Coumarins in Food and Methods of Their Determination
Abstract
:1. Introduction
2. Regulation of Coumarin in Food
Health-Based Guidance Value
3. Food Sources of Coumarins
3.1. Natural Sources of Coumarin
Coumarin and its Derivatives | Natural Sources of Coumarin | Lierature |
---|---|---|
23 coumarin compounds | The roots of Angelica dahurica | [37] |
9 coumarins (clauexcavatins A and B, citrusarin A, clausenidin, clausenidin methyl ether dentatin, nordentatin, clausarin and xanthyletin) | The roots of Clausena excavate | [38] |
6 coumarins (osthol, oxypeucedanin, xanthotoxin, isoimperatorin, oxypeucedanin hydrate and meranzine hydrate) | The roots of Ferulago subvelutina | [39] |
4 coumarins (esculetin, scopoletin, fraxetin and scopolin) | The flowers of Bombax ceiba L. (Family: Bombacaceae) | [40] |
5 coumarins (umbelliferone, scopoletin, repensin B, daphnoretin and daphnorin) | The flowers of Trifolium repens | [41] |
12 coumarins (skimin, scopolin, scopoletin, umbelliferone, 6,7-dimethoxycoumarin, coumarin, psoralen, xanthotoxin, 5,7-dimethoxycoumarin, pimpinellin, imperatorin and osthole) | The leaves of Bamboo plants | [42] |
9 terpenylated coumarins | The leaves of Zanthoxylum schinifolium | [43] |
Coumarin glycosides and aglycone | The leaves of Matricaria chamomilla L | [36] |
6 coumarins | The leaves of Calophyllum inophyllum | [44] |
Coumarin, o-coumaric acid glucoside | The leaves of Melittis melissophyllum (bastard balm) | [18] |
Sesquiterpene coumarins | The seeds of Ferula sinkiangensis | [45] |
Mammea coumarins | The leaves of the tropical tree Calophyllum brasiliense | [46] |
19 coumarins | The leaves and stems of Murraya paniculata (L.) Jack. | [47] |
7 new terpenylated coumarins and other coumarins | The root bark of Ailanthus altissima (Mill.) Swingle | [48] |
6 compounds, including coumarins and furanocoumarins (5-geranyloxy-7-methoxycoumarin, limettin, isopimpinellin, bergaptene, bergamottin and oxypeucedanin hydrate) | The peel of citrus grown in Colombia (Tahitian and Key lime) | [49] |
2 coumarins (isomeranzin and osthole) | A sweet orange (C. sinensis) | [50] |
Coumarins and furanocoumarins | 6 citrus peel extracts (sweet orange, lemon, grapefruit, bergamot, pummelo, and clementine) | [35] |
3.2. Coumarin in Foodstuffs
Sample | Detected Coumarin Level | Literature |
---|---|---|
Japanese green tea | 0.26 to 0.88 µg/g dried tea | [4] |
Herbal tea samples (Melilotus Officinalis) | Coumarin: 3.7 to 3.9 mg/L | [58] |
4-hydroxycoumarin: 111.1 µg/Lto 201.2 µg/L | ||
Dicoumarol: 80.1 to 138.8 µg/L | ||
Propolis and propolis products | Umbelliferone: 0.05 to 1.2 µg/g | [57] |
4-methylumbelliferone: 0.05 to 1.7 µg/g | ||
Scoparone: 0.45 to 7.5 µg/g | ||
24 vanilla extract products | Negative for coumarin | [59] |
Lavender and lavandin honey | Lavandin honey(Lavandula angustifolia x latifolia): 100.35 µg/kg | [60] |
Lavander honey (Lavandula latifolia): 142.14 µg/kg | ||
Orange (peel) | Coumarins: 0.77 mg/kg | [35] |
Furanocumarins: in traces | ||
Clementine (peel) | Coumarins: 2.15 mg/kg | |
Furanocumarins: 3.66 mg/kg | ||
Lemon (peel) | Coumarins: 34.25 mg/kg | |
Furanocumarins: 85.43 mg/kg | ||
Grapefruit (peel) | Coumarins: 137.19 mg/kg | |
Furanocumarins: 267.48 mg/kg | ||
Bergamot (peel) | Coumarins: 131.06 mg/kg | |
Furanocumarins: 648.64 mg/kg | ||
Pummelo (peel) | Coumarins: 83.28 mg/kg | |
Furanocumarins: 216.05 mg/kg | ||
Olive oil | Umbelliferone:6.60 ± 0.32 µg/mL | [54] |
7-isopentenyloxycoumarin:1.82 ± 0.24 µg/mL | ||
Auraptene: 1.82 ± 0.12µg/mL | ||
Soy oil | Umbelliferone: 21.00 ± 0.64 µg/mL | |
7-isopentenyloxycoumarin: 12.92 ± 0.44 µg/mL | ||
Auraptene: 14.82 ± 0.55 µg/mL | ||
Peanuts oil | Umbelliferone: 6.63 ± 0.21 µg/mL | |
7-isopentenyloxycoumarin: 1.20 ± 0.08 µg/mL | ||
Auraptene: 0.98 ± 0.04 µg/mL | ||
Corn oil | Umbelliferone: 8.27 ± 0.23 µg/mL | |
7-isopentenyloxycoumarin: 2.73 ± 0.09µg/mL | ||
Auraptene: 0.06 ± 0.01µg/mL |
3.3. Cinnamon
3.4. Coumarin in Cinnamon-Containing Foods
Analyzed Cinnamon-Containing Sample | Detected Coumarin Level | Literature |
---|---|---|
Cassia cinnamon (powder) | 1740 to 7670 mg/kg | [22] |
Cassia cinnamon (sticks) | <limit of detection to 9900 mg/kg | |
Cylon cinnamon (powder) | <limit of detection to 297 mg/kg | |
Cylon cinnamon (sticks) | <limit of detection and 486 mg/kg | |
Cinnamoum verum bark samples | In authentic samples: 12.3 to 143 mg/kg | [65] |
In market samples: 3462 mg/kg | ||
C. verum, authentic sample | 0.017 g/kg | [5] |
C. verum barks/U.S., commercial source | 0.013 g/kg | |
C. verum barks/Sri Lanka, commercial source | 0.007 to 0.9 g/kg | |
C. burmannii, authentic sample | 2.14 g/kg | |
C. burmannii/U.S., commercial source | 3.99 to 9.30 g/kg | |
C. loureiroi, authentic sample | 6.97 g/kg | |
C. loureiroi barks/Vietnam, commercial source | 1.06 g/kg | |
C. cassia, authentic sample | 0.310 g/kg | |
C. cassia barks/U.S., commercial source | 0.085 to 0.262 g/kg | |
Cinnamomum spp. Barks/U.S., commercial source | 5.79 g/kg | |
Cinnamomum spp. Barks/U.S., commercial source | 21.0 to 41.7 g/kg | |
Cinnamomum spp. Powder/U.S., commercial source | 2.06 to 6.19 g/kg | |
Cinnamon and apple sauce/local store | 5.0 mg/kg | |
Cinnamon pecan/local store | 16.0 mg/kg | |
Ice cream topper/local store | 3.0 mg/kg | |
Breakfast cereals/local store | 4.0 to 44.0 mg/kg | |
Instant oatmeal/local store | 56.0 mg/kg | |
Bread/local store | 20 to 29 mg/kg | |
Muffin and quick bread mix/local store | 20.0 mg/kg | |
Bun/local store | 3.0 mg/kg | |
Roll/local store | 24 mg/kg | |
Cracker/local store | 9 mg/kg | |
Swirl/local store | 6.0 mg/kg | |
Granola bar/local store | 38.0 mg/kg | |
Toaster pastries/local store | 3.0 mg/kg | |
Graham snack stick/local store | 13.0 mg/kg | |
Rice snack/local store | 3.0 mg/kg | |
Dietary supplements/commercial store | 2450 to 3610 mg/kg | |
Traditional and seasonal bakery | 3.8 to 35 mg/kg | [64] |
Breakfast cereals | 0.9 to 10.0 mg/kg | |
Fine bakery ware | 0.4 to 53.4 mg/kg | |
Desserts | 1.0 to 5.1 mg/kg | |
Crisp bread | 16.0 to 23.0 mg/kg | |
Tea with cinnamon | 0 to 12 mg/kg | |
Cassia Cinnamon | 3612 mg/kg | [19] |
Cinnamon (category not labelled) | 2419 mg/kg | |
Cereals and bakery products | 9.0 mg/kg | |
Cinnamon cookies | 25.0 mg/kg | |
Cinnamon-flavored Liqueur | - | |
Vodka-flavored with sweet grass | 4.0 mg/kg | |
Mulled wine | - | |
Milk-containing food (yoghurt, rice pudding, quark cheese) | 0.7 mg/kg | |
Biscuit | 7.0 mg/kg | [61] |
Teas | 64 mg/kg | |
Chocolate | 10.0 mg/kg | |
Dessert | 3.0 mg/kg | |
Cake | 6.0 mg/kg | |
Confectionery (candies, comfits, drops, chewing gums, pralines, jellies) | 4.0 mg/kg | |
Ginger bread | 16.4 mg/kg | [63] |
Bakery products | 18.0 mg/kg | |
Cinnamon-containing cakes | 22.5 mg/kg | |
Flatbread with cinnamon filling (lefse) | 6.8 mg/kg | |
Cinnamon stick | 49.9 mg/kg | |
Cinnamon powder | 2350 mg/kg | |
Tea with cinnamon | 105.0 mg/kg | [66] |
Cinnamon star cookies (‘‘Zimtsterne’’) | 39.4 mg/kg | |
Cereals with cinnamon | 25.5 mg/kg | |
Desserts with cinnamon | 10.2 mg/kg | |
Chocolate with cinnamon | 9.4 mg/kg | |
Almond cookies | 16.2 mg/kg | |
Mulled wine | 0.2 mg/kg | |
Gingerbread cake | 10.3 mg/kg | |
Some Bakery products: | [67] | |
Fruit loaf | 6.2 mg/kg | |
Apple pie | <1 mg/kg | |
Carrot cake | 3.7 mg/kg | |
Muffins | 18.2 mg/kg | |
Fruit cake | 3.3 mg/kg | |
Breakfast Cereal/Muesli/Porridge | <1 to 38.2 mg/kg | |
Cereal bar | <1 mg/kg | |
Tea/Beverages: | ||
Chai tea | 2.1 mg/kg | |
Spiced/herb tea | 1.8 mg/kg | |
Nescafe cappuccino powder | <1 mg/kg | |
Cappuccino/latté | 1.4 mg/kg | |
Chocolate drink-Nestlé Nesquik chocolate flavor | <1 mg/kg | |
Ice cream/pudding | <1 to 2.0 mg/kg | |
Snack (roasted peanuts) | 48.5 mg/kg | |
Rice | <1 to 1.2 mg/kg | |
Vegetable dishes | <1 to 3.6 mg/kg | |
Meat dishes | <1 to 3.6 mg/kg | |
Soup/sandwich filler | <1 mg/kg | |
Cooked meat | <1 mg/kg | |
Spices: | ||
Mixed spice | 456.0 mg/kg | |
Ground cinnamon | 1657.0 mg/kg | |
Cinnamon stick | 86.7 mg/kg | |
Curry powder | 51.5 mg/kg | |
Moroccan spice | 63.3 mg/kg | |
Cooking sauces | <1 to 6.10 mg/kg | |
Infant food: | ||
Heinz Breakfast Oat & Apple cereal for babies | 5.55 mg/kg | |
Organix infant carrot cake | 10.9 mg/kg |
4. Human Exposure to Coumarin
4.1. Health Risk Assessment
4.2. Risk of Intake of Cinnamon-Containing Foods
4.3. Other Possibilities for Human Exposure to Coumarin
5. Determination of Coumarins in Food
5.1. Extraction of Coumarins
Samples | Type of Extraction | Extraction Parameters | Literature | |||
---|---|---|---|---|---|---|
Solvent | Temperature | Time | Solid-Solvent Ratio | |||
Cinnamon samples | Ultrasound assisted extraction | Methanol | - | 1 h | 5 mg/1 mL | [17] |
Tea samples | 50 mg/1 mL | |||||
Different breakfast cereal samples | 100 mg/mL 250 mg/1 mL | |||||
Milk rice | 250 mg/mL | |||||
Cinnamon dessert | 100 mg/mL | |||||
Solid food containing coumarin | Stirring on a mechanical shaker | 80% Methanol (v/v) | Room temperature | 10 min | 15 g/50 mL | [19] |
Propolis | Maceration | Ethanol | 22 °C | 3 days | 250 g/500 mL | [57] |
Herbal tea from sweet clover plant (Melilotus officinalis) | Stirring | Methanol | 90 min | 0.1 g/15 mL | [58] | |
Dried stem bark powders | Soxhlet apparatus | Methanol | 3 h | [65] | ||
The seeds of Dipteryx odorata (tonka beans) | Soxhlet extraction | Ethanol, Methanol and acetonitrile | 8 h | [71] | ||
Cassia Bark (Cortex Cinnamomi) | Ultrasound assisted extraction | Methanol | Room temperature | 30 min | 0.5 g/25 mL | [72] |
Food containing soft drinks and juice, infant formula and food, cereals, flours and snacks | Ultrasound assisted extraction | Methanol | 10 min | [73] | ||
Chocolate samples | Ultrasound assisted extraction | 95% Ethanol (v/v) | 15 min | 5–10 g/15 mL | [74] | |
Vanilla-containing soft drinks | Liquid-liquid extraction H2SO4 for adjusting pH = 2 | ethyl acetate | 25 mL/4 × 25 mL | |||
Vanilla flavored ground coffee | heated under reflux | ethyl acetate | 30 min | 10.5 g/100 mL | ||
Cookies | Soxhlet apparatus Mixed with H2SO4 | Chloroform | 4 h | 10–15 g/100 mL | ||
Ice cream or vanilla pudding | Ultrasound-assisted extraction H2SO4 for adjusting pH = 2 | 70% (v/v) ethanol | 30 min | 15 g/25 mL | ||
Chocolate milk | Liquid–liquid extraction | Chloroform | Diluted with water (1:1) 50 mL/4 × 25 mL | |||
Flavouring or spice | Stirring on a mechanical shaker Ultrasound-assisted extraction | 70% Ethanol | 30 °C | 30 min 10 min | 1 g/50 mL | [75] |
Biscuit or chocolate | 5 g/50 mL | |||||
Cinnamomum cassia Blume | Ultrasound-assisted extraction | 80% Methanol | - | 30 min | 0.5 g/20 mL | [76] |
Meliloti herba | Stirring on a mechanical shaker | Water | 22 °C | 60 min | 5 g/30 mL | [77] |
Crude propolis | Ethanol | 22 °C | 72 h | 1 g/40 mL | ||
Encapsulated Cinnamon Flavoring Powder | Ultrasound-assisted extraction | 80% Methanol | - | 20 min | 100 mg/50 mL | [78] |
Vanillin samples | Mixing | Aceton | - | - | 0.251 g/5 mL | [79] |
Cassia cinnamon, chamomile tea | Stirring | Water (82 °C) | 23 °C | 1 h | 1 g/12 mL | [80] |
5.2. Methods for Determination of Coumarins
5.2.1. Chromatographic Methods
5.2.2. Spectrophotometric and Spectrofluorimetric Determination
Sample | Method | Work Conditions | Detected Compounds | Literature |
---|---|---|---|---|
Cinnamons and cinnamon containing foods | HPTLC | HPTLC plates silica gel 60 mixture of n-hexane—ethyl acetate—ammonia (3.8:1.3:0.05, v/v/v) 10% ethanolic KOH solution for detection 10% methanolic PEG 400 solution - stabilization of the fluorescence 366 nm | coumarin | [17] |
HPTLC-MS | 100% methanol 0.1 mL min−1 capillary and source gas temperature 250 °C capillary voltage 150 V source voltage offset 10 V 100–600 m/z | |||
Cinnamon-containing food products | HPLC-DAD | 5 mM ammonium acetate buffer, 0.2% acetic acid: ACN/MeOH (1:2) gradient elution 0.2 mL min−1 40 °C 279.8 nm | coumarin | [19] |
Distilled beverages | HPLC-FL | 3% glacial acetic acid in water:ACN with 3% glacial acetic acid gradient elution 1 mL min−1 room temp. excitation and emission 340 and 425 nm | umbelliferone, scopoletin and 4-methylumbelliferone | [56] |
Spectrofluorometry | excitation and emission wavelengths 340 and 425 nm 25 ± 1 °C slits set at an aperture of 3.0 nm | |||
Propolis | Fluorescence spectrometry | excitation and emission slits 5 nm fluorescence emission spectra from 380 to 600 nm excitation wavelength 370 nm emission spectrum at 23 °C | sculin, daphnetin, fraxetin, umbelliferone, 4-methylumbelliferone, 4-hydroxycoumarin, scoparone, coumarin, herniarin and cinnamyl alcohol | [57] |
HPLC | ACN with 0.3% acetic acid:ACN gradient elution 1 mL min−1 23 °C 280 and 323 nm | |||
Herbal tea from sweet clover plant (Melilotus officinalis) | SFS | excitation and emission splits 5 nm scan speed 200 nm/min PMT Voltage 500 Volts the excitation wavelength range at 200–400 nm Δλ = 90 nm | coumarin, 4-hydroxycoumarin and dicoumarol | [58] |
HPLC | 0.3% acetic acid in methanol: 0.3% acetic acid in water gradient method 0.5 mL min−1 23 °C 280 nm | |||
Vanilla extract products | LC-UV-MS | ACN: 0.1% formic acid (35:65) isocratic elution 0.25 mL min−1 20 °C 254 nm quantification was based on a peak area ratio of the SIM signals of the analyte and the IS | coumarin, vanillin and ethly vanillin | [59] |
Cinnamon-containing food products | UHPLC-DAD | 5% MeOH in demineralized water/ACN Gradient elution 0.6 mL min−1, 45 °C 278.1 nm | coumarin | [64] |
Cinnamon samples | UHPLC-ESI-QqQLIT-MS/MS | 0.1% formic acid in water:ACN gradient elution 0.3 mL min−1 30 °C both positive and negative ESI modes Source temperature 550°C range of m/z 100–1000 | coumarin, scopoletin, o-coumaric acid, cinnamic acid and cinnamaldehyde | [65] |
The seeds of Dipteryx odorata (tonka beans) | HPLC | 0.0001% 85% o-phosphoric acid:ACN:MeOH gradient elution 1 mL min−1 45 °C 260–275 nm | coumarin, o-coumaric acid, 5-hydroxymethylfurfural, melilotic acid, methyl melilotate and ethyl melilotate and dihydrocoumarin | [71] |
GC-MS | Helium 70–280 °C 70 eV 0.2 mA mass range m/z 50–380 | |||
Cassia Bark (Cortex Cinnamomi) | HPLC quantitative analyses | ACN:0.04% acetic acid (25:75) isocratic elution 1 mL min−1 20 °C 250, 280 nm | cinnamaldehyde, cinnamic acid, coumarin and cinnamyl alcohol | [72] |
HPLC fingerprint analysis | ACN:0.02% acetic acid gradient elution 1 mL min−1 20 °C 280 nm | coumarin, cinnamic acid, cinnamaldehyde, unknown, and eugenol | ||
Food containing soft drinks and juice, infant formula and food, cereals, flours and snacks | GC-FID | Oxygen free nitrogen 1 mL min−1 100–260 °C | diethylene glycol, diethylene glycol monoethyl ether, coumarin and caffeine | [73] |
Food flavored with vanilla | TLC | Ethyl acetate, Chloroform, Propanol, Acetic acid, Hexane gradient elution AMD chamber 280 nm—densitometer | vanillin, ethyl vanillin, 4-hydroxy-benzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzyl alcohol, vanillic acid, coumarin, piperonal, anisic acid, and anisaldehyde | [74] |
Cinnamomum cassia Blume | HPLC | ACN:0.5% acetic acid in water (25:75, v/v) isocratic elution 1.0 mL min−1 25 °C detection at 278 nm | Coumarin | [76] |
Spice/spice mixture; Cinnamon cookies; Gingerbread | HPLC–UV | Ammonium acetate (5 mmol/L)/ACN:MeOH (1:2) gradient elution 0.8 mL min−1 40 °C 279 nm | coumarin | [78] |
LC–MS/MS | MeOH:ACN:0.1% formic acid (80:0.1:19.9) isocratic elution 0.25 mL min−1 20 °C identified by selected-reaction monitoring (SRM) positive electrospray ionization mode (ESI+) | |||
Cassia cinnamon, chamomile tea | HPLC | ACN: 0.3% acetic acid gradient elution 1 mL min−1 20 µL 30 °C 280 and 323 nm | 6,7-dihydroxycoumarin 7,8-dihydroxy-6-methoxy-coumarin 7-hydroxycoumarin 7-hydroxy-4-methylcoumarin 6,7-dimethoxycoumarin coumarin 7-methoxycoumarin | [80] |
On-line MISPE-HPLC system | 20 mg of MIP sorbent switching sstem washing with H2O HPLC conditions as above | |||
Infant formula | LC-QqLIT-MS | 0.1% formic acid/ACN gradient elution 0.25 mL min−1 30 °C ESI positive mode Source temperature 500°C Ionization voltage 5000 V | vanillin, ethyl vanillin, and coumarin | [85] |
Artemisia annua | HPLC-DAD | 0.1% formic acid:ACN gradient elution 0.6 mL min−1 30 °C 10 µL 210 and 360 nm | rutin, cynaroside, isorhamnetin, chrysosplenol D and casticin, scopolin and scopoletin, arteannuinB, artemisinin, dihydroartemisinic acid and artemisinic acid | [86] |
LC-ESI-QTOF-MS/MS | positive and negative mode 50 to 1000 Da 180°C the end plate offset was−500V capillary voltages were 4500 V and −3500 V | |||
Pummelo Fruits | UHPLC-QqQ-MS/MS | 0.1% formic acid:MeOH gradient elution 0.3 mL min−1 2 µL 40 °C positive and negative modes curtain gas 20.0; ionspray voltage (IS) ±4500.0 temperature (TEM) 500.0; ion source gas 1 (GS1) 50.0; ion source gas 2 (GS2) 50.0 | 47 components, 12 coumarins and furocoumarins; umbelliferone, scoparone, psoralen, bergaptol, xanthotoxin, Limettin, bergapten, isomeranzin, 6′,7′dihydroxybergamottin, imperatorin, isoimperatorin, 6′,7′epoxybergamottin | [87] |
Cassia cinnamon, chamomile tea | HPLC | ACN: 0.3% acetic acid gradient elution 1 mL min−1 20 µL 30 °C 280 and 323 nm | 6,7-dihydroxycoumarin 7,8-dihydroxy-6-methoxy-coumarin 7-hydroxycoumarin 7-hydroxy-4-methylcoumarin 6,7-dimethoxycoumarin coumarin 7-methoxycoumarin | [80] |
On-line MISPE-HPLC system | 20 mg of MIP sorbent switching sstem washing with H2O HPLC conditions as above | |||
Vanilla extracts | MID-FTIR spectroscopy | range of 4000–550 cm−1 resolution of 4 cm−1 64 scans | ethyl vanillin, coumarin | [92] |
HPLC-DAD | ACN: acid water (pH 2.3) gradient elution 30 °C 1µL 230, 260, 280 nm | |||
Tokaj wine | HPLC-DAD HPLC-FL | MeOH/acetic acid:1% of acetic acid gradient elution 23 °C 20 µL 280, 320, 450 nm | esculin, coumarin, herniarin, 4-methylumbelliferon, scoparone, scopoletin | [93] |
fluorescence spectroscopy | excitation and emission slit width 5 nm excitation wavelength 320 nm synchronous fluorescence spectra → 250–400 nm range |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Önder, A. Anticancer activity of natural coumarins for biological targets. Stud. Nat. Prod. Chem. 2020, 85–109. [Google Scholar] [CrossRef]
- Yahaya, I.; Seferoglu, N.; Seferoğlu, Z. Improved one-pot synthetic conditions for synthesis of functionalized fluorescent coumarin-thiophene hybrids: Syntheses, DFT studies, photophysical and thermal properties. Tetrahedron 2019, 2143–2154. [Google Scholar] [CrossRef]
- Fitoz, A.; Nazır, H.; Özgür (nee Yakut), M.; Emregül, E.; Emregül, K.C. An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor. Corros. Sci. 2018, 133, 451–464. [Google Scholar] [CrossRef]
- Yang, Z.; Kinoshita, T.; Tanida, A.; Sayama, H.; Morita, A.; Watanabe, N. Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chem. 2009, 114, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Avula, B.; Nanayakkara, N.P.D.; Zhao, J.; Khan, I.A. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem. 2013, 61, 4470–4476. [Google Scholar] [CrossRef]
- Robledo-O’Ryan, N.; Matos, M.J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Moncada-Basualto, M.; Mura, F.; Lapier, M.; Maya, J.D.; Olea-Azar, C. Synthesis, antioxidant and antichagasic properties of a selected series of hydroxy-3-arylcoumarins. Bioorganic Med. Chem. Lett. 2017, 25, 621–632. [Google Scholar] [CrossRef]
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The Antimicrobial agents. Syst. Rev. Pharm. 2017, 8, 62–70. [Google Scholar] [CrossRef]
- Witaicenis, A.; Seito, L.N.; Da Silveira Chagas, A.; De Almeida, L.D.; Luchini, A.C.; Rodrigues-Orsi, P.; Cestari, S.H.; Di Stasi, L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 2014, 21, 240–246. [Google Scholar] [CrossRef]
- Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.; Olea-Azar, C.; Barriga, G. Synthesis and antioxidant study of new polyphenolic hybrid-coumarins. Arab.J.Chem. 2018, 11, 525–537. [Google Scholar] [CrossRef]
- Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem. 2017, 138, 170–181. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Yan, G.; Xie, Y.-T.; Lin, T.-C.; Zhang, W.; Li, J.; Wu, Y.-J.; Zhou, J.-Y.; Fu, Y.-H. Bioactive prenylated coumarins as potential anti-inflammatory and anti-HIV agents from Clausena lenis. Bioorganic Chem. 2020, 103699. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015, 102, 611–630. [Google Scholar] [CrossRef] [PubMed]
- Akoudad, S.; Darweesh, S.K.; Leening, M.J.; Koudstaal, P.J.; Hofman, A.; Van Der Lugt, A.; Stricker, B.H.; Ikram, M.A.; Vernooij, M.W. Use of Coumarin Anticoagulants and Cerebral Microbleeds in the General Population. Stroke 2014, 45, 3436–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon 2020, 6, e03217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem. 2015, 100, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.A.; Rehman, S.U.; Khan, S.H. Gamma radiation response of plant isolated coumarin glycoside. Optik 2016, 127, 8361–8366. [Google Scholar] [CrossRef]
- Krüger, S.; Winheim, L.; Morlock, G.E. Planar chromatographic screening and quantification of coumarin in food, confirmed by mass spectrometry. Food Chem. 2018, 239, 1182–1191. [Google Scholar] [CrossRef]
- Maggi, F.; Barboni, L.; Caprioli, G.; Papa, F.; Ricciutelli, M.; Sagratini, G.; Vittori, S. HPLC quantification of coumarin in bastard balm (Melittis melissophyllum L. Lamiaceae). Fitoterapia 2011, 82, 1215–1221. [Google Scholar] [CrossRef]
- Sproll, C.; Ruge, W.; Andlauer, C.; Godelmann, R.; Lachenmeier, D.W. HPLC analysis and safety assessment of coumarin in foods. Food Chem. 2008, 109, 462–469. [Google Scholar] [CrossRef]
- Panico, A.; Serio, F.; Bagordo, F.; Grassi, T.; Idolo, A.; De Giorgi, M.; Guido, M.; Congedo, M.; De Donno, A. Skin safety and health prevention: An overview of chemicals in cosmetic products. J. Prev. Med. Hyg. 2019, 60, E50–E57. [Google Scholar] [CrossRef]
- McAdam, K.; Enos, T.; Goss, C.; Kimpton, H.; Faizi, A.; Edwards, S.; Wright, C.; Porter, A.; Rodu, B. Analysis of coumarin and angelica lactones in smokeless tobacco products. Chem. Cent. J. 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woehrlin, F.; Fry, H.; Abraham, K.; Preiss-Weigert, A. Quantification of flavoring constituents in cinnamon: High variation of coumarin in cassia bark from the German retail market and in authentic samples from Indonesia. J. Agric. Food Chem. 2010, 58, 10568–10575. [Google Scholar] [CrossRef] [PubMed]
- Hazleton, L.W.; Tusing, T.W.; Zeitlin, B.R.; Thiessen, R., Jr.; Murer, H.K. Toxicity of coumarin. J. Pharmacol. Exp. Ther. 1956, 118, 348–358. [Google Scholar] [PubMed]
- Blahová, J.; Svobodov, Z. Assessment of coumarin levels in ground cinnamon available in the Czech retail market. Sci. World J. 2012, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maistro, E.L.; De Souza, M.E.; Fedato, R.P.; Tolentino, F.; Da Silva, C.A.; Tsuboy, M.S.; Resende, F.A.; Varanda, E.A. In Vitro Assessment of Mutagenic And Genotoxic Effects of Coumarin Derivatives 6,7-Dihydroxycoumarin and 4-Methylesculetin. J. Toxicol. Environ. Heal. 2015, 78 Pt A, 109–118. [Google Scholar] [CrossRef]
- Directive, Council. European Parliament and Council Directive No. 88/388 on the approximation of the laws of the member states relating to flavourings for use in food stuffs and to source materials for their production. Off. J. Eur. Commun. 1988, L184, 61–67. [Google Scholar]
- European Commission. European Parliament and Council Directive No. 1334/2008 on the flavourings and certain food ingredients with flavouring properties for use in and on food and amending Council Regulation (EEC) No. 1601/91, Regulations (EC) No. 2232/96 and (EC) No. 110/2008 and Directive 2000/13/EC. Off. J. Eur. Commun. 2008, L354, 34–50. [Google Scholar]
- Lacy, A. Studies on Coumarins and Coumarin-Related Compounds to Determine their Therapeutic Role in the Treatment of Cancer. Curr. Pharm. Des. 2005, 10, 3797–3811. [Google Scholar] [CrossRef] [Green Version]
- BfR (Federal Institute for Risk Assessment). New Insights into Coumarin Contained in Cinnamon; BfR opinion No. 036/2012; BfR: Berlin, Germany, 2012. [Google Scholar]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contacts with Food on a request from the Commission related to Coumarin. EFSA J. 2004, 104, 1–36. [Google Scholar]
- BfR (Federal Institute for Risk Assessment). Consumers, Who Eat a lot of Cinnamon, Currently Have an Overly High Exposure to Coumarin; BfR Health Assessment No. 043/2006; BfR: Berlin, Germany, 2006. [Google Scholar]
- Bergmann, K. Expert Report on the Assessment of Coumarin in Medicinal Products with Regard to Hepatotoxic Effects in Humans; Rheinische Friedrich-Wilhelms-Universität Bonn: Bonn, Germany, 1999; pp. 1–23. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the European commission on coumarin in flavourings and other food ingredients with flavouring properties. EFSA 2008, 793, 1–15. [Google Scholar]
- Abraham, K.; Pfister, M.; Wöhrlin, F.; Lampen, A. Relative bioavailability of coumarin from cinnamon and cinnamon-containing foods compared to isolated coumarin: A four-way crossover study in human volunteers. Mol. Nutr. Food Res. 2011, 55, 644–653. [Google Scholar] [CrossRef]
- Dugrand, A.; Olry, A.; Duval, T.; Hehn, A.; Froelicher, Y.; Bourgaud, F. Coumarin and Furanocoumarin Quantitation in Citrus Peel via Ultraperformance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS). J. Agric. Food Chem. 2013, 61, 10677–10684. [Google Scholar] [CrossRef] [PubMed]
- Petruľová-Poracká, V.; Repčák, M.; Vilková, M.; Imrich, J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem. 2013, 141, 54–59. [Google Scholar] [CrossRef]
- Bai, Y.; Li, D.; Zhou, T.; Qin, N.; Li, Z.; Yu, Z.; Hua, H. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J. Funct. Foods 2016, 20, 453–462. [Google Scholar] [CrossRef]
- Peng, W.-W.; Zheng, Y.-Q.; Chen, Y.-S.; Zhao, S.-M.; Ji, C.-J.; Tan, N.-H. Coumarins from roots of Clausena excavata. J. Asian Nat. Prod. Res. 2013, 15, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Naseri, M.; Monsef-Esfehani, H.; Saeidnia, S.; Dastan, D.; Gohari, A. Antioxidative Coumarins from the Roots of Ferulago subvelutina. Asian J. Chem. 2013, 25, 1875–1878. [Google Scholar] [CrossRef]
- Joshi, K.R.; Devkota, H.P.; Yahara, S. Chemical Analysis of Flowers of Bombax ceiba from Nepal. Nat. Prod. Commun. 2013, 8, 583–584. [Google Scholar] [CrossRef] [Green Version]
- Kicel, A.; Wolbis, M. Coumarins from the flowers of Trifolium repens. Chem. Nat. Compd. 2012, 48, 130–132. [Google Scholar] [CrossRef]
- Wang, S.; Tang, F.; Yue, Y.; Yao, X.; Wei, Q.; Yu, J. Simultaneous Determination of 12 Coumarins in Bamboo Leaves by HPLC. J. AOAC Int. 2013, 96, 942–946. [Google Scholar] [CrossRef]
- Nguyen, P.-H.; Zhao, B.T.; Kim, O.; Lee, J.H.; Choi, J.S.; Min, B.S.; Woo, M.H. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J. Nat. Med. 2016, 70, 276–281. [Google Scholar] [CrossRef]
- Li, Z.-L.; Li, Y.; Qin, N.-B.; Li, D.-H.; Liu, Z.-G.; Liu, Q.; Hua, H.M. Four new coumarins from the leaves of Calophyllum Inophyllum. Phytochem. Lett. 2016, 16, 203–206. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Cao, L.; Zhang, L.; Shen, L.; Zhu, J.; Wang, J.; Si, J. Sesquiterpene coumarins from seeds of Ferula sinkiangensis. Fitoterapia 2015, 103, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, K.D.; Martínez, I.; Agredano-Moreno, L.T.; Jiménez-García, L.F.; Reyes-Chilpa, R.; Espinoza, B. Coumarins isolated from Calophyllum brasiliense produce ultrastructural alterations and affect in vitro infectivity of Trypanosoma cruzi. Phytomedicine 2019, 61, 152827. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Cao, N.; Zeng, K.; Zhao, M.; Tu, P.; Jiang, Y. Coumarin and spirocyclopentenone derivatives from the leaves and stems of Murraya paniculata (L.) Jack. Phytochemistry 2020, 172, 112258. [Google Scholar] [CrossRef]
- Yan, Z.-Y.; Lv, T.-M.; Wang, Y.-X.; Shi, S.-C.; Chen, J.-J.; Bin-Lin; Liu, Q.-B.; Huanga, X.-X.; Song, S.-J. Terpenylated coumarins from the root bark of Ailanthus altissima (Mill.) Swingle. Phytochemistry 2020, 175, 112361. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Pelayo, C.; Martínez-Quiñones, J.; Gil, J.; Durango, D. Coumarins from the peel of citrus grown in Colombia: Composition, elicitation and antifungal activity. Heliyon 2019, 5, e01937. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-J.; Wu, H.-J.; Wang, Y.; Hung, W.-L.; Rouseff, R.L. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection. Food Chem. 2019, 271, 29–38. [Google Scholar] [CrossRef]
- Lake, B.G. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food Chem. Toxicol. 1999, 37, 423–453. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Ferrone, V.; Genovese, S.; Carlucci, M.; Tiecco, M.; Germani, R.; Preziuso, F.; Epifano, F.; Carlucci, G.; Taddeo, V.A. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem. 2018, 245, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Sanches, K.; Dias, R.V.R.; Da Silva, P.H.; Fossey, M.A.; Caruso, Í.P.; De Souza, F.P.; De Oliveira, L.C.; De Melo, F.A. Grb2 dimer interacts with Coumarin through SH2 domains: A combined experimental and molecular modeling study. Heliyon 2019, 5, e02869. [Google Scholar] [CrossRef] [PubMed]
- Fernández Izquierdo, M.E.; Quesada Granados, J.; Villalón Mir, M.; López Martinez, M.C. Comparison of methods for determining coumarins in distilled beverages. Food Chem. 2000, 70, 251–258. [Google Scholar] [CrossRef]
- Hroboňová, K.; Lehotay, J.; Čižmárik, J.; Sádecká, J. Comparison HPLC and fluorescence spectrometry methods for determination of coumarin derivatives in propolis. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 486–503. [Google Scholar] [CrossRef]
- Poláček, R.; Májek, P.; Hroboňová, K.; Sádecká, J. Fluorescence spectroscopy as a tool for determination of coumarins by multivariate calibration. J. Fluoresc. 2015, 25, 297–303. [Google Scholar] [CrossRef]
- De Jager, L.S.; Perfetti, G.A.; Diachenko, G.W. Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: Liquid chromatography mass spectrometry method development and validation studies. J. Chromatogr. A 2007, 1145, 83–88. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Leon-Ruiz, V.; Alañon, M.E.; Pérez-Coello, M.S.; González-Porto, A.V. Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control. 2014, 37, 362–370. [Google Scholar] [CrossRef]
- Lungarini, L.; Aureli, F.; Coni, E. Coumarin and cinnamaldehyde in cinnamon marketed in Italy: A natural chemical hazard? Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2008, 25, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Santos, R.; Andrade, M.; Madella, D.; Martinazzo, A.P.; De Aquino Garcia Moura, L.; De Melo, N.R.; Sanches-Silva, A. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci. Technol. 2017, 62, 154–169. [Google Scholar] [CrossRef]
- Fotland, T.; Paulsen, J.E.; Sanner, T.; Alexander, J.; Husøy, T. Risk assessment of coumarin using the bench mark dose (BMD) approach: Children in Norway which regularly eat oatmeal porridge with cinnamon may exceed the TDI for coumarin with several folds. Food Chem. Toxicol. 2012, 50, 903–912. [Google Scholar] [CrossRef]
- Ballin, N.Z.; Sørensen, A.T. Coumarin content in cinnamon containing food products on the Danish market. Food Control. 2014, 38, 198–203. [Google Scholar] [CrossRef]
- Ananthakrishnan, R.; Chandra, P.; Kumar, B.; Rameshkumar, K.B. Quantification of coumarin and related phenolics in cinnamon samples from South India using UHPLC-ESI-QqQ LIT-MS/MS method. Int. J. Food Prop. 2018, 21, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Abraham, K.; Wöhrlin, F.; Lindtner, O.; Heinemeyer, G.; Lampen, A. Toxicology and risk assessment of coumarin: Focus on human data. Mol. Nutr. Food Res. 2010, 54, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Apekey, T.A.; Khokhar, S. Survey on the Consumption of Cinnamon-Containing Foods and Drinks by the UK Population; University of Leeds: Leeds, UK, 2015. [Google Scholar]
- Für Risikobewertung, B. High daily intakes of cinnamon: Health risk cannot be ruled out. BfR Health Assess. 2006, 044. [Google Scholar]
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Guardado Yordi, E. Coumarins—An Important Class of Phytochemicals. In Phytochemicals-Isolation, Characterisation and Role in Human Health; Rao, A., Leticia, G.R., Eds.; InTech Open: London, UK, 2015. [Google Scholar]
- Bourgaud, F.; Poutaraud, A.; Guckert, A. Extraction of coumarins from plant material (Leguminosae). Phytochem. Anal. 1994, 5, 127–132. [Google Scholar] [CrossRef]
- Ehlers, D.; Pfister, M.; Bork, W.-R.; Toffel-Nadolny, P. HPLC analysis of tonka bean extracts. Z. Lebensm. Unters. Forsch. 1995, 201, 278–282. [Google Scholar] [CrossRef]
- He, Z.-D.; Qiao, C.-F.; Han, Q.-B.; Cheng, C.-L.; Xu, H.-X.; Jiang, R.-W.; But, P.P.-H.; Shaw, P.-C. Authentication and Quantitative Analysis on the Chemical Profile of Cassia Bark (Cortex Cinnamomi) by High-Pressure Liquid Chromatography. J. Agric. Food Chem. 2005, 53, 2424–2428. [Google Scholar] [CrossRef]
- Rahim, A.A.; Saada, B.; Osmana, H.; Hashima, N.; Yahyaa, S.; Talibb Md, K. Simultaneous determination of diethylene glycol, diethylene glycol monoethyl ether, coumarin and caffeine in food items by gas chromatography. Food Chem. 2011, 126, 1412–1416. [Google Scholar] [CrossRef]
- Belay, M.T.; Poole, C.F. Determination of Vanillin and Related Flavor Compounds in Natural Vanilla Extracts and Vanilla-Flavored Foods by Thin Layer Chromatography and Automated Multiple Development. Chromatographia 1993, 37, 365–373. [Google Scholar] [CrossRef]
- Yu, E.; Orlov, Y.E. Determination of coumarin in sweet clover herbage by a polarographic method. Chem. Nat. Compd. 1988, 24, 118–119. [Google Scholar] [CrossRef]
- Solaiman, R.; Al-zehouri, J. Determination of coumarin in methanol extract of cinnamon (Cinnamomum cassia Blume) using reversed- phase high performance liquid chromatography. J. Pharmacogn. Phytochem. 2017, 6, 726–729. [Google Scholar]
- Machyňáková, A.; Hroboňová, K. Simultaneous determination of coumarin derivatives in natural samples by ultra high performance liquid chromatography. J. Food Nutr. Res. 2017, 56, 179–188. [Google Scholar]
- Cao, C.; Liu, W.; Babajanian, S.; Zhang, Y.; Chang, P.; Swanson, G. Development and Validation of an Ultra Performance Liquid Chromatography-Diode Array Detector (UPLC-DAD) Method for Quantitative Analysis of Coumarin, trans-Cinnamic Acid, trans-Cinnamaldehyde and Eugenol in Encapsulated Cinnamon Flavoring Powder. J. AOAC Int. 2020. [Google Scholar] [CrossRef]
- Johansen, N.G. Identification of vanillin in U.S.P. vanillin and the detection of various impurities by gas-liquid chromatography. J. Chromatogr. Sci. 1965, 3, 202–203. [Google Scholar] [CrossRef]
- Machyňáková, A.; Lhotská, I.; Hroboňová, K.; Šatínský, D. On-line coupling of molecularly imprinted solid phase extraction with liquid chromatography for the fast determination of coumarins from complex samples. J. Pharm. Biomed. Anal. 2017, 145, 144–150. [Google Scholar] [CrossRef]
- Marcolan, M.; Martins, P.A.; Pedrosa, V.A.; Rodrigues, M.R.; De Oliveira, H.P.M.; Codognoto, L. Spectrofluorimetric determination of coumarin in commercial tablets. J. Fluoresc. 2011, 21, 733–738. [Google Scholar] [CrossRef]
- Swain, T. The Identification of Coumarins and Related Compounds by Filter-paper Chromatography. Biochem. J. 1953, 53, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Sherma, J.; Schafer, S.L.; Morris, K. Determination of Coumarin in Vanilla Flavorings by Quantitative High Performance Thin Layer Chromatography. J. Liq. Chromatogr. 1987, 10, 3585–3593. [Google Scholar] [CrossRef]
- Raters, M.; Matissek, R. Analysis of coumarin in various foods using liquid chromatography with tandem mass spectrometric detection. Eur. Food Res. Technol. 2008, 227, 637–642. [Google Scholar] [CrossRef]
- Shen, Y.; Han, C.; Liu, B.; Lin, Z.; Zhou, X.; Wang, C.; Zhu, Z. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. J. Dairy Sci. 2014, 97, 679–686. [Google Scholar] [CrossRef]
- Fu, C.; Yu, P.; Wang, M.; Qiu, F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem. 2020, 312, 126070. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Guo, P.M.; Pang, W.H.; Zhang, Y.H.; Zhao, Q.Z.; Jiao, B.N.; Kilmartin, P.A. A Rapid UHPLC-QqQ-MS/MS method for the Simultaneous Qualitation and Quantitation of Coumarins, Furocoumarins, Flavonoids, Phenolic Acids in Pummelo Fruits. Food Chem. 2020, 126835, in press. [Google Scholar] [CrossRef] [PubMed]
- Ávila, M.; Zougagh, M.; Escarpa, A.; Ríos, Á. Determination of alkenylbenzenes and related flavour compounds in food samples by on-column preconcentration-capillary liquid chromatography. J. Chromatogr. A 2009, 1216, 7179–7185. [Google Scholar] [CrossRef] [PubMed]
- García, M.G.; Galera, M.M.; Martínez, D.B.; Gallego, J.G. Determination of benzoylureas in ground water samples by fully automated on-line pre-concentration and liquid chromatography-fluorescence detection. J. Chromatogr. A 2006, 1103, 271–277. [Google Scholar] [CrossRef]
- Duan, Z.J.; Fan, L.P.; Fang, G.Z.; Yi, J.H.; Wang, S. Novel surface molecularly imprinted sol–gel polymer applied to the on-line solid phase extraction of methyl-3-quinoxaline-2-carboxylic acid and quinoxaline-2-carboxylic acid from pork muscle. Anal. Bioanal. Chem. 2011, 401, 2291–2299. [Google Scholar] [CrossRef]
- Yi, L.X.; Fang, R.; Chen, G.H. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals. J. Chromatogr. Sci. 2013, 51, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ley, C.M.; Hernández-Martínez, D.M.; Osorio-Revilla, G.; Tapia-Ochoategui, A.P.; Dávila-Ortiz, G.; Gallardo-Velázquez, T. Prediction of coumarin and ethyl vanillinin pure vanilla extracts using MID FTIR spectroscopy and chemometrics. Talanta 2019, 197, 264–269. [Google Scholar] [CrossRef]
- Hroboňová, K.; Sádecká, J. Coumarins content in wine: Application of HPLC, fluorescence spectrometry, and chemometric approach. J. Food Sci. Technol. 2020, 57, 200–209. [Google Scholar] [CrossRef]
Compound Food | Maximum Level of Coumarin (mg/kg) |
---|---|
Traditional and/or seasonal bakery wares containing a reference to cinnamon in the labeling | 50 |
Breakfast cereals including muesli | 20 |
Fine bakery ware, with the exception of traditional and/or seasonal bakery wares containing a reference to cinnamon in the labeling | 15 |
Desserts | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lončar, M.; Jakovljević, M.; Šubarić, D.; Pavlić, M.; Buzjak Služek, V.; Cindrić, I.; Molnar, M. Coumarins in Food and Methods of Their Determination. Foods 2020, 9, 645. https://doi.org/10.3390/foods9050645
Lončar M, Jakovljević M, Šubarić D, Pavlić M, Buzjak Služek V, Cindrić I, Molnar M. Coumarins in Food and Methods of Their Determination. Foods. 2020; 9(5):645. https://doi.org/10.3390/foods9050645
Chicago/Turabian StyleLončar, Mirjana, Martina Jakovljević, Drago Šubarić, Martina Pavlić, Vlatka Buzjak Služek, Ines Cindrić, and Maja Molnar. 2020. "Coumarins in Food and Methods of Their Determination" Foods 9, no. 5: 645. https://doi.org/10.3390/foods9050645
APA StyleLončar, M., Jakovljević, M., Šubarić, D., Pavlić, M., Buzjak Služek, V., Cindrić, I., & Molnar, M. (2020). Coumarins in Food and Methods of Their Determination. Foods, 9(5), 645. https://doi.org/10.3390/foods9050645