The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Lipid Extraction
2.2.2. Determination of the Fatty Acid Profile
2.2.3. The Lipid Quality Indices
+ (3 × Σn-3 PUFA) + Σn-3 PUFA/Σn-6PUFA)
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Composition and Lipid Quality Indices in Cheeses
3.2. The Contents of CLA and Trans C18:1 and Trans C18:2 Fatty Acids in Cheeses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ojha, S.; Argade, A.; Raje, K.; Kumar, D.; Ahlawat, S.S. Importance of bovine milk in human diet and effect of adulterated milk on human health. Pharma Innov. J. 2018, 7, 453–457. [Google Scholar]
- Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The overall and fat composition of milk of various species. Mljekarstvo 2015, 65, 223–231. [Google Scholar] [CrossRef]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Månsson, H.L. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1–3. [Google Scholar] [CrossRef]
- Bernard, L.; Bonnet, M.; Delavaud, C.; Delosiére, M.; Ferlay, A.; Fougére, H.; Graulet, B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol. 2018, 102, 1–27. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Parodi, P.W. Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int. Dairy J. 2009, 19, 345–361. [Google Scholar] [CrossRef]
- Praagmana, J.; Vissersa, L.E.T.; Mulliganb, A.A.; Dam Laursenc, A.S.; Beulensa, J.W.J.; van der Schouwa, Y.T.; Warehame, N.J.; Hansenc, C.P.; Khawb, K.-T.; Jakobsenc, M.U.; et al. Consumption of individual saturated fatty acids and the risk of myocardial infarction in a UK and a Danish cohort. Int. J. Cardiol. 2019, 279, 18–26. [Google Scholar] [CrossRef]
- Lordan, R.; Zabetakis, I. Invited review: The anti-inflammatory properties of dairy lipids. J. Dairy Sci. 2017, 100, 4197–4212. [Google Scholar] [CrossRef]
- Huth, P.J.; Park, K.M. Influence of dairy product and milk fat consumption on cardiovascular disease risk: A review of the evidence. Adv. Nutr. 2012, 3, 266–285. [Google Scholar] [CrossRef]
- Brabech Mortensen, P.; Rye Clausen, M. Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scand. J. Gastroenterol. 1996, 31 (Suppl. 216), 132–148. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.M. Dietary fatty acids and human health. Ann. Zootech. 2000, 49, 165–180. [Google Scholar] [CrossRef]
- Akalln, A.S.; Tokusoglu, Ö. A potential Anticarcinogenic Agent: Conjugated linoleic acid (CLA). Pak. J. Nutr. 2003, 2, 109–110. [Google Scholar] [CrossRef][Green Version]
- Aydin, R. Conjugated linoleic acid: Structure, sources and biological properties. Turk. J. Vet. Anim. Sci. 2005, 29, 189–195. [Google Scholar]
- Kee, J.-I.; Ganesan, P.; Kwak, H.-S. Bioactive conjugated linoleic acid (CLA) in milk. Korean J. Food Sci. Anim. Resour. 2010, 30, 879–885. [Google Scholar] [CrossRef]
- Lim, J.-N.; Oh, J.-J.; Wang, T.; Lee, J.-S.; Kim, S.-H.; Kim, Y.-H.; Lee, H.-G. trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients 2014, 6, 627–636. [Google Scholar] [CrossRef]
- Santin Junior, I.A.; Silva, K.C.C.; Cucco, D.C. Milk fatty acids profile and the impact on human health. Dairy and Vet. Sci. J. 2019, 10, 555779. [Google Scholar] [CrossRef]
- Precht, D.; Molkentin, J. Effect of feeding on trans positional isomers of octadecenoic acid in milk fats. Milchwissenschaft 1997, 52, 564–568. [Google Scholar]
- Kelsey, J.A.; Corl, B.A.; Collier, R.J.; Bauman, D.E. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003, 86, 2588–2597. [Google Scholar] [CrossRef]
- Żegarska, Z.; Paszczyk, B.; Rafałowski, R.; Borejszo, Z. Annual changes in the content of unsaturated fatty acids with 18 carbon atoms, including cis9trans11 C18:2 (CLA) acid, in milk fat. Pol. J. Food Nutr. Sci. 2006, 4, 409–414. [Google Scholar]
- Zunong, M.; Hanada, M.; Aibibula, Y.; Okamato, M.; Tanaka, K. Variations in conjugated linoleic acid concentrations in cow’s milk, depending on feeding systems in different seasons. Asian Aust. J. Anim. Sci. 2008, 21, 1466–1472. [Google Scholar] [CrossRef]
- Frelich, J.; Šlachta, M.; Hanuš, O.; Špička, J.; Samková, E.; Węglarz, A.; Zapletal, P. Seasonal variation in fatty acid composition of cow milk in relation to the feeding system. Anim. Sci. Pap. Rep. 2012, 30, 219–229. [Google Scholar]
- Hanuš, O.; Krížová, L.; Samková, E.; Špička, J.; Kuˇcera, J.; Klimešová, M.; Roubal, P.; Jedelská, R. The effectof cattle bread, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016, 59, 373–380. [Google Scholar] [CrossRef]
- Sieber, R.; Collomb, M.; Aeschlimann, A.; Jelen, P.; Eyer, H. Impact of microbial cultures on conjugated linoleic acid in dairy products—A review. Int. Dairy J. 2004, 14, 1–15. [Google Scholar] [CrossRef]
- Jiang, J.; Björck, L.; Fondėn, R. Production of conjugated linoleic acid by dairy starter cultures. J. App. Microbiol. 1998, 85, 95–102. [Google Scholar] [CrossRef]
- Lin, T.Y. Conjugated linoleic acid concentration as affected by lactic cultures and additives. Food Chem. 2000, 69, 27–31. [Google Scholar] [CrossRef]
- Bisig, W.; Eberhard, P.; Collomb, M.; Rehberger, B. Influence of processing on the fatty acid composition and the content of conjugated linoleic acid in organic and conventional dairy products-a review. Lait 2007, 87, 1–19. [Google Scholar] [CrossRef]
- Kim, Y.J.; Liu, R.H. Increase of conjugated linoleic acid content in milk by fermentation with lactic acid bacteria. J. Food Sci. 2002, 67, 1731–1737. [Google Scholar] [CrossRef]
- Lobos-Ortega, I.; Revilla, I.; González-Martín, I.; Hernández-Hierro, J.M.; Vivar-Quintana, A.; González-Pérez, C. Conjugated linoleic acid contents in cheeses of different compositions during six month of ripening. Czech J. Food Sci. 2012, 30, 220–226. [Google Scholar] [CrossRef]
- Paszczyk, B.; Brandt, W.; Łuczyńska, J. Content of conjugated linoleic acid (CLA) and trans isomers of C18:1 and C18:2 acids in fresh and stored fermented milks produced with selected starter cultures. Czech J. Food Sci. 2016, 34, 391–396. [Google Scholar] [CrossRef]
- Barłowska, J.; Szwajkowski, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 20, 291–302. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Avando, M.; Nudda, A.; Chesse, S.; Pirisi, A.; Banni, S. Nutritional properties of small ruminant food products and their role on human health. Small Rumin. Res. 2016, 136, 3–12. [Google Scholar] [CrossRef]
- Papetti, P.; Carelli, A. Composition and sensory analysis for quality evaluation of a typical italian cheese: Influence of Ripening Period. Czech J. Food Sci. 2013, 31, 438–444. [Google Scholar] [CrossRef]
- Christie, W.W. (Ed.) The isolation of lipids from tissues. Recommended Procedures. Chloroform-methanol (2:1, v/v) extraction and “Folch” wash. In Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon Press Oxford: New York, NY, USA; Toronto, Japan; Sydney, Australia; Braunschweig, Germany, 1973; pp. 39–40. [Google Scholar]
- ISO 15884:2002 (IDF 182:2002). Milkfat: Preparation of fatty acid methyl esters. Available online: https://www.iso.org/standard/28897.html (accessed on 10 September 2019).
- Osmari, E.K.; Cecato, U.; Macedo, F.A.F.; Souza, N.E. Nutritional quality indices of milk fat from goats on diets supplemented with different roughages. Small Ruminant Res. 2011, 98, 128–132. [Google Scholar] [CrossRef]
- Ivanova, A.; Hadzhinikolova, L. Evaluation of nutritional quality of common carp (Cyprinus carpio L.) lipidsthrough fatty acid ratios and lipid indices. Bulg. J. Agric. Sci. 2015, 21, 180–185. [Google Scholar]
- STATISTICA Version 13.1 Software; Statistica: Kraków, Poland, 2007.
- Kawęcka, A.; Radkowska, I.; Sikora, J. Concentrations of selected bioactive components in traditional cheeses made from goat’s, cow’s and sheep’s milk. J. Elem. 2020, 25, 431–442. [Google Scholar] [CrossRef]
- Hanuš, O.; Samková, E.; Krížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A Review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; Angel de la Fuente, M. Milk fat acids and potential health benefits: An update vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Tansini, G.; Brogna, N.; Piva, G. Different level of conjugated linoleic acid (CLA) in dairy products from Italy. J. Food Comp. Anal. 2007, 20, 472–479. [Google Scholar] [CrossRef]
- Milewski, S.; Ząbek, K.; Antoszkiewicz, Z.; Tański, Z.; Błażejek, J. Walory prozdrowotne serów z mleka owczego i koziego wytwarzanych w gospodarstwach Warmii i Mazur. Przegl. Hodow. 2016, 2, 20–22. [Google Scholar]
- Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharm. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Tóth, T.; Mwau, P.J.; Bázár, G.; Andrássy-Baka, G.; Hingyi, H.; Csavajda, E.; Varga, L. Effect of feed supplementation based on extruded linseed meal and fish oil on composition and sensory properties of raw milk and ultra-high temperature treated milk. Int. Dairy J. 2019, 99, 104552. [Google Scholar] [CrossRef]
- Aguilar, C.; Toro-Mujica, P.; Vargas-Bello-Pérez, R.; Ugalde, C.; Rodríguez, S.; Briones, I. A comparative study of the fatty acid profiles in commercial sheep cheeses. Grasas Aceites. 2014, 65, e048. [Google Scholar] [CrossRef][Green Version]
- Cossignani, L.; Giua, L.; Urbani, E.; Simonetti, M.S.; Blasi, F. Fatty acid composition and CLA content in goat milk and cheese samples from Umbrian market. Eur. Food Res. Technol. 2014, 239, 905–911. [Google Scholar] [CrossRef]
- Hirigoyen, D.; de los Santos, R.; Calvo, M.F.; Gonzales-Revello, A.; Constantin, M. Chemical composition and seasonal changes in the fatty acid profile of Uruguayan “Colonia” Cheeses. Grasas Aceites. 2018, 69, e254. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Wahle, K.W.J.; Heys, S.D.; Rotundo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 2004, 43, 553–587. [Google Scholar] [CrossRef]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, J.; Steinhart, H. Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Z. Fur Lebensm. Unters. Und Forsch. A 1998, 206, 77–82. [Google Scholar] [CrossRef]
- Zlatanos, S.; Laskardis, K.; Feist, C.; Sagredos, A. CLA content and fatty acid composition of Greek Feta and hard cheeses. Food Chem. 2002, 78, 471–477. [Google Scholar] [CrossRef]
- Gürsoy, O.; Seckin, A.K.; Kinik, O.; Metin, M. Conjugated linoleic acid (CLA) content of most popular Turkish hard and soft cheeses. Milchwissenschaft 2003, 58, 622–623. [Google Scholar]
- Grega, T.; Sady, M.; Najgebauer, D.; Domagała, J.; Pustkowiak, H.; Faber, B. Seasonal changes in the level of conjugated linoleic acid (CLA) in ripened cheeses. Biotechnol. Anim. Husb. 2005, 21, 251–253. [Google Scholar] [CrossRef]
- Żegarska, Z.; Paszczyk, B.; Borejszo, Z. Conjugated linoleic acid (CLA) and trans C18:1 and C18:2 isomers in fat of some commercial dairy products. Pol. J. Nat. Sci. 2008, 23, 248–256. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Piva, G. A comparative study of fatty acid composition and CLA concentration in commercial cheeses. J. Food Comp. Anal. 2011, 24, 55–61. [Google Scholar] [CrossRef]
- Dhiman, T.R.; Nam, S.-H.; Ure, M.L. Factors affecting conjugated linoleic acid content in milk and meat. Crit. Rev. Food Sci. Nutr. 2005, 45, 463–482. [Google Scholar] [CrossRef]
- Lock, A.L.; Parodi, P.W.; Bauman, D.E. The biology of trans fatty acids: Implications for human health and the dairy industry. Aust. J. Dairy Technol. 2005, 60, 134–142. [Google Scholar]
- Shingfield, K.J.; Chilliard, Y.; Toivonen, P.; Kairenius, P.; Givens, D.I. Trans fatty acids and bioactive lipids in ruminant milk. Adv. Exp. Med. Biol. 2008, 606, 3–65. [Google Scholar] [CrossRef]
- Ascherio, A.; Katan, M.B.; Zock, P.L.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and coronary heart disease. N. Engl. J. Med. 1999, 340, 1994–1998. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
Fatty Acid | Cow Cheeses | Sheep Cheeses | Goat Cheeses | ||||||
---|---|---|---|---|---|---|---|---|---|
n | 10 | 10 | 10 | ||||||
Mean | ±SD | Min–Max | Mean | ± SD | Min–Max | Mean | ±SD | Min–Max | |
C4:0 | 3.04 a | 0.40 | 2.19–3.34 | 2.83 a | 0.41 | 2.49–3.39 | 2.17 b | 0.86 | 1.13–3.62 |
C6:0 | 2.06 b | 0.33 | 1.83–2.31 | 2.42 a | 0.32 | 1.69–2.26 | 2.29 a | 0.32 | 1.79–2.80 |
C8:0 | 1.31 b | 0.11 | 1.05–1.40 | 2.33 a | 0.48 | 1.51–2.78 | 2.39 a | 0.57 | 1.54–3.09 |
C10:0 | 2.97 b | 0.12 | 2.80–3.18 | 7.14 a | 1.73 | 3.52–8.64 | 7.95 a | 2.81 | 3.78–10.90 |
C10:1 | 0.30 a | 0.02 | 0.27–0.32 | 0.27 a | 0.03 | 0.24–0.33 | 0.30 a | 0.10 | 0.19–0.49 |
C11:0 | 0.05 c | 0.01 | 0.04–0.06 | 0.08 b | 0.02 | 0.04–0.10 | 0.11 a | 0.01 | 0.09–0.13 |
C12:0 | 3.22 c | 0.52 | 1.86–3.58 | 4.40 b | 0.52 | 3.25–4.99 | 5.19 a | 0.78 | 4.34–6.44 |
C12:1 | 0.04 a | 0.00 | 0.04–0.05 | 0.04 a | 0.01 | 0.02–0.06 | 0.03 b | 0.01 | 0.02–0.04 |
C13:0 iso | 0.07 a | 0.00 | 0.07–0.08 | 0.04 b | 0.01 | 0.03–0.08 | 0.07 a | 0.03 | 0.03–0.13 |
C13:0 | 0.10 b | 0.01 | 0.08–0.12 | 0.09 b | 0.03 | 0.06–0.15 | 0.13 a | 0.03 | 0.07–0.18 |
C14:0 iso | 0.20 a | 0.08 | 0.11–0.28 | 0.14 a | 0.05 | 0.10–0.26 | 0.11 a | 0.02 | 0.09–0.15 |
C14:0 | 11.39 a | 0.27 | 11.03–11.67 | 11.48 a | 0.90 | 10.37–12.66 | 11.86 a | 1.38 | 9.66–14.72 |
C15:0 iso | 0.43 a | 0.12 | 0.28–0.55 | 0.30 a | 0.08 | 0.23–0.48 | 0.22 a | 0.04 | 0.17–0.29 |
C15:0 aiso | 0.54 a | 0.04 | 0.50–0.62 | 0.50 a | 0.10 | 0.41–0.68 | 0.45 b | 0.12 | 0.33–0.69 |
C14:1 | 0.97 a | 0.07 | 0.86–1.07 | 0.30 b | 0.26 | 0.16–0.98 | 0.53 b | 0.55 | 0.32–1.51 |
C15:0 | 1.20 a | 0.05 | 1.14–1.31 | 1.11 a | 0.14 | 0.99–1.42 | 1.18 a | 0.27 | 0.86–1.68 |
C16:0 iso | 0.31 a | 0.02 | 0.27–0.33 | 0.30 a | 0.08 | 0.25–0.49 | 0.28 a | 0.05 | 0.21–0.38 |
C16:0 | 29.70 a | 1.03 | 27.71–31.02 | 26.75 a | 1.92 | 24.52–30.99 | 28.66 a | 1.69 | 25.26–32.56 |
C17:0 iso | 0.43 b | 0.05 | 0.37–0.54 | 0.48 a | 0.10 | 0.37–0.60 | 0.39 b | 0.04 | 0.32–0.44 |
C17:0 aiso | 0.23 b | 0.02 | 0.19–0.27 | 0.29 a | 0.04 | 0.24–0.36 | 0.28 a | 0.05 | 0.18–0.33 |
C16:1 | 1.63 a | 0.20 | 1.42–2.00 | 1.01 b | 0.36 | 0.66–1.86 | 1.15 b | 0.10 | 1.63–2.16 |
C17:0 | 0.72 a | 0.03 | 0.67–0.76 | 0.70 a | 0.09 | 0.62–0.73 | 0.70 a | 0.12 | 0.59–0.94 |
C17:1 | 0.27 a | 0.01 | 0.26–0.29 | 0.25 a | 0.05 | 0.21–0.35 | 0.24 a | 0.03 | 0.20–0.28 |
C18:0 | 10.55 a | 0.51 | 9.73–11.52 | 9.50 b | 0.69 | 8.30–10.43 | 8.22 c | 1.36 | 6.74–20.24 |
trans6 − trans9 C18:1 | 0.45 a | 0.02 | 0.42–0.48 | 0.48 a | 0.07 | 0.39–0.58 | 0.45 a | 0.12 | 0.30–0.64 |
trans10 + trans11 C18:1 | 1.81 a | 0.31 | 1.33–2.22 | 2.06 a | 0.69 | 1.19–3.69 | 1.23 b | 0.36 | 0.93–1.84 |
trans 12 C18:1 | 0.30 a | 0.02 | 0.27–0.33 | 0.37 a | 0.09 | 0.25–0.49 | 0.30 a | 0.09 | 0.17–0.46 |
cis9 C18:1 | 20.60 a | 0.40 | 20.12–21.19 | 18.29 b | 1.39 | 15.58–19.92 | 18.15 b | 1.45 | 16.88–21.58 |
cis11 C18:1 | 0.73 a | 0.05 | 0.68–0.86 | 0.50 c | 0.04 | 0.45–0.56 | 0.62 b | 0.14 | 0.46–0.89 |
cis12 C18:1 | 0.27 a | 0.04 | 0.20–0.30 | 0.32 a | 0.13 | 0.11–0.46 | 0.28 a | 0.10 | 0.18–0.46 |
cis13 C18:1 | 0.11 b | 0.01 | 0.10–0.12 | 0.08 a | 0.01 | 0.05–0.09 | 0.07 a | 0.02 | 0.05–0.10 |
trans16 C18:1 | 0.33 a | 0.02 | 0.28–0.35 | 0.36 a | 0.06 | 0.26–0.49 | 0.26 b | 0.06 | 0.19–0.39 |
C19:0 | 0.19 a | 0.02 | 0.17–0.21 | 0.24 a | 0.04 | 0.21–0.35 | 0.16 c | 0.02 | 0.14–0.20 |
cis9trans13 C18:2 | 0.19 c | 0.02 | 0.16–0.23 | 0.31 a | 0.05 | 0.27–0.43 | 0.23 b | 0.03 | 0.18–0.28 |
cis9trans12 C18:2 | 0.18 b | 0.01 | 0.17–0.20 | 0.26 a | 0.03 | 0.22–0.32 | 0.21 b | 0.04 | 0.16–0.29 |
trans9cis12 C18:2 | 0.03 a | 0.02 | 0.01–0.05 | 0.03 a | 0.03 | 0.01–0.09 | 0.14 a | 0.05 | 0.07–0.23 |
trans11cis15 C18:2 | 0.22 a | 0.08 | 0.12–0.32 | 0.22 a | 0.14 | 0.06–0.50 | 0.14 b | 0.07 | 0.05–0.31 |
cis9cis12 C18:2 | 1.55 b | 0.08 | 1.42–1.66 | 2.22 a | 0.60 | 1.00–2.81 | 2.07 a | 0.36 | 1.65–2.70 |
C20:0 | 0.16 b | 0.01 | 0.15–0.18 | 0.25 a | 0.10 | 0.14–0.49 | 0.17 b | 0.03 | 0.12–0.22 |
C20:1 | 0.11 a | 0.01 | 0.11–0.12 | 0.02 b | 0.03 | 0.01–0.11 | 0.05 b | 0.05 | 0.02–0.10 |
cis9cis12cis15 C18:3 | 0.48 b | 0.11 | 0.33–0.60 | 0.56 a | 0.19 | 0.37–0.75 | 0.34 b | 0.07 | 0.22–0.51 |
cis9trans11 C18:2 (CLA) | 0.65 a,b | 0.12 | 0.47–0.83 | 0.75 a | 0.32 | 0.49–1.51 | 0.48 b | 0.10 | 0.37–0.64 |
Cow Cheeses | Sheep Cheeses | Goat Cheeses | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | 10 | 10 | 10 | |||||||||
Mean | SD | Min–Max | Mean | SD | Min–Max | Mean | SD | Min–Max | ||||
Σ SCFA 1 | 9.38 b | 0.87 | 7.64 | 10.11 | 14.73 a | 2.55 | 10.43 | 17.15 | 14.80 a | 2.80 | 10.55 | 18.45 |
Σ SFA 2 | 59.41 a | 0.91 | 58.37 | 60.81 | 56.61 b | 1.94 | 54.60 | 60.65 | 58.08 a,b | 3.27 | 52.72 | 61.64 |
Σ MUFA 3 | 27.92 a | 0.55 | 27.11 | 28.56 | 24.36 b | 2.08 | 21.05 | 28.52 | 23.66 b | 2.90 | 21.41 | 30.56 |
Σ PUFA 4 | 3.31 b | 0.33 | 2.84 | 3.73 | 4.36 a | 0.25 | 3.92 | 4.65 | 3.49 b | 0.47 | 2.99 | 4.24 |
n-3 | 0.48 a | 0.11 | 0.33 | 0.60 | 0.56 a | 0.19 | 0.37 | 0.75 | 0.34 b | 0.07 | 0.22 | 0.51 |
n-6 | 1.55 b | 0.08 | 1.42 | 1.66 | 2.22 a | 0.60 | 1.00 | 2.81 | 2.07 a | 0.36 | 1.65 | 2.45 |
n6/n3 | 3.37 b | 0.81 | 2.77 | 4.97 | 4.62 b | 2.22 | 1.14 | 7.43 | 6.43 a | 1.98 | 4.68 | 11.14 |
UFA 5 | 31.23 a | 0.77 | 29.95 | 32.02 | 28.72 b | 2.17 | 25.14 | 32.98 | 27.15 b | 3.06 | 24.36 | 34.34 |
DFA 6 | 41.78 a | 1.17 | 40.08 | 43.51 | 38.21 b | 2.43 | 33.79 | 42.18 | 35.37 c | 4.20 | 31.30 | 44.55 |
OFA 7 | 48.86 a | 1.27 | 46.85 | 50.02 | 47.11 a | 2.60 | 44.17 | 52.35 | 49.87 a | 4.43 | 42.51 | 53.73 |
AI 8 | 1.63 b | 0.06 | 1.56 | 1.74 | 2.85 a | 0.30 | 2.48 | 3.44 | 1.78 b | 0.32 | 1.12 | 2.14 |
TI 9 | 3.13 a | 0.13 | 2.94 | 3.36 | 3.14 a | 0.29 | 2.62 | 3.63 | 2.67 b | 0.44 | 1.58 | 3.13 |
H/H 10 | 0.55 a | 0.02 | 0.52 | 0.60 | 0.55 a | 0.05 | 0.52 | 0.63 | 0.52 a | 0.10 | 0.44 | 0.75 |
Cow Cheeses | Sheep Cheeses | Goat Cheeses | |||||||
---|---|---|---|---|---|---|---|---|---|
n | 10 | 10 | 10 | ||||||
Mean | SD | Min–Max | Mean | SD | Min–Max | Mean | SD | Min–Max | |
cis9trans11 C18:2 (CLA) | 0.65 a,b | 0.12 | 0.46–0.85 | 0.75 a | 0.31 | 0.49–1.52 | 0.48 b | 0.10 | 0.36–0.61 |
trans6 − trans9 C18:1 | 0.45 a | 0.02 | 0.41–0.48 | 0.48 a | 0.08 | 0.35–0.58 | 0.44 a | 0.12 | 0.29–0.60 |
trans10 + trans11 C18:1 | 1.81 a | 0.30 | 1.31–2.29 | 2.05 a | 0.67 | 1.16–3.71 | 1.23 b | 0,35 | 0.93–1.91 |
trans 12 C18:1 | 0.30 a | 0.03 | 0.27–0.34 | 0.37 a | 0.09 | 0.24–0.49 | 0.30 a | 0.30 | 0.16–0.51 |
trans16 C18:1 | 0.32 a | 0.02 | 0.28–0.35 | 0.36 a | 0.06 | 0.25–0.44 | 0.26 b | 0.06 | 0.18–0.34 |
Σ trans C18:1 | 2.89 a | 0.33 | 2.58–3.27 | 3.27 a | 0.71 | 2.10–4.74 | 2.24 b | 0.58 | 1.74–3.04 |
cis9trans13 C18:2 | 0.19 c | 0.02 | 0.16–0.23 | 0.31 a | 0.05 | 0.26–0.43 | 0.23 b | 0.04 | 0.17–0.32 |
cis9trans12 C18:2 | 0.18 b | 0.02 | 0.14–0.24 | 0.26 a | 0.04 | 0.18–0.34 | 0.21 b | 0.05 | 0.14–0.29 |
trans9cis12 C18:2 | 0.03 a | 0.02 | 0.01–0.06 | 0.03 a | 0.03 | 0.01–0.11 | 0.01 a | 0.02 | 0.01–0.07 |
trans11cis15 C18:2 | 0.22 a | 0.08 | 0.12–0.32 | 0.22 a | 0.14 | 0.06–0.50 | 0.14 a | 0.07 | 0.05–0.31 |
Σ trans C18:2 | 0.63 b | 0.09 | 0.50–0.75 | 0.82 a | 0.19 | 0.63–1.18 | 0.60 b | 0.08 | 0.05–0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszczyk, B.; Łuczyńska, J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods 2020, 9, 1667. https://doi.org/10.3390/foods9111667
Paszczyk B, Łuczyńska J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods. 2020; 9(11):1667. https://doi.org/10.3390/foods9111667
Chicago/Turabian StylePaszczyk, Beata, and Joanna Łuczyńska. 2020. "The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses" Foods 9, no. 11: 1667. https://doi.org/10.3390/foods9111667
APA StylePaszczyk, B., & Łuczyńska, J. (2020). The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods, 9(11), 1667. https://doi.org/10.3390/foods9111667