Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material Preparation
2.3. Total Phenolic Content (TPC) and Polyphenols Quantification by HPLC-DAD
2.4. HPLC-DAD Method Validation
2.5. Antimicrobial Activity
2.5.1. Growth Conditions of Pathogenic Bacteria
2.5.2. Antimicrobial Activity
2.6. In Vitro Antioxidant Activity in Red Blood Cells (CAA-RBC) and Hemolysis Test
2.7. Animal Study
2.7.1. In Vivo experiment
2.7.2. Biochemical Analysis
2.7.3. Hepatic Lipids Quantification
2.7.4. Oxidative Stress
2.8. Statistical Analysis
3. Results and Discussion
3.1. Quantification of Total Polyphenols
3.2. Antimicrobial Activity
3.3. In Vitro Antioxidant Activity
3.4. In Vivo Experiment
3.4.1. The Effect of Blackthorn on Body Weight and Liver Weight
3.4.2. The Effect of PSF on Serum and Liver Biochemical Parameters
3.4.3. The Effect of PSF on Liver and Brain Oxidative Stress of Rats
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
ANOVA | analysis of variance |
AST | aspartate aminotransferase aspartate aminotransferase |
AATCC | american type culture collection |
AAPH | 2,2’-azobis (2-amidinopropane) dihydrochloride |
CAA-RBC | cellular antioxidant activity in red blood cells |
CFU | colony-forming unit |
CTR | control |
DCFH-DA | 2,7-dichlorodihydrofluorescein diacetate |
DNPH | dinitrophenylhydrazine |
EC50 | half maximal effective concentration |
EDTA | ethylenediaminetetraacetic acid |
GAE | gallic acid equivalent |
GSH | reduced glutathione |
HCl | hydrochloric acid |
HFD | high fat diet |
KH2PO4 | potassium dihydrogen phosphate |
LOD | limit of detection |
LOQ | limit of quantification |
MIC | minimum inhibitory concentrations |
MDA | malondialdehyde |
MHA | Mueller Hinton agar |
MHB | Mueller Hinton broth |
NA | nutrient agar |
NB | nutrient broth |
OD | optical density |
PBS | phosphate buffer saline |
References
- Bhaskarachary, K.; Sudershan, R.V.; Subba Rao, M.G.; Apurva Kumar, R.J. Traditional foods, functional foods and nutraceuticals. Proc. Indian Natn. Sci. Acad. 2016, 82, 1565–1577. [Google Scholar]
- Grochowicz, J.; Fabisiak, A.; Nowak, D. Market of functional food—legal regulations and development perspectives. Zesz. Probl. Postepow Nauk Roln. 2018, 595, 51–67. [Google Scholar] [CrossRef]
- Veličković, J.M.; Kostić, D.A.; Stojanović, G.S.; Mitić, S.S.; Mitić, M.N.; Ranđelović, S.S.; Ðorđević, A.S. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hem. Ind. 2014, 68, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Egea, I.; Sanchez-Bel, P.; Romorjaro, F.; Pretel, M.T. Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Foods Hum. Nutr. 2010, 65, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Pinacho, R.; Yolanda Cavero, R.; Astiasarán, I.; Ansorena, D.; Calvo, M.I. Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of In Vitro digestion on their antioxidant capacity. J. Funct. Foods 2015, 19, 49–62. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Vanzo, A.; Vrhovsek, U.; Tramer, F.; Mattivi, F.; Passamonti, S. Exceptionally fast uptake and metabolism of cyanidin 3-glucoside by rat kidneys and liver. J. Nat. Prod. 2011, 74, 1049–1054. [Google Scholar] [CrossRef]
- Marchelak, A.; Owczarek, A.; Matczak, M.; Pawlak, A.; Kolodziejczyk-Czepas, J.; Nowak, P.; Olszewska, M.A. Bioactivity potential of Prunus spinosa L. flower extracts: Phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress In Vitro. Front. Pharmacol. 2017, 8, 680–695. [Google Scholar] [CrossRef] [Green Version]
- Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef]
- Taleb, H.; Maddocks, S.E.; Morris, R.K.; Kanekanian, A.D. The antibacterial activity of date syrup polyphenols against S. aureus and E. coli. Front. Microbiol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.; Ortoger, R.M.; Lamuela-Ravendo, R.M. Analysis of total phenols and others oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–173. [Google Scholar]
- International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of Analytical Procedures: Text and Methodology, Q2 (R1), 2005. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 2 December 2019).
- Delgado-Adámez, J.; Fernández-León, M.F.; Velardo-Micharet, B.; González-Gómez, D. In Vitro assays of the antibacterial and antioxidant activity of aqueous leaf extracts from different Prunus salicina Lindl. cultivars. Food Chem. Toxicol. 2012, 50, 2481–2486. [Google Scholar] [CrossRef] [PubMed]
- Frassinetti, S.; Gabriele, M.; Caltavuturo, L.; Longo, V.; Pucci, L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. Plant Foods Hum. Nutr. 2015, 70, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, L.; Vornoli, A.; Coppola, I.; Della Croce, C.M.; Giorgetti, L.; Gervasi, P.G.; Longo, V. Lipid, cholesterol and glucose metabolism gene expression in a high-fat-diet and low-dose-streptozotocin induced rat model. Life Sci. 2016, 166, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, J.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Seljeskog, E.; Hervig, T.; Mansoor, M.A. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Clin. Biochem. 2006, 39, 947–954. [Google Scholar] [CrossRef]
- Terevinto, A.; Ramos, A.; Castroman, G.; Cabrera, M.C.; Saadoun, A. Oxidative status, In Vitro iron-induced lipid oxidation and superoxide dismutase, catalase and glutathione peroxidase activities in rhea meat. Meat Sci. 2010, 84, 706–710. [Google Scholar] [CrossRef]
- Browne, R.W.; Armstrong, D. Reduced glutathione and glutathione disulfide. Methods Mol. Biol. 1998, 108, 347–352. [Google Scholar]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Erturk, Y.; Ercisli, Y.; Tosum, M. Physico-chemical characteristics of wild plum fruits (Prunus spinosa L.). Int. J. Plant Prod. 2009, 3, 89–92. [Google Scholar]
- Varga, E.; Domokos, E.; Fogarasi, E.; Ştefănesu, R.; Fü-löp, I.; Croitoru, M.D.; Laczkó-Zöld, E. Polyphenolic compounds analysis and antioxidant activity in fruits of Prunus spinosa L. Acta Pharm. Hung. 2017, 87, 1–7. [Google Scholar]
- Radovanović, B.C.; Anđelković, S.M.; Radovanović, A.B.; Anđelković, M.Z. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 813–819. [Google Scholar] [CrossRef]
- Baltas, N.; Parkyldiz, S.; Can, Z.; Dincer, B.; Kolayli, S. Biochemical properties of partially purified polyphenol oxidase and phenolic compounds of Prunus spinosa L. subsp. Dasyphylla as measured by HPLC-UV. Int. J. Food Prop. 2017, 20, 1377–1391. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef] [PubMed]
- Hendra, R.; Ahmad, S.; Sukari, A.; Shukor, M.Y.; Oskoueian, E. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int. J. Mol. Sci. 2011, 12, 3422–3431. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, M.J.; Borges, A.; Dias, C.; Aires, A.; Bennett, R.N.; Rosa, E.S.; Simões, M. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med. Chem. 2010, 6, 174–183. [Google Scholar] [CrossRef]
- Asgary, S.; Naderi, G.H.; Askari, N. Protective effect of flavonoids against red blood cell hemolysis by free radicals. Exp. Clin. Cardiol. 2005, 10, 88–90. [Google Scholar]
- Hatia, S.; Septembre-Malaterre, A.; Le Sage, F.; Badiou-Bénéteau, A.; Baret, P.; Payet, B.; Lefebvre d’hellencourt, C.; Gonthier, M.P. Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress. Free Radic. Res. 2014, 48, 387–401. [Google Scholar] [CrossRef]
- Vornoli, A.; Pozzo, L.; Della Croce, C.M.; Gervasi, P.G.; Longo, V. Drug metabolism enzymes in a steatotic model of rat treated with a high fat diet and a low dose of streptozotocin. Food Chem. Toxicol. 2014, 70, 54–60. [Google Scholar] [CrossRef]
- Cheng, D.M.; Pogrebnyak, N.; Kuhn, P.; Poulev, A.; Watweman, C.; Rojas-Silva, P.; Johnson, W.D.; Raskin, I. Polyphenol-rich rutgers scarlet lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition 2014, 30, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rejaie, S.S.; Aleisa, A.M.; Sayed-Ahmed, M.M.; AL-Shabanah, O.A.; Abuohashish, H.M.; Ahmed, M.M.; Al-Hosaini, K.A.; Hafez, M.M. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Wistar rat. BMC Complement. Altern. Med. 2013, 13, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, G.R.; Jothi, G.; Antony, P.J.; Balakrishna, K.; Paulraj, M.G.; Ignacimuthu, S.; Stalin, A.; Al-Dhabi, N.A. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARgamma in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur. J. Pharmacol. 2014, 745, 201–216. [Google Scholar] [PubMed]
- Ting, Y.; Chang, W.T.; Shiau, D.K.; Chou, P.H.; Wu, M.F.; Hsu, C.L. Antiobesity efficacy of quercetin-rich supplement on diet-induced obese rats: Effects on body composition, serum lipid profile, and gene expression. J. Agric. Food Chem. 2018, 66, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.H.; Lee, B.Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef] [PubMed]
- Tuzcu, Z.; Orhan, C.; Sahin, N.; Juturu, V.; Sahin, K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxid. Med. Cell Longev. 2017, 31, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Khouzani, O.; Heidarian, E.; Amini, S.A. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol. Rep. 2017, 69, 830–835. [Google Scholar] [CrossRef]
- Winocur, G.; Greenwood, C.E. Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol. Aging 2005, 26, 46–49. [Google Scholar] [CrossRef]
- Charradi, K.; Mahmoudi, M.; Bedhiafi, T.; Kadri, S.; Elkahoui, S.; Limam, F.; Aouani, E. Dietary supplementation of grape seed and skin flour mitigates brain oxidative damage induced by a high-fat diet in rat: Gender dependency. Biomed. Pharmacother. 2017, 87, 519–526. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Habtemariam, S.; Jafari, M.; Sureda, A.; Nabavi, S.M. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull. Environ. Contam. Toxicol. 2012, 89, 73–77. [Google Scholar] [CrossRef]
- Nkpaa, K.W.; Onyeso, G.I. Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Neurosci. Lett. 2018, 24, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Bais, S.; Kumari, R.; Prachar, Y. Ameliorative effect of trans-sinapic acid and its protective role in cerebral hypoxia in aluminium chloride induced dementia of Alzheimer’s type. CNS Neurol. Disord. Drug Targets 2018, 17, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Matsuzaki, H.; Iwata, N.; Xuan, M.; Kamiuchi, S.; Hibino, Y.; Sakamoto, T.; Okazaki, M. Protective effects of ferulic acid against chronic cerebral hypoperfusion-induced swallowing dysfunction in rats. Int. J. Mol. Sci. 2017, 18, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phenolic Compound | Rt (min) | LOD (ug/mL) | LOQ (ug/mL) | Recovery (%) |
---|---|---|---|---|
Gallic acid | 2.860 | 0.012 | 0.033 | 98.2 ± 0.81 |
Rutin | 5.909 | 0.009 | 0.030 | 89.1 ± 0.89 |
4-hydroxibenzoic acid | 7.112 | 0.005 | 0.017 | 101.2 ± 1.01 |
Caffeic acid | 8.361 | 0.008 | 0.027 | 97.5 ± 0.99 |
Trans p-coumaric acid | 11.741 | 0.004 | 0.013 | 96.0 ± 0.80 |
Trans -ferulic acid | 12.981 | 0.003 | 0.010 | 97.8 ± 1.08 |
Trans-sinapic acid | 13.062 | 0.011 | 0.037 | 98.2 ± 1.15 |
Myricetin | 17.081 | 0.015 | 0.050 | 99.5 ± 0.88 |
Rosmarinic acid | 17.463 | 0.009 | 0.023 | 102.1 ± 0.96 |
Quercetin | 18.853 | 0.090 | 0.299 | 99.5 ± 0.95 |
Genistein | 19.811 | 0.009 | 0.031 | 91.5 ± 0.77 |
Phenolic Compound | Concentration (mg/kg d.w.) |
---|---|
Gallic acid | 41.10 ± 3.68 |
Rutin | 183.94 ± 0.45 |
4-hydroxybenzoic acid | 73.93 ± 0.06 |
Caffeic acid | 3.36 ± 0.36 |
Trans p-coumaric acid | 2.99 ± 0.02 |
Trans-ferulic acid | 4.93 ± 0.07 |
Trans-sinapic acid | 37.69 ± 0.05 |
Myricetin | 1.47 ± 0.03 |
Rosmarinic acid | 3.23 ± 0.03 |
Quercetin | 9.94 ± 0.01 |
Genistin | 1.74 ± 0.00 |
CTR | HFD | PSF400 | PSF800 | |
---|---|---|---|---|
AST (UI/dl) | 93.98 ± 7.04 | 194.33 ** ± 42.90 | 181.00 ** ± 22.23 | 168.50 * ± 44.81 |
ALT (UI/dl) | 39.06 ± 10.09 | 143.17 ** ± 35.15 | 146.52 ** ± 51.96 | 133.58 ** ± 36.90 |
Insulin (µg/l) | 1.44 ± 0.80 | 0.19 ** ± 0.15 | 0.22 ** ± 0.15 | 0.20 ** ± 0.03 |
Glucose (mg/dl) | 145.20 ± 20.80 | 439.67 *** ± 70.21 | 432.57 *** ± 33.57 | 443.60 *** ± 43.32 |
Total cholesterol (mg/dl) | 109.30 ± 21.40 | 236.20 *** ± 45.09 | 228.36 *** ± 29.13 | 219.18 *** ± 17.94 |
Triglycerides (mg/dl) | 75.73 ± 7.38 | 179.80 ** ± 59.30 | 164.33 ** ± 30.52 | 170.25 ** ± 21.80 |
Total hepatic lipids (mg/g) | 65.36 ± 9.14 | 209.90 *** ± 11.91 | 198.29 *** ± 34.52 | 162.15 *** § ± 35.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzo, L.; Russo, R.; Frassinetti, S.; Vizzarri, F.; Árvay, J.; Vornoli, A.; Casamassima, D.; Palazzo, M.; Della Croce, C.M.; Longo, V. Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress. Foods 2020, 9, 5. https://doi.org/10.3390/foods9010005
Pozzo L, Russo R, Frassinetti S, Vizzarri F, Árvay J, Vornoli A, Casamassima D, Palazzo M, Della Croce CM, Longo V. Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress. Foods. 2020; 9(1):5. https://doi.org/10.3390/foods9010005
Chicago/Turabian StylePozzo, Luisa, Rossella Russo, Stefania Frassinetti, Francesco Vizzarri, Július Árvay, Andrea Vornoli, Donato Casamassima, Marisa Palazzo, Clara Maria Della Croce, and Vincenzo Longo. 2020. "Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress" Foods 9, no. 1: 5. https://doi.org/10.3390/foods9010005
APA StylePozzo, L., Russo, R., Frassinetti, S., Vizzarri, F., Árvay, J., Vornoli, A., Casamassima, D., Palazzo, M., Della Croce, C. M., & Longo, V. (2020). Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress. Foods, 9(1), 5. https://doi.org/10.3390/foods9010005