Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used for Nutraceuticals Preparation
2.2. Grown of the Lactobacillus uvarum LUHS245 in Whey Media
2.3. Lactic Acid Bacteria Count in Fermented Lyophilised Dairy Production By-Products Media
2.4. Antimicrobial Activity of the Artemisia Absinthium Water Extract and Essential Oil, Lactobacillus uvarum LUHS245, and Blackcurrants By-Products Evaluation
2.5. Nutraceuticals Formulation
2.6. The Evaluation of Total Phenolic Compounds (TPC) Content in Separate Layers and the Whole Formulation of the Prepared Nutraceuticals and Their Antioxidant Activity
2.7. Evaluation of Nutraceuticals Colour Coordinates, Texture, and Overall Acceptability
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antimicrobial Properties of the Artemisia Absinthium Water Extract and Essential Oil (EO), Lactobacillus uvarum LUHS245, and Blackcurrant Juice Preparation By-Products
3.2. Grown and Stabilization of the Lactobacillus uvarum LUHS245 Strain in Dairy Production By-Products Media
3.3. The Total Phenolic Compounds Content and Radical Scavenging Activity of Nutraceuticals
3.4. Nutraceuticals Colour Coordinates, Texture, and Overall Acceptability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nutraceuticals -Market Demand, Growth, Opportunities and Analysis of Top Key Player Forecast to 2026–Investor Opinion. Available online: https://investoropinion.co.uk/nutraceuticals-market-demand-growth-opportunities-and-analysis-of-top-key-player-forecast-to-2026/ (accessed on 27 December 2019).
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2013, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Exp. Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Novellino, E.; Daliu, P.; Santini, A. Fruit-based juices: Focus on antioxidant properties—Study approach and update. Phytother. Res. 2019, 33, 1754–1769. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Exp. Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Novellino, E. To Nutraceuticals and Back: Rethinking a Concept. Foods 2017, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Baldasso, C.; Barros, T.C.; Tessaro, I.C. Concentration and purification of whey proteins by ultrafiltration. Desalination 2011, 278, 381–386. [Google Scholar] [CrossRef]
- Bosco, F.; Carletto, R.A.; Marmo, L. An Integrated Cheese Whey Valorization Process. Chem. Eng. Trans. 2018, 64, 379–384. [Google Scholar]
- Díaz-Vergara, L.; Pereyra, C.M.; Montenegro, M.; Pena, G.A.; Aminahuel, C.A.; Cavaglieri, L.R. Encapsulated whey–native yeast Kluyveromyces marxianus as a feed additive for animal production. Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess. 2017, 34, 750–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckert, C.; Agnol, W.D.; Dallé, D.; Serpa, V.G.; Maciel, M.J.; Lehn, D.N.; Volken de Souza, C.F. Development of alginate-pectin microparticles with dairy whey using vibration technology: Effects of matrix composition on the protection of Lactobacillus spp. from adverse conditions. Food Res. Int. 2018, 113, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Park, K.M.; Yoon, S.-G.; Choi, T.-H.; Kim, H.J.; Park, K.J.; Koo, M. The Bactericidal Effect of a Combination of Food-Grade Compounds and their Application as Alternative Antibacterial Agents for Food Contact Surfaces. Foods 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verardo, V.; Gómez-Caravaca, A.M.; Tabanelli, G. Bioactive Components in Fermented Foods and Food By-Products. Foods 2020, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P. Berry fruits for cancer prevention: Current status and future prospects. J. Agric. Food Chem. 2008, 56, 630–635. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Subash, S.; Essa, M.M.; Al-Adawi, S.; Memon, M.A.; Manivasagam, T.; Akbar, M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen. Res. 2014, 9, 1557–1566. [Google Scholar]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Healthy Aging, and Promoting Quality Life—A Review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- López, F.; Rodríguez-Bencomo, J.J.; Orriols, I.; Pérez-Correa, J.R. Fruit Brandies. In Science and Technology of Fruit Wine Production; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 531–556. [Google Scholar]
- Paunović, S.M.; Mašković, P.; Nikolić, M.; Miletić, R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. 2017, 222, 69–75. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef]
- ISO 15214:1998. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C; American National Standards Institute: New York, NY, USA, 2015. [Google Scholar]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Viskelis, P.; Zadeike, D.; Juodeikiene, G. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 2019, 99, 3992–4002. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Stankevicius, A.; Grigas, J.; Pautienius, A.; Bernatoniene, J.; Jakstas, V.; et al. Fermented, ultrasonicated, and dehydrated bovine colostrum: Changes in antimicrobial properties and immunoglobulin content. J. Dairy Sci. 2020, 103, 1315–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Xiong, L.; Yu, B.; Wu, J. Apoptosis Induced by a New Member of Saponin Family Is Mediated through Caspase-8-Dependent Cleavage of Bcl-2. Mol. Pharmacol. 2005, 68, 1831–1838. [Google Scholar] [CrossRef] [Green Version]
- ISO Standard 8586. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors, 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2012; pp. 1–28. [Google Scholar]
- Eriksson, L.; Lif Holgerson, P.; Esberg, A.; Johansson, I. Microbial Complexes and Caries in 17-Year-Olds with and without Streptococcus mutans. J. Dent. Res. 2018, 97, 275–282. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Xie, F.; Zeng, X. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ind. Crops Prod. 2018, 121, 468–475. [Google Scholar] [CrossRef]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Judzentiene, A.; Budiene, J.; Gircyte, R.; Masotti, V.; Laffont-Schwob, I.; Laffont, I.; Toxic, S. Activity and Chemical Composition of Lithuanian Wormwood (Artemisia absinthium L.) Essential Oils. Records of Naturals Products. Rec. Nat. Prod. 2012, 6, 180–183. [Google Scholar]
- Crevelin, E.J.; Caixeta, S.C.; Dias, H.J.; Groppo, M.; Cunha, W.R.; Martins, C.H.G.; Crotti, A.E.M. Antimicrobial Activity of the Essential Oil of Plectranthus neochilus against Cariogenic Bacteria. Evid. Based Complement. Altern. Med. 2015, 2015, 102317. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia L. Genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [Green Version]
- Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicig. J. Agric. Food Chem. 2005, 53, 9452–9458. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, H.R.; Hoseinzadeh, H.; Badouei, M.A.; Kafshdouzan, K.; Fard, R.M.N. Antimicrobial Activity of Artemisia absinthium Against Surgical Wounds Infected by Staphylococcus aureus in a Rat Model. Indian J. Microbiol. 2012, 52, 601–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.L.; Gan, R.Y.; Shah, N.P.; Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 2018, 92, 437–443. [Google Scholar] [CrossRef]
- Mohan, A.; Hadi, J.; Gutierrez-Maddox, N.; Li, Y.; Leung, I.K.H.; Gao, Y.; Shu, Q.; Quek, S.-Y. Sensory, Microbiological and Physicochemical Characterisation of Functional Manuka Honey Yogurts Containing Probiotic Lactobacillus reuteri DPC16. Foods 2020, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Sauer, M.; Russmayer, H.; Grabherr, R.; Peterbauer, C.K.; Marx, H. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends Biotechnol. 2017, 35, 756–769. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Mozuriene, E.; Krungleviciute, V.; Novoslavskij, A.; Santini, A.; Rozentale, I.; Juodeikiene, G.; Cizeikiene, D. The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control 2017, 71, 285–292. [Google Scholar] [CrossRef]
- Porto, M.C.W.; Kuniyoshi, T.M.; Azevedo, P.O.S.; Vitolo, M.; Oliveira, R.P.S. Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. Int. J. Food Prop. 2017, 20, 2736–2747. [Google Scholar] [CrossRef] [Green Version]
- Nghe, D.; Nguyen, T. Characterization of Antimicrobial Activities of Pediococcus pentosaceus Vtcc-B-601. J. Appl. Pharm. Sci. 2014, 4, 61–64. [Google Scholar]
- World Health Organization. Probiotics in Food Health and Nutritional Properties and Guidelines for Evaluation; Food and Agriculture Organization of the United Nation: Rome, Italy, 2011; pp. 1–50. [Google Scholar]
- Piatkowska, E.; Kopec, A.; Leszczynska, T. Anthocyanins-their profile, occurrence, and impact on human organism. ZYWNOSC-Nauka Technol. Jakosc. 2011, 4, 24–35. [Google Scholar] [CrossRef]
- Chrubasik, C.; Li, G.; Chrubasik, S. The clinical effectiveness of chokeberry: A systematic review. Phytother. Res. PTR 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strugala, P.; Dudra, A.; Gabrielska, J. Activity of blackcurrant and chokeberry extracts and two major cyanidin glycosides against lipid membrane oxidation and their binding properties to albumin. Acta Pol. Pharm. 2017, 74, 679–687. [Google Scholar] [PubMed]
- Kris-Etherton, P.; Hecker, K.D.; Bonanome, A.; Coval, S.; Binkoski, A.; Hilpert, K.; Griel, A.; Etherton, T. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71S–88S. [Google Scholar] [CrossRef]
- Anhê, F.F.; Desjardins, Y.; Pilon, G.; Dudonné, S.; Genovese, M.I.; Lajolo, F.M.; Marette, A. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition 2013, 1, 105–114. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Wang, L.-S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2012, 269, 281–29052. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, H. Structure–dependent membrane interaction of flavonoids associated with their bioactivity. Food Chem. 2010, 120, 4–1089. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Influence of membrane lipid composition on flavonoid–membrane interactions: Implications on their biological activity. Prog Lipid Res. 2015, 58, 1–13. [Google Scholar] [CrossRef]
- Strugala, P.; Dudra, A.; Kucharska, A.Z.; Sokół–Łętowska, A.; Wojnicz, D.; Cisowska, A.; Hendrich, A.B. Biological Activity of the Methanol and Water Extracts of the Fruits of Anthocyanin–Rich Plants Grown in South–West Poland. Nat. Prod. Commun. 2015, 10, 474–476. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Byrem, T.M.; Nair, M.G.; Strasburg, G.M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 2000, 373, 102–109. [Google Scholar] [CrossRef]
- Strugała, P.; Dudra, A.; Gabrielska, J. Interaction between mimic lipid membranes and acylated and nonacylated cyanidin and its bioactivity. J. Agric. Food Chem. 2016, 64, 7414–7422. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Kandasamy, S.; Devi, P.B.; Shetty, P.H. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—A review. Food Biosci. 2018, 21, 34–44. [Google Scholar] [CrossRef]
- Kosseva, M.R. Management and Processing of Food Wastes. In Comprehensive Biotechnology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 6, pp. 558–593. [Google Scholar]
- Kasmi, M.; Hamdi, M.; Trabelsi, I. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. Environ. Sci. Pollut. Res. Int. 2017, 24, 13604–13613. [Google Scholar] [CrossRef] [PubMed]
- Breton Toral, A.; Trejo Estrada, S.R.; McDonald, A.G. Lactic Acid Production from Potato Peel Waste, Spent Coffee Grounds and Almond Shells with Undefined Mixed Cultures Isolated from Coffee Mucilage from Coatepec Mexico. Ferment. Technol. 2016, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dimitrellou, D.; Panagiotis, K.; Kourkoutas, Y. Effect of cooling rate, freeze-drying, and storage on survival of free and immobilized Lactobacillus casei ATCC 393. LWT Food Sci. Technol. 2016, 69, 468–473. [Google Scholar] [CrossRef]
- Manohar, P.; Ramesh, N. Improved lyophilization conditions for long-term storage of bacteriophages. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bircher, L.; Geirnaert, A.; Hammes, F.; Lacroix, C.; Schwab, C. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb. Biotechnol. 2018, 11, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Broeckx, G.; Vandenheuvel, D.; Claes, I.J.J.; Lebeer, S.; Kiekens, F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. [Google Scholar] [CrossRef]
- Mendoza, G.M.; Pasteris, S.E.; Otero, M.C.; Nader-Macías, M.E.F. Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. J. Appl. Microbiol. 2014, 116, 157–166. [Google Scholar] [CrossRef]
- Chang, L.; Shepherd, D.; Sun, J.; Ouellette, D.; Grant, K.L.; Tang, X.; Pikal, M.J. Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J. Pharm. Sci. 2005, 94, 1427–1444. [Google Scholar] [CrossRef]
- Bolla, P.A.; Serradell, M.; de los, A.; de Urraza, P.J.; De Antoni, G.L. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. J. Dairy Res. 2011, 78, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.Y.; Gul, M.Z.; Lohamror, L.R.; Qureshi, I.A.; Ghazi, I.A. An in vitro Study of the Antioxidant and Antiproliferative Properties of Artemisia absinthium-A Potent Medicinal Plant. Free Radic. Antioxid. 2018, 8, 160–164. [Google Scholar]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.L.; Vieira, M.D.C.; Pereira, Z.V. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papuc, C.; Diaconescu, C.; Nicorescu, V. Antioxidant activity of sea buckthorn (Hippophae Rhamnoides) extracts compared with common food additives. Roum. Biotechnol. Lett. 2008, 13, 4049–4053. [Google Scholar]
- Amensour, M.; Sendra, E.; Abrini, J.; Pérez-Alvarez, J.A.; Fernández-López, J. Antioxidant activity and total phenolic compounds of myrtle extracts. CYTA J. Food 2010, 8, 95–101. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Manuel Domínguez, J.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Carlos Parajó, J. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Ding, W.; Wang, L.; Zhang, J.; Ke, W.; Zhou, J.; Zhu, J.; Guo, X.; Long, R. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J. Funct. Foods 2017, 35, 481–488. [Google Scholar] [CrossRef]
Inhibition Zones of the Growth of Pathogenic Bacteria by Artemisia absinthium Water Extract, mm | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pathogenic and Opportunistic Strains | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
- | - | - | - | - | - | - | - | - | - | - | - | - | - | 20.0 ± 4.1 |
Inhibition Zones of the Growth of Pathogenic Bacteria by LUHS245, mm | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
14.1 ± 0.2 f | 13.3 ± 0.2 e | 16.0 ± 0.2 d | 15.3 ± 0.4 e | 15.3 ± 0.2 d | 16.3 ±0.5 g | 16.1 ± 0.3 e | 20.0 ± 0.5 e | 21.5 ± 0.3 h | - | 13.3 ± 0.2 b | 14.1 ± 0.3 c | 19.5 ± 0.4 f | 16.4 ± 0.3 c | 22.0 ± 0.2 b |
Inhibition Zones of the Growth of Pathogenic Bacteria by Blackcurrant Juice Preparation By-products, mm | ||||||||||||||
- | 10.2 ± 0.2 a | 16.2 ±0.1 d | 14.6 ± 0.1 c | 12.2 ± 0.3 b | 14.0 ± 0.2 c | 12.5 ± 0.1 b | 14.3 ± 0.3 c | 21.4 ± 0.2 h | 20.1 ± 0.1 g | - | 10.3 ± 0.2 a | 17.0 ± 0.3 e | 18.1 ± 0.4 f | 30.7 ± 0.5 i |
Pathogenic and Opportunistic Strains | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
A EO | + | + | + | + | + | - | + | - | - | - | + | + | - | + | - |
Aex 10% | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Aex 20% | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Aex 30% | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Pathogen control | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Sugars | Lactobacillus uvarum LUHS245 | |||
---|---|---|---|---|
Incubation, h | ||||
12 h | 24 h | 48 h | ||
Lactic Acid Bacteria Count, log10 CFU mL−1 | ||||
6.28 ± 0.16 a | 5.34 ± 0.14 a | 4.29 ± 0.14 a | ||
Glucose | 0.5 | 6.98 ± 0.09 c | 6.91 ± 0.12 b,c | 6.92 ± 0.11 d |
1.0 | 6.39 ± 0.11 a,b | 6.73 ± 0.14 b,c | 7.06 ± 0.12 e | |
1.5 | 6.42 ± 0.12 a,b | 6.40 ± 0.16 b | 6.35 ± 0.14 b | |
2.0 | 6.41 ± 0.14 a,b | 6.75 ± 0.12 b,c | 7.12 ± 0.09 e | |
2.5 | 6.20 ± 0.12 a | 7.40 ± 0.11 d | 7.21 ± 0.13 e | |
3.0 | 6.83 ± 0.11 c | 6.63 ± 0.12 b,c | 6.60 ± 0.14 c | |
3.5 | 6.20 ± 0.12 a | 6.52 ± 0.13 b | 6.69 ± 0.10 c | |
4.0 | 6.46 ± 0.12 a,b | 6.61 ± 0.10 b,c | 6.80 ± 0.14 c | |
4.5 | 7.22 ± 0.15 d | 6.52 ± 0.14 b | 6.45 ± 0.11 b | |
5.0 | 6.34 ± 0.12 a | 6.54 ± 0.12 b | 6.65 ± 0.09 c | |
Yeast Extract | 0.5 | 7.23 ± 0.14 b | 6.63 ± 0.11 b | 7.21 ± 0.10 d |
1.0 | 7.28 ± 0.13 b | 7.22 ± 0.12 c | 6.56 ± 0.12 b | |
1.5 | 7.30 ± 0.13 b | 7.69 ± 0.13 d | 7.08 ± 0.11 c | |
2.0 | 7.53 ± 0.15 c | 8.11 ± 0.14 d | 7.01 ± 0.14 c | |
2.5 | 7.54 ± 0.14 c | 7.69 ± 0.12 d | 7.30 ± 0.10 e | |
3.0 | 7.83 ± 0.18 d | 7.85 ± 0.10 d | 7.73 ± 0.10 f | |
3.5 | 7.90 ± 0.13 d | 7.93 ± 0.14 d | 7.85 ± 0.10 f | |
4.0 | 7.94 ± 0.12 d | 7.92 ± 0.17 d | 7.90 ± 0.11 f | |
4.5 | 7.92 ± 0.13 d | 7.94 ± 0.12 d | 7.85 ± 0.12 f | |
5.0 | 7.90 ± 0.14 d | 8.06 ± 0.14 d | 7.84 ± 0.11 f | |
Saccharose | 0.5 | 6.82 ± 0.10 f | 7.83 ± 0.12 c | 8.21 ± 0.13 c |
1.0 | 6.19 ± 0.11 e | 7.84 ± 0.11 c | 7.84 ± 0.12 b | |
1.5 | 6.09 ± 0.12 d | 7.71 ± 0.13 c | 7.90 ± 0.10 b | |
2.0 | 6.08 ± 0.14 d | 7.75 ± 0.14 c | 7.81 ± 0.14 b | |
2.5 | 6.07 ± 0.10 d | 7.76 ± 0.12 c | 7.94 ± 0.12 b | |
3.0 | 5.60 ± 0.15 c | 5.11 ± 0.10 a | 7.51 ± 0.10 a | |
3.5 | 5.41 ± 0.13 b | 5.52 ± 0.12 b | 7.49 ± 0.13 a | |
4.0 | 5.10 ± 0.12 a | 5.10 ± 0.10 a | 7.45 ± 0.14 a | |
4.5 | 5.13 ± 0.14 a | 5.11 ± 0.11 a | 7.42 ± 0.11 a | |
5.0 | 5.11 ± 0.10 a | 5.39 ± 0.13 b | 7.40 ± 0.09 a |
Formulations of the Different Layers of Nutraceutical | Colour Coordinates, NBS | Texture Hardness, mJ | TPC Content, mg 100 g−1 d.m. | Antioxidant Activity, % | Overall Acceptability | ||||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | |||||||
Aex+Ag | 24.29 ± 0.12 b | 1.37 ± 0.10 b | 7.94 ± 0.23 a | 0.70 ± 0.09 c | 206.1 ± 5.6 a | 42.68 ± 2.4 b | 40.6 ± 5.3 a | ||
Aex+G | 57.78 ± 0.10 f | 1.59 ± 0.14 b | 25.39 ± 0.19 c | 0.85 ± 0.11 c | 195.6 ± 6.2 a | 36.47 ± 3.1 a | 38.0 ± 4.4 a | ||
Aex+Ag+245 | 48.72 ± 0.21 d | 0.77 ± 0.09 a | 20.94 ± 0.17 b | 0.30 ± 0.06 b | 219.0 ± 7.1 b | 78.35 ± 4.8 d | 52.8 ± 6.4 a,b | ||
Aex+G+245 | 54.04 ± 0.13 e | 4.69 ± 0.15 d | 25.43 ± 0.21 c | 0.23 ± 0.05 a | 230.1 ± 4.9 c | 72.74 ± 3.9 c | 43.0 ± 5.0 a | ||
Aex+Ag+245+Bl | 23.52 ± 0.20 a | 11.15 ± 0.11 f | 7.75 ± 0.16 a | 1.10 ± 0.09 d | 270.3 ± 6.8 e | 81.96 ± 4.5 d | 125.4 ± 6.1 c,d | ||
Aex+G+245+Bl | 22.11 ± 0.17 a | 10.19 ± 0.26 e | 7.26 ± 0.14 a | 0.20 ± 0.04 a | 264.6 ± 5.4 d | 75.15 ± 3.9 d | 103.2 ± 7.9 c | ||
First Layer (Aex+Ag and Aex+G) Tests of Between-Subjects Effects | |||||||||
Source | Dependent Variable | Type III Sum of Squares | df | Mean Square | F | Sig. | |||
Agar × Gelatin | L* | 1682.370 | 1 | 1682.370 | 137899.193 | 0.0001 | |||
a* | 0.073 | 1 | 0.073 | 4.905 | 0.091 | ||||
b* | 456.754 | 1 | 456.754 | 10264.129 | 0.0001 | ||||
Texture, mJ | 0.034 | 1 | 0.034 | 3.342 | 0.142 | ||||
TPC content, mg 100 g−1 d.m. | 165.375 | 1 | 165.375 | 4.739 | 0.095 | ||||
Antioxidant activity, % | 57.846 | 1 | 57.846 | 7.527 | 0.052 | ||||
Overall acceptability | 10.140 | 1 | 10.140 | 0.427 | 0.549 | ||||
First and second layer (Aex+Ag+245 and Aex+Ge+245) Tests of Between-Subjects Effects | |||||||||
Agar × Gelatin | L* | 42.454 | 1 | 42.454 | 1391.921 | 0.0001 | |||
a* | 23.050 | 1 | 23.050 | 1506.510 | 0.0001 | ||||
b* | 30.240 | 1 | 30.240 | 828.497 | 0.0001 | ||||
Texture, mJ | 0.007 | 1 | 0.007 | 2.410 | 0.196 | ||||
TPC content, mg 100 g−1 d.m. | 184.815 | 1 | 184.815 | 4.967 | 0.090 | ||||
Antioxidant activity, % | 47.208 | 1 | 47.208 | 2.468 | 0.191 | ||||
Overall acceptability | 144.060 | 1 | 144.060 | 4.368 | 0.105 | ||||
Whole nutraceutical formulation (Aex+Ag+245+Bl and Aex+G+245+Bl) Tests of Between-Subjects Effects | |||||||||
Agar × Gelatin | L* | 2.982 | 1 | 2.982 | 86.565 | 0.001 | |||
a* | 1.382 | 1 | 1.382 | 34.690 | 0.004 | ||||
b* | 0.360 | 1 | 0.360 | 15.936 | 0.016 | ||||
Texture, mJ | 1.215 | 1 | 1.215 | 250.515 | 0.0001 | ||||
TPC content, mg 100 g−1 d.m. | 48.735 | 1 | 48.735 | 1.293 | 0.319 | ||||
Antioxidant activity, % | 69.564 | 1 | 69.564 | 3.924 | 0.119 | ||||
Overall acceptability | 223.260 | 1 | 223.260 | 4.482 | 0.102 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkiene, E.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Zokaityte, E.; Varinauskaite, I.; Pileckaite, G.; Paskeviciute, L.; Rutkauskaite, G.; Kanaporis, T.; et al. Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods 2020, 9, 433. https://doi.org/10.3390/foods9040433
Bartkiene E, Lele V, Starkute V, Zavistanaviciute P, Zokaityte E, Varinauskaite I, Pileckaite G, Paskeviciute L, Rutkauskaite G, Kanaporis T, et al. Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods. 2020; 9(4):433. https://doi.org/10.3390/foods9040433
Chicago/Turabian StyleBartkiene, Elena, Vita Lele, Vytaute Starkute, Paulina Zavistanaviciute, Egle Zokaityte, Ieva Varinauskaite, Greta Pileckaite, Laura Paskeviciute, Gintare Rutkauskaite, Tomas Kanaporis, and et al. 2020. "Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner" Foods 9, no. 4: 433. https://doi.org/10.3390/foods9040433
APA StyleBartkiene, E., Lele, V., Starkute, V., Zavistanaviciute, P., Zokaityte, E., Varinauskaite, I., Pileckaite, G., Paskeviciute, L., Rutkauskaite, G., Kanaporis, T., Dmitrijeva, L., Viskelis, P., Santini, A., & Ruzauskas, M. (2020). Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods, 9(4), 433. https://doi.org/10.3390/foods9040433