Variation in Nutrient Composition of Seafood from North West Africa: Implications for Food and Nutrition Security
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Analytical Methods
2.3. Determination of Crude Fat and Protein, Ash, Energy, Fatty Acids, Amino Acids, Vitamins, and Minerals
2.4. Data Management
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belhabib, D.; Sumaila, U.R.; Pauly, D. Feeding the poor: Contribution of West African fisheries to employment and food security. Ocean. Coast. Manag. 2015, 111, 72–81. [Google Scholar] [CrossRef]
- Watson, R.A.; Green, B.S.; Tracey, S.R.; Farmery, A.; Pitcher, T.J. Provenance of global seafood. Fish 2015, 17, 585–595. [Google Scholar] [CrossRef]
- Thomson, B.; Amoroso, L. Combating Micronutrient Deficiencies: Food-Based Approaches; Food and Agriculture Organization of the United Nations and CABI: Wallingford, Oxfordshire, UK, 2010. [Google Scholar]
- Van Horn, L.; McCoin, M.; Kris-Etherton, P.M.; Burke, F.; Carson, J.A.S.; Champagne, C.M.; Karmally, W.; Sikand, G. The Evidence for Dietary Prevention and Treatment of Cardiovascular Disease. J. Am. Diet. Assoc. 2008, 108, 287–331. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Joint FAO/WHO Expert Consultation on the Risk and Benefits of Fish Consumption; Food and Agricultural Organization of the United Nations and World Health Organization Rome: Rome, Italy, 2011.
- Calder, P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid Sci. Technol. 2014, 116, 1280–1300. [Google Scholar] [CrossRef]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2017, 77, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Dietary (n-3) Fatty Acids and Brain Development. J. Nutr. 2007, 137, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Nordhagen, A.; Rizwan, A.A.M.; Aakre, I.; Reksten, A.M.; Pincus, L.; Bøkevoll, A.; Mamun, A.; Thilsted, S.H.; Htut, T.; Somasundaram, T.; et al. Nutrient Composition of Demersal, Pelagic, and Mesopelagic Fish Species Sampled Off the Coast of Bangladesh and Their Potential Contribution to Food and Nutrition Security—The EAF-Nansen Programme. Foods 2020, 9, 730. [Google Scholar] [CrossRef]
- Reksten, A.M.; Somasundaram, T.; Kjellevold, M.; Nordhagen, A.; Bøkevoll, A.; Pincus, L.M.; Rizwan, A.A.M.; Mamun, A.; Thilsted, S.H.; Htut, T.; et al. Nutrient composition of 19 fish species from Sri Lanka and potential contribution to food and nutrition security. J. Food Compos. Anal. 2020, 91, 103508. [Google Scholar] [CrossRef]
- Roos, N.; Wahab, A.; Chamnan, C.; Thilsted, S.H. The Role of Fish in Food-Based Strategies to Combat Vitamin A and Mineral Deficiencies in Developing Countries. J. Nutr. 2007, 137, 1106–1109. [Google Scholar] [CrossRef] [Green Version]
- Rittenschober, D.; Stadlmayr, B.; Nowak, V.; Du, J.; Charrondière, U.R. Report on the development of the FAO/INFOODS user database for fish and shellfish (uFiSh)—Challenges and possible solutions. Food Chem. 2016, 193, 112–120. [Google Scholar] [CrossRef]
- Nerhus, I.; Markhus, M.W.; Nilsen, B.M.; Øyen, J.; Maage, A.; Ødegård, E.R.; Midtbø, L.K.; Frantzen, S.; Kögel, T.; Graff, I.E.; et al. Iodine content of six fish species, Norwegian dairy products and hen’s egg. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilami, S.K.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2017, 26, 243–253. [Google Scholar] [CrossRef]
- Arístegui, J.; Barton, E.D.; Álvarez-Salgado, X.A.; Santos, A.M.P.; Figueiras, F.G.; Kifani, S.; Hernández-León, S.; Mason, E.; Machú, E.; Demarcq, H. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 2009, 83, 33–48. [Google Scholar] [CrossRef] [Green Version]
- FAO. FishStatJ—Software for Fishery and Aquaculture Statistical Time Series. Cecaf (Eastern Central Atlantic) Capture Production 1970–2016. Available online: Http://www.Fao.Org/fishery/statistics/software/fishstatj/en (accessed on 23 May 2019).
- Stadlmayr, B.; Charrondiere, U.R.; Enujiugha, V.N.; Bayili, R.G.; Fagbohoun, E.G.; Samb, B.; Addy, P.; Barikmo, I.; Ouattara, F.; Oshaug, A.; et al. West. African Food Composition Table; FAO: Rome, Italy, 2012. [Google Scholar]
- Bandarra, N.M.; Batista, I.; Nunes, M.L.; Empis, J.M. Seasonal variation in the chemical composition of horse-mackerel (Trachurus trachurus). Eur. Food Res. Technol. 2001, 212, 535–539. [Google Scholar] [CrossRef]
- Karakoltsidis, P.A.; Zotos, A.; Constantinides, S.M. Composition of the Commercially Important Mediterranean Finfish, Crustaceans, and Molluscs. J. Food Compos. Anal. 1995, 8, 258–273. [Google Scholar] [CrossRef]
- Hannachi, O.; Bouakka, M.; Melhaoui, M.; Hakkou, A. Seasonal evolution of the biochemical composition of the Moroccan Mediterranean anchovy (Engraulis encrasicolus). Adv. Environ. Biol. 2011, 5, 1787–1793. [Google Scholar]
- Zlatanos, S.; Laskaridis, K. Seasonal variation in the fatty acid composition of three Mediterranean fish—sardine (Sardina pilchardus), anchovy (Engraulis encrasicholus) and picarel (Spicara smaris). Food Chem. 2007, 103, 725–728. [Google Scholar] [CrossRef]
- Greenfield, H.; Southate, D. Food Composition Data: Production, Management, and Use, 2nd ed.; FAO: Rome, Italy, 2003. [Google Scholar]
- Harrison, G. Fostering data quality in food composition databases: Applications and implications for public health. J. Food Compos. Anal. 2004, 17, 259–265. [Google Scholar] [CrossRef]
- Schonfeldt, H.; Hettie, C.; Hall, N.; Pretorius, B. The important role of food composition in policies and programmes for better public health: A South African case study. Food Chem. 2018, 238, 94–100. [Google Scholar] [CrossRef] [Green Version]
- EAF-Nansen Programme. Available online: http://www.fao.org/in-action/eaf-nansen/en/ (accessed on 23 April 2020).
- Surveys with R/V Dr. Fridtjof Nansen. Available online: https://nansen-surveys.imr.no/doku.php (accessed on 23 April 2020).
- Moxness-Reksten, A.; Bøkevoll, A.; Frantzen, S.; Lundebye, A.-K.; Kögel, T.; Kolås, K.; Aakre, I.; Kjellevold, M. Sampling protocol for the determination of nutrients and contaminants in fish and other seafood—The EAF-Nansen Programme. MethodsX 2020, 7, 101063. [Google Scholar] [CrossRef]
- Norwegian Standard 9402 (Norsk standard). Atlantic Salmon. Measurement of Fat and Colour, 1st ed.; Standards Norway: Oslo, Norway, 1994.
- AOAC. Official Methods of Analysis. Crude Protein in Meat and Meat Products, Combustion Method 992.15, 16th ed.; AOAC: Arlington, VA, USA, 1995. [Google Scholar]
- National Food Institute (NMKL). Metode 23,3: Vann Og Aske. Gravimetrisk Bestimming I Kjøtt Og Kjøttvarer; Nordic Committee on Food Analysis (NMKL), National Food Institute: Lyngby, Denmark, 1991. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Lie, Ø.; Lambertsen, G. Fatty acid composition of glycerophospholipids in seven tissues of cod (Gadus morhua), determined by combined high-performance liquid chromatography and gas chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1991, 565, 119–129. [Google Scholar] [CrossRef]
- Torstensen, B.; Froyland, L.; Ornsrud, R.; Lie, O. Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem. 2004, 87, 567–580. [Google Scholar] [CrossRef]
- Waters AccQ. Method for Hydrolysate Amino Acid Analysis. Waters, accq-tagtm Method 715001320, REV D. Available online: https://www.waters.com/webassets/cms/support/docs/71500129702rb.pdf (accessed on 20 October 2020).
- Anonymous. Analyze L-Tryptophan in Animal Feeds, Using a Supercosil LC-18 HPLC-Column, 4; Biotext 4; Supelco, Inc.: Bellefonte, PA, USA, 1991; pp. 7–8. [Google Scholar]
- Sachse, J. Ein Beitrag zur Bestimmung von Tryptophan in Mais und Futterpflanzen. Eur. Food Res. Technol. 1981, 172, 272–277. [Google Scholar] [CrossRef]
- CEN (Committé Européen de Normalisation). NS-EN 12823-1—Foodstuffs—Determination of Vitamin A by High Preformance Liquid Chromatography—Part 1: Measurement of All-Trans-Retinol and 13-Cis-Retinol; CEN: Brussels, Belgium, 2000. [Google Scholar]
- CEN (Committé Européen de Normalisation). NS-EN 12822—Foodstuffs—Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of Alpha, Beta, Gamma- and Delta-Tocopherols; CEN: Brussels, Belgium, 2000. [Google Scholar]
- CEN (Committé Européen de Normalisation). NS-EN 12821—Foodstuffs—Determination Of Vitamin D by High Performance Liquid Chromatography -Measurement of Cholecalciferol (d3) or Ergocalciferol (d2); CEN: Brussels, Belgium, 2009. [Google Scholar]
- CEN (Committé Européen de Normalisation). NS-EN 14122—Foodstuffs—Determination of Vitamin B1 by HPLC; CEN: Brussels, Belgium, 2003. [Google Scholar]
- CEN (Committé Européen de Normalisation). NS-EN 14152: Foodstuffs—Determination of Vitamin B2 by HPLC; CEN: Brussels, Belgium, 2003. [Google Scholar]
- CEN (Committé Européen de Normalisation). NS-EN 14663: Foodstuffs—Determination of Vitamin B6 (Including Its Glycosylated Forms) by HPLC; CEN: Brussels, Belgium, 2006. [Google Scholar]
- Angyal, G. Methods for the Microbiological Analyses of Selected Nutrients; AOAC International: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P.; Hentschel, A.; De La Hinojosa, I.M.; Viehweger, L.; Mindak, W.R.; et al. Determination of Arsenic, Cadmium, Mercury, and Lead by Inductively Coupled Plasma/Mass Spectrometry in Foods after Pressure Digestion: NMKL Interlaboratory Study. J. AOAC Int. 2007, 90, 844–856. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation; World Health Organization and Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 1998.
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain (CONTAM) related to the safety assessment of wild and farmed fish. EFSA J. 2005, 3, 236. [Google Scholar] [CrossRef]
- The Norwegian Food Safety Authority. The Food Composition Table. Available online: https://www.Matvaretabellen.No (accessed on 23 May 2019).
- Murphy, S.P.; Allen, L.H. Nutritional Importance of Animal Source Foods. J. Nutr. 2003, 133, 3932S–3935S. [Google Scholar] [CrossRef] [Green Version]
- Neumann, C.G.; Harris, D.M.; Rogers, L.M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 2002, 22, 193–220. [Google Scholar] [CrossRef]
- Njinkoué, J.-M.; Barnathan, G.; Miralles, J.; Gaydou, E.-M.; Samb, A. Lipids and fatty acids in muscle, liver and skin of three edible fish from the Senegalese coast: Sardinella maderensis, Sardinella aurita and Cephalopholis taeniops. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2002, 131, 395–402. [Google Scholar] [CrossRef]
- Wang, W.-X.; Rainbow, P.S. Significance of metallothioneins in metal accumulation kinetics in marine animals. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2010, 152, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.; Thilsted, S.H.; Kongsbak, K.; Hansen, M. Whole small fish as a rich calcium source. Br. J. Nutr. 2000, 83, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Valverde, I.; Periago, M.J.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef]
- Al-Yousuf, M.; El-Shahawi, M.; Al-Ghais, S. Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci. Total. Environ. 2000, 256, 87–94. [Google Scholar] [CrossRef]
- Roméo, M.; Siau, Y.; Sidoumou, Z.; Gnassia-Barelli, M. Heavy metal distribution in different fish species from the Mauritania coast. Sci. Total. Environ. 1999, 232, 169–175. [Google Scholar] [CrossRef]
- Roos, N.; Islam, M.M.; Thilsted, S.H. Small Indigenous Fish Species in Bangladesh: Contribution to Vitamin A, Calcium and Iron Intakes. J. Nutr. 2003, 133, 4021S–4026S. [Google Scholar] [CrossRef]
- Roos, N.; Leth, T.; Jakobsen, J.; Thilsted, S.H. High vitamin A content in some small indigenous fish species in Bangladesh: Perspectives for food-based strategies to reduce vitamin A deficiency. Int. J. Food Sci. Nutr. 2002, 53, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Bogard, J.R.; Thilsted, S.H.; Marks, G.C.; Wahab, A.; Hossain, M.A.; Jakobsen, J.; Stangoulis, J. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J. Food Compos. Anal. 2015, 42, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Kawarazuka, N.; Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: Building evidence. Public Heal. Nutr. 2011, 14, 1927–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostermeyer, U.; Schmidt, T. Vitamin D and provitamin D in fish—Determination by HPLC with electrochemical detection. Euro. Food Res. Technol. 2006, 222, 403–413. [Google Scholar] [CrossRef]
- Global Nutrition Report. Country, Region, and Global Nutrition Profiles. Available online: https://globalnutritionreport.org/nutrition-profiles/ (accessed on 28 May 2018).
- Demment, M.W.; Young, M.M.; Sensenig, R.L. Providing Micronutrients through Food-Based Solutions: A Key to Human and National Development. J. Nutr. 2003, 133, 3879S–3885S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; World Health Organisation: Geneva, Switzerland, 2003. [Google Scholar]
- Pennington, J.A. Applications of food composition data: Data sources and considerations for use. J. Food Compos. Anal. 2008, 21, S3–S12. [Google Scholar] [CrossRef]
- Öhrvik, V.; von Malmborg, A.; Mattisson, I.; Wretling, S.; Åstrand, C. Fish, Shellfish and Fish Products—Analysis of Nutrients; The National Food Agency Report Series no 1/2012; National Food Agency: Uppsala, Sweden, 2012.
- Castro-González, M.; Méndez-Armenta, M. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol. 2008, 26, 263–271. [Google Scholar] [CrossRef] [PubMed]
- El-Moselhy, K.M.; Othman, A.; El-Azem, H.A.; El-Metwally, M. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt. J. Basic Appl. Sci. 2014, 1, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Hamza-Chaffai, A.; Romeo, M.; El Abed, A. Heavy Metals in Different Fishes from the Middle Eastern Coast of Tunisia. Bull. Environ. Contam. Toxicol. 1996, 56, 766–773. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Tissue Sampled | Type of Sample | Number of Sampling Positions | Number of Individual Samples | Number of Composite Samples | Number of Specimens in Composite Sample |
---|---|---|---|---|---|---|---|
European pilchard | Sardina pilchardus | Whole fish | Composite | 3 | 0 | 9 | 25 |
Eurpean pilchard | Sardina pilchardus | Fillet with skin and bones | Composite | 3 | 0 | 9 | 25 |
Anchovy | Engraulis encrasicolus | Whole fish | Composite | 1 | 0 | 3 | 25 |
Anchovy | Engraulis encrasicolus | Fillet with skin and bones | Composite | 2 | 0 | 6 | 25/15 b |
Atlantic horse mackerel | Trachurus trachurus | Fillet | Individual/Composite a | 2 | 25 | 3 | 5 |
Axillary seabream | Pagellus acarne | Fillet | Individual/ Composite a | 1 | 50 | 6 | 5 |
Common Name | Scientific Name | Local Name (FAO, 1998) | Habitat | Weight, g a | Length, cm a |
---|---|---|---|---|---|
Sardine b | Sardina pilchardus | Sardine | Pelagic | 52 (34–73) | 17 (16–20) |
Anchovy b | Engraulis encrasicolus | Anchois, Cheton, Lanchouba | Pelagic | 13 (11–19) | 13 (12–14) |
Atlantic horse mackerel | Trachurus trachurus | Chinchard, Chrenne, Hringa, Saurel, Jurel | Pelagic | 323 (180–390) | 31 (26–35) |
Axillary seabream | Pagellus acarne | Pageot, Besugo, Bokha, Boka, Boubrahim, Taznaght | Pelagic | 294 (160–510) | 25 (21–29) |
Seafood | KJ/100 g | Kcal/100 g | Water g/100 g | Ash g/100 g | Total Fat g/100 g | Total Protein g/100 g | |
---|---|---|---|---|---|---|---|
Common Name | Sample | ||||||
Sardine | Whole fish (n = 9) b | 673 ± 115 | 161 ± 27 | 70.7 ± 3.0 | 3.6 ± 0.33 | 7.8 ± 3.5 | 17.6 ± 1.1 |
Sardine | Fillet with skin (n = 9) c | 688 ± 87 | 164 ± 21 | 71.7 ± 2.4 | 2.4 ± 0.14 | 7.5 ± 2.4 | 19.3 ± 1.1 |
Anchovy | Whole fish (n = 3) d | 590 ± 28 | 141 ± 7 | 73.6 ± 1.5 | 3.0 ± 0.31 | 4.3 ± 0.4 | 18.7 ± 0.9 |
Anchovy | Fillet with skin (n = 6) e | 552 ± 50 | 132 ± 12 | 75.4 ± 1.8 | 1.9 ± 0.19 | 4.2 ± 1.1 | 19.2 ± 0.7 |
Atlantic horse mackerel | Fillet (n = 25) | 401 ± 21 | 96 ± 5 | 80.7 ± 1.7 | 1.4 ± 0.08 | 0.61 ± 0.28 | 17.3 ± 1.6 |
Axillary seabream | Fillet (n = 50) | 482 ± 19 | 115 ± 5 | 78.0 ± 1.6 | 1.5 ± 0.06 | 0.93 ± 1.1 | 19.2 ± 0.9 |
Seafood | Sum SFA g/100 g (%) b | Sum MUFA g/100 g (%) b | Sum PUFA g/100 g (%) b | Sum n-3 g/100 g (%) b | Sum n-6 g/100 g (%) b | EPA g/100 g (%) b | DHA g/100 g (%) b | |
---|---|---|---|---|---|---|---|---|
Common Name | Sample | |||||||
Sardine | Whole fish (n = 9) c | 1.9 ± 0.64 (31) | 1.2 ± 0.52 (18) | 2.9 ± 1.1 (45) | 2.6 ± 1.1 (41) | 0.20 ± 0.04 (3) | 1.2 ± 0.82 (17) | 0.87 ± 0.15 (16) |
Sardine | Fillet with skin (n = 9) d | 2.0 ± 0.69 (31) | 1.2 ± 0.52 (18) | 3.1 ± 1.3 (46) | 2.8 ± 1.1 (42) | 0.02 ± 0.04 (3) | 1.3 ± 0.91 (17) | 0.93 ± 0.15 (16) |
Anchovy | Whole fish (n = 3) e | 1.2 ± 0.01 (31) | 0.60 ± 0.01 (15) | 1.9 ± 0.03 (48) | 1.8 ± 0.03 (44) | 0.14 ± 0.004 (4) | 0.54 ± 0.01 (14) | 1.0 ± 0.02 (25) |
Anchovy | Fillet with skin (n = 6) f | 1.0 ± 0.32 (30) | 0.60 ± 0.26 (17) | 1.6 ± 0.39 (47) | 1.5 ± 0.34 (43) | 0.13 ± 0.05 (4) | 0.41 ± 0.01 (13) | 0.84 ± 0.21 (25) |
Atlantic horse mackerel | Fillet (n = 25) | 0.19 ± 0.09 (29) | 0.12 ± 0.07 (17) | 0.31 ± 0.10 (50) | 0.27 ± 0.09 (44) | 0.03 ± 0.01 (6) | 0.06 ± 0.03 (9) | 0.19 ± 0.05 (31) |
Axillary seabream | Fillet (n = 50) | 0.31 ± 0.34 (30) | 0.23 ± 0.40 (18) | 0.45 ± 0.32 (48) | 0.39 ± 0.27 (42) | 0.06± 0.05 (6) | 0.06 ± 0.06 (6) | 0.28 ± 0.15 (31) |
Seafood | Amino Acids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Common Name | Sample | Valine g/100 g | Leucine g/100 g | Isoleucine g/100 g | Phenyl- Alanine g/100 g | Histidine g/100 g | Metionine g/100 g | Threonine g/100 g | Lysine g/100 g | Trypto- Phan g/100 g | Taurine g/100 g |
Sardine | Whole fish (n = 9) b | 0.79 ± 0.07 | 1.1 ± 0.10 | 0.63 ± 0.06 | 0.62 ± 0.05 | 0.61 ± 0.06 | 0.45 ± 0.03 | 0.67 ± 0.05 | 1.4 ± 0.14 | 0.19 ± 0.04 | 0.29 ± 0.01 |
Sardine | Fillet with skin (n = 9) c | 0.88 ± 0.08 | 1.3 ± 0.11 | 0.73 ± 0.06 | 0.72 ± 0.06 | 0.82 ± 0.08 | 0.51 ± 0.04 | 0.75 ± 0.06 | 1.6 ± 0.14 | 0.20 ± 0.01 | 0.17 ± 0.01 |
Anchovy | Whole fish (n = 3) d | 0.87 ± 0.05 | 1.3 ± 0.08 | 0.69 ± 0.04 | 0.72 ± 0.05 | 0.78 ± 0.05 | 0.50 ± 0.03 | 0.73 ± 0.04 | 1.4 ± 0.10 | 0.2 ± 0.02 | 0.26 ± 0.02 |
Anchovy | Fillet with skin (n = 6) e | 0.93 ± 0.07 | 1.4 ± 0.08 | 0.77 ± 0.06 | 0.76 ± 0.04 | 0.98 ± 0.08 | 0.53 ± 0.03 | 0.76 ± 0.04 | 1.6 ± 0.10 | 0.2 ± 0.01 | 0.18 ± 0.01 |
Atl. horse mackerel | Fillet (n = 25) | 0.85 ± 0.09 | 1.4 ± 0.14 | 0.75 ± 0.08 | 0.71 ± 0.07 | 0.47 ± 0.09 | 0.55 ± 0.05 | 0.75 ± 0.08 | 1.7 ± 0.2 | 0.17 ± 0.02 | 0.15 ± 0.02 |
Axillary seabream | Fillet with skin (n = 50) | 0.90 ± 0.05 | 1.5 ± 0.10 | 0.82 ± 0.06 | 0.81 ± 0.07 | 0.66 ± 0.09 | 0.58 ± 0.04 | 0.84 ± 0.06 | 1.8 ± 0.11 | 0.2 ± 0.02 | 0.12 ± 0.01 |
Product | Vitamin D3 µg/100 g | Vitamin A1 µg/100 g | Vitamin E (α-Tocopherol), α TE/100 g (µg/100 g) | |
---|---|---|---|---|
Common Name | Sample | |||
Sardine b | Whole fish (n = 9) | 9 ± 2.2 | 115 ± 32.7 | 288 ± 74 |
Sardine b | Filet (n = 9) | 10 ± 2.9 | 5.4 ± 1.9 | 394 ± 140 |
Anchovy d | Whole fish (n = 3) | 2 ± 0.5 | 125 ± 30.2 | 421 ± 113 |
Anchovy d | Filet (n = 6) | 1 ± 0.2 | 7.0 ± 2.8 | 436 ± 121 |
Atlantic horse mackerel c | Filet (n = 3) | 28 ± 17.4 | 4.2 ± 1.3 | 115 ± 14 |
Axillary seabream c | Filet (n = 6) | 2 ± 0.5 | 6.0 ± 8.8 | 364 ± 109 |
Product | Vitamin B1 Thiamin mg/100 g | Vitamin B2 Riboflavin mg/100 g | Vitamin B3 Niacin mg/100 g | Vitamin B6 Pyridoxine mg/100 g | Vitamin B9 Folic acid µg/100 g | Vitamin B12 Cobalamin µg/100 g | |
---|---|---|---|---|---|---|---|
Common Name | Sample | ||||||
Sardine b | Whole fish (n = 9) | 0.02 ± 0.006 | 0.27 ± 0.074 | 6.3 ± 0.37 | 0.36 ± 0.026 | 39.4 ± 11.6 | 15 ± 1.2 |
Sardine b | Fillet (n = 9) | 0.01 ± 0.0007 | 0.33 ± 0.054 | 7.0 ± 0.6 | 0.48 ± 0.038 | 9.3 ± 4.3 | 13 ± 2.1 |
Anchovy d | Whole fish (n = 3) | <0.01 | 0.21 ± 0.014 | 6.2 ± 0.23 | 0.49 ± 0.017 | 44.3 ± 6.5 | 14 ± 0.4 |
Anchovy d | Fillet (n = 6) | 0.01 ± 0.00082 | 0.19 ± 0.011 | 7.3 ± 0.39 | 0.61 ± 0.040 | 21.2 ± 4.8 | 11 ± 1.0 |
Atlantic horse mackerel c | Fillet (n = 3) | 0.1 ± 0.02 | 0.12 ± 0.0018 | 4.0 ± 0.36 | 0.23 ± 0.017 | 5.1 ± 0.1 | 4.0 ± 0.3 |
Axillary seabream c | Fillet (n = 6) | 0.05 ± 0.008 | 0.10 ± 0.0082 | 5.4 ± 0.46 | 0.27 ± 0.091 | 5.2 ± 0.4 | 4.5 ± 0.9 |
Seafood | Iodine µg/100 g | Selenium µg/100 g | Calcium mg/100 g | Potassium mg/100 g | Magnesium mg/100 g | Zinc mg/100 g | Iron mg/100 g | Phosphorus mg/100 g | Sodium mg/100 g | |
---|---|---|---|---|---|---|---|---|---|---|
Common Name | Sample | |||||||||
Sardine b | Whole fish (n = 9) | 67.4 ± 7.8 | 71.7 ± 19.2 | 716 ± 200 | 391 ± 33 | 45.5 ± 3.1 | 2.0 ± 0.3 | 4.3 ± 0.8 | 579 ± 90 | 170 ± 19 |
Sardine b | Fillet (n = 9) | 27.9 ± 5.1 | 34.7 ± 7.7 | 309 ± 118 | 441 ± 34 | 32.6 ± 1.9 | 1.3 ± 0.2 | 1.2 ± 0.2 | 407 ± 46 | 62 ± 5.5 |
Anchovy c | Whole fish (n = 3) | 36.1 ± 2.7 | 38.2 ± 2.1 | 535 ± 56 | 416 ± 19 | 51.1 ± 2.6 | 2.2 ± 0.2 | 3.1 ± 0.2 | 553 ± 38 | 175 ± 9.1 |
Anchovy d | Fillet (n = 6) | 12.7 ± 4.1 | 23.5 ± 2.5 | 211 ± 34 | 424 ± 7.9 | 33.7 ± 1.4 | 1.3 ± 0.1 | 0.9 ± 0.1 | 361 ± 20 | 72 ± 8.0 |
Atlantic horse mackerel | Fillet (n = 25) | 25.2 ± 7.7 | 30.1 ± 4.3 | 46 ± 28 | 443 ± 25 | 30.2 ± 2.3 | 0.3 ± 0.03 | 0.9 ± 0.1 | 251 ± 16 | 50 ± 13 |
Axillary seabream | Fillet (n = 50) | 35.1 ± 12.5 | 48.4 ± 8.3 | 50 ± 37 | 482 ± 26 | 32.1 ± 1.5 | 0.4 ± 0.1 | 0.5 ± 0.1 | 283 ± 20 | 41 ± 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aakre, I.; Bøkevoll, A.; Chaira, J.; Bouthir, F.Z.; Frantzen, S.; Kausland, A.; Kjellevold, M. Variation in Nutrient Composition of Seafood from North West Africa: Implications for Food and Nutrition Security. Foods 2020, 9, 1516. https://doi.org/10.3390/foods9101516
Aakre I, Bøkevoll A, Chaira J, Bouthir FZ, Frantzen S, Kausland A, Kjellevold M. Variation in Nutrient Composition of Seafood from North West Africa: Implications for Food and Nutrition Security. Foods. 2020; 9(10):1516. https://doi.org/10.3390/foods9101516
Chicago/Turabian StyleAakre, Inger, Annbjørg Bøkevoll, Jamal Chaira, Fatima Zohra Bouthir, Sylvia Frantzen, Anette Kausland, and Marian Kjellevold. 2020. "Variation in Nutrient Composition of Seafood from North West Africa: Implications for Food and Nutrition Security" Foods 9, no. 10: 1516. https://doi.org/10.3390/foods9101516