in sausages | [105,106] | |
Near-infrared spectroscopy (NIR; FT-NIR) | Pork derivatives detection | [107,108] |
Adulteration of meat | [109] |
Methods | Aim | References |
---|---|---|
Simple sequence repeat (SSR) and Single nucleotide polymorphism (SNP) | Meat traceability Meat fraud | [81] [110] |
Polymerase chain reaction (PCR) | Pork derivatives detection Pork derivatives detection in gelatin Meat species identification Authenticity determination | [11,84] [111] [85,112,113] [94] |
PCR- Restriction Fragment length polymorphism (PCR-RFLP) | Pork meat detection in meat products Rabbit, rat and squirrel meat detection in frankfurter | [114] [92] |
Real Time PCR | Horse and donkey meat detection Species identification of meat Pork meat detection Pork meat detection and quantification | [115,116] |
Next Generation Sequencing | Identification of 46 different meat species in pure samples, in spiked samples and in ground meat samples | [117] |
Aptamers | Application in analysis of foods | [118] |
Isothermal amplification | Meat species identification Detection of meat of different species Review on Isothermal amplification techniques Rapid on-site detection of meat pork Nucleic acid detection | [119] [120] [121] [122] [123,124] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martuscelli, M.; Serio, A.; Capezio, O.; Mastrocola, D. Safety, Quality and Analytical Authentication of ḥalāl Meat Products, with Particular Emphasis on Salami: A Review. Foods 2020, 9, 1111. https://doi.org/10.3390/foods9081111
Martuscelli M, Serio A, Capezio O, Mastrocola D. Safety, Quality and Analytical Authentication of ḥalāl Meat Products, with Particular Emphasis on Salami: A Review. Foods. 2020; 9(8):1111. https://doi.org/10.3390/foods9081111
Chicago/Turabian StyleMartuscelli, Maria, Annalisa Serio, Oriana Capezio, and Dino Mastrocola. 2020. "Safety, Quality and Analytical Authentication of ḥalāl Meat Products, with Particular Emphasis on Salami: A Review" Foods 9, no. 8: 1111. https://doi.org/10.3390/foods9081111