Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Preparation
2.2. Reagents
2.2.1. In Vitro Gastrointestinal Digestion
2.2.2. Bioactive Compounds and Antioxidant Capacity
2.2.3. Minerals
2.3. Methodology for In Vitro Gastrointestinal Digestion
2.4. Analysis of Bioactive Compounds
2.4.1. Ascorbic Acid
2.4.2. Total Carotenoids
- Anthocyanin = 0.8173 A663 − 0.00697 A647 − 0.002228 A663
- Chla = 0.013773 A663 − 0.000897 A537 − 0.003046 A647
- Chlb = 0.024054 A647 − 0.004305 A537 − 0.005507 A663
2.4.3. Total Isothiocyanates
2.4.4. Total Anthocyanins
- A = (A520 − A700) pH1 − (A520 − A700) pH 4.5
- MW (molecular weight for cyanidin-3-glucoside) = 449.2 g/mol
- DF (dilution factor) = 5
- 103 = factor for conversion from g to mg
- ε = 26,900 molar extinction coefficient
- l = path length in cm
2.4.5. Total Soluble Polyphenols
2.5. Determination of Antioxidant Capacity
2.5.1. Trolox Equivalent Antioxidant Capacity Assay (TEAC)
2.5.2. Oxygen Radical Absorbance Capacity Assay (ORAC)
2.6. Analysis of Minerals
2.7. Statistical Analysis
3. Results and Discussion
3.1. Content and Bioaccessibility of Antioxidant Bioactive Compounds in Microgreens
3.2. Content and Bioaccessibility of Mineral Elements in Microgreens
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Renna, M.; Di Gioia, F.; Leoni, B.; Mininni, C.; Santamaria, P. Culinary assessment of shelf-produced microgreens as basic ingredients in sweet and savory dishes. J. Culin. Scien. Technol. 2017, 15, 126–142. [Google Scholar] [CrossRef]
- Di Gioia, F.; Santamaria, P. Microgreens, Agrodiversity and Food Security. In Microgreens Novel Fresh and Functional Foods to Explore of the Value of Diversity; ECO-logica: Bari, Italy, 2015; Available online: https://www.researchgate.net/publication/283426636_Microgreens (accessed on 18 May 2019).
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop systems, quality and protection of Diplotaxis tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef]
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 65, 11519–11530. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritienei, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreeens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegreta, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef]
- Weber, C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Khan, F.A. A review on hydroponic greenhouse cultivation for sustainable agriculture. Int. J. Agric. Environ. Food Sci. 2018, 2, 59–66. [Google Scholar] [CrossRef]
- Bhatt, P.; Sharma, S. Microgreens: A nutrient rich crop that can diversify food system. Int. J. Pure Appl. Biosci. 2018, 6, 182–186. [Google Scholar] [CrossRef]
- Renna, M.; Castellino, M.; Leoni, B.; Paradiso, V.M.; Santamaria, P. Microgreens production with low potassium content for patients with impaired kidney function. Nutrients 2018, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; De Pascale, S.; Kyratzis, A.; Rouphael, Y. Microgreens as a component of space life support systems: A cornucopia of functional food. Front Plant Sci. 2017, 8, 1587. [Google Scholar] [CrossRef] [PubMed]
- Golubkina, N.; Kekina, H.; Caruso, G. Foliar biofortification of Indian mustard (Brassica juncea L.) with selenium and iodine. Plants 2018, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Sanlier, N.; Guler, S.M. The benefits of Brassica vegetables on human health. J. Hum. Health Res. 2018, 1, 1–13. [Google Scholar]
- Kopsell, D.A.; Sams, C.E. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Am. Soc. Hortic. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Xiao, Z.; Rausch, S.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentration and antioxidant capacity. LWT Food Sci. Technol. 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Waterland, N.L.; Moon, Y. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of kale. HortScince 2017, 52, 566–571. [Google Scholar] [CrossRef]
- Brazaityte, A.; Sakalauskiene, S.; Virsile, A.; Jankauskiene, J.; Samuoliene, G.; Sirtautas, R.; Vastakaite, V.; Miliauskiene, J.; Duchovskis, P.; Novickovas, A.; et al. The effect of short-term red lighting on Brassicacea microgreens grown indoors. Acta. Hortic. 2016, 1123, 177–184. [Google Scholar] [CrossRef]
- Vastakaite, V.; Virsile, A. Light-emitting diodes (LEDs) for higher nutritional quality of Brassicaceae microgreens. In Proceedings of the Annual 21st International Scientific Conference: “Research for Rural Development”, Jelgava, Latvia, 13–15 May 2015; Volume 1, pp. 111–117. [Google Scholar]
- Xiao, Z.; Lester, G.E.; Park, E.; Saftner, R.A.; Luo, Y.; Wang, Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015, 110, 140–148. [Google Scholar] [CrossRef]
- Hanlon, P.R.; Barnes, D.M. Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. J. Food Sci. 2011, 76, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Xie, Z.K.; Lu, L.L.; Wang, Q. Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food Chem. 2014, 151, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.J.; Cilla, A.; Barberá, R.; Zacarías, L. Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Food Funct. 2015, 6, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.B.; Mariutti, L.R.B.; Mercadante, A.Z. An in vitro digestion method adapted for carotenoids and carotenoid esters: Moving forward towards standarization. Food Funct. 2016, 7, 4992–5001. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardized static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- AOAC Official Method 967.21 for ascorbic acid in vitamin preparations and juices. In Official Methods of Analysis of AOAC International; Horowitz, W. (Ed.) AOAC International: Washington, DC, USA, 2000; Volume II, pp. 16–17. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Sotelo, T.; Cartea, M.E.; Velasco, P.; Soengas, P. Identification of antioxidant capacity-related QTLs in Brassica oleracea. PLoS ONE 2014, 9, e107290. [Google Scholar] [CrossRef]
- Torres-Contreras, A.M.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Stability of bioactive compounds in broccoli as affected by cutting styles and storage time. Molecules 2017, 22, 636. [Google Scholar] [CrossRef]
- Zhang, Y.; Cho, C.G.; Posner, G.H.; Talalay, P. Spectroscopic quantification of organic isothiocyanates by cyclocondensation with vicinal dithiols. Anal Biochem. 1992, 205, 100–107. [Google Scholar] [CrossRef]
- Lee, J. Determination of total monomeric anthocyanin pigment content of fruits juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [PubMed]
- Cilla, A.; Perales, S.; Lagarda, M.J.; Barberá, R.; Clemente, G.; Farré, R. Influence of storage and in vitro gastrointestinal digestion on total antioxidant capacity of fruit beverages. J. Food Compos. Anal. 2011, 24, 87–94. [Google Scholar] [CrossRef]
- Cilla, A.; García-Nebot, M.J.; Perales, S.; Lagarda, M.J.; Barberá, R.; Farré, R. In vitro bioaccessibility of iron and zinc in fortified fruit beverages. Int. J. Food Sci. Technol. 2009, 44, 1088–1092. [Google Scholar] [CrossRef]
- Cilla, A.; Lagarda, M.J.; Alegría, A.; De Ancos, B.; Cano, M.P.; Sánchez-Moreno, C.; Plaza, L.; Barberá, R. Effect of processing and food matrix on calcium and phosphorous bioavailability from milk-based fruit beverages in Caco-2 cells. Food Res. Int. 2011, 44, 3030–3038. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) Nº 1924/2006 of the European Parliament and of the Council of 20 December 2016 on nutrition and health claims made on foods. Off. J. Eur. Union. 2006, 49, 9–25.
- National Nutrient Database for Standard Reference (USDA). 2018. Available online: https://ars.usda.gov (accessed on 11 December 2018).
- Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, F.; Gil-Izquierdo, A.; Pérez-Vicente, A.; García-Viguera, C. In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C. J. Agric. Food Chem. 2004, 52, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Di Scala, K. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. J. Funct. Foods 2015, 16, 256–264. [Google Scholar] [CrossRef]
- Koh, E.; Wimalasiri, K.M.S.; Chassy, A.W.; Mitchell, A.E. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Compos. Anal. 2009, 22, 637–643. [Google Scholar] [CrossRef]
- Rosa, E.A.S.; Haneklaus, S.H.; Schnug, E. Mineral content of primary and secondary infloresences of eleven broccoli cultivars grown in early and late seasons. J. Plant Nutr. 2002, 25, 141–1751. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Frazie, M.D.; Kim, M.J.; Ku, K.M. Health-promoting phytochemicals from 11 mustard cultivars at baby leaf and mature stages. Molecules 2017, 22, 1749. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Olmedilla-Alonso, B.; Herrero-Barbudo, C.; Pérez-Sacristán, B.; Blanco-Navarro, I.; Blázquez-García, S. Comparative in vitro bioaccessibility of carotenoids from relevant contributors to carotenoid intake. J. Agric. Food Chem. 2007, 55, 6387–6394. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayana, R.; Raju, M.; Krishnakantha, T.P.; Baskaran, V. Determination of major carotenoids in a few Indian leafy vegetables by High-Performance Liquid Chromatography. J. Agric. Food Chem. 2005, 53, 2838–2842. [Google Scholar] [CrossRef] [PubMed]
- Revelou, P.K.; Kokotou, M.G.; Pappas, C.S.; Constantinou-Kokotou, V. Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy. J. Food Compos. Anal. 2017, 61, 47–51. [Google Scholar] [CrossRef]
- Park, C.H.; Baskar, T.B.; Park, S.Y.; Kim, S.J.; Arasu, M.V.; Al-Dhabi, N.A.; Kim, J.K.; Park, S.U. Metabolomic profiling and antioxidant assay of metabolites from three radish cultivars (Raphanus sativus). Molecules 2016, 21, 157. [Google Scholar] [CrossRef]
- ORAC Database. Dietary Antioxidants/Bioactives. 2018. Available online: http://oracdatabase.com (accessed on 11 December 2018).
- Phenol-Explorer 3.6. Database on Polyphenol Content in Foods. 2015. Available online: http://phenol-explorer-eu (accessed on 11 December 2018).
- Puangkam, K.; Muanghorm, W.; Konsue, N. Stability of bioactive compounds and antioxidant activity of Thai cruciferous vegetables during in vitro digestion. Curr. Res. Nutr. Food Sci. 2017, 5, 100–108. [Google Scholar] [CrossRef]
- Sikora, E.; Cieslik, E.; Leszczynska, T.; Filipiak-Florkiewicz, A.; Pisulewski, P.M. The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem. 2008, 107, 55–59. [Google Scholar] [CrossRef]
- Yang, I.; Jayaprakasha, G.K.; Patil, B. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols. Food Funct. 2018, 9, 1235–1244. [Google Scholar] [CrossRef]
- Kaluzewicz, A.; Bosiacki, M.; Fraszczak, B. Mineral composition and the content of phenolics compounds of ten broccoli cultivars. J Elementol. 2016, 21, 53–65. [Google Scholar] [CrossRef]
- Courraud, J.; Berger, J.; Cristol, J.P.; Avallone, S. Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem. 2013, 136, 871–877. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.P.R.; Rodríguez-Amaya, D.B. In vitro bioaccessibility of the carotenoids of leafy vegetables. Acta Hortic. 2012, 939, 99–103. [Google Scholar] [CrossRef]
- Kaulmann, A.; André, C.M.; Schneider, Y.J.; Hoffman, L.; Bohn, T. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties. Food Chem. 2016, 197, 325–332. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potencial uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life and bioactive components. Crit. Rev. Food Sci. Nutr. 2016, 57, 2730–2736. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Lucarini, M.; Canali, R.; Cappelloni, M.; Di Lullo, G.; Lombardi-Boccia, G. In vitro calcium availability from brassica vegetables (Brassica oleracea L.) and as consumed in composite dishes. Food Chem. 1999, 64, 519–523. [Google Scholar] [CrossRef]
- Kamchan, A.; Puwastien, P.; Sirichakwal, P.P.; Kongkachuichai, R. In vitro calcium bioavailability of vegetables, legumes and seeds. J. Food Compos. Anal. 2004, 17, 311–320. [Google Scholar] [CrossRef]
Microgreen | Total Content mg/100 g | Bioaccessible Fraction mg/100 g | Bioaccessibility (%) |
---|---|---|---|
Ascorbic Acid 1 | |||
Broccoli | 50.99 ± 1.91 b | 0.56 ± 0.09 b | 1.10 ± 0.17 d |
Kale | 56.14 ± 1.04 a | 1.05 ± 0.09 a | 1.87 ± 0.17 c |
Mustard | 30.67 ± 1.02 d | 1.14 ± 0.10 a | 3.73 ± 0.32 a |
Radish | 45.43 ± 1.15 c | 1.19 ± 0.09 a | 2.61 ± 0.21 b |
Total carotenoids (β-carotene) 2 | |||
Broccoli | 221.80 ± 13.36 a | 0.18 ± 0.02 b | 0.08 ± 0.01 c |
Kale | 217.54 ± 18.74 a | 0.12 ± 0.02 c | 0.06 ± 0.01 d |
Mustard | 224.27 ± 9.35 a | 0.25 ± 0.02 a | 0.11 ± 0.01 b |
Radish | 162.29 ± 5.50 b | 0.23 ± 0.03 a | 0.14 ± 0.02 ab |
Total isothiocyanates (sulphoraphane) 2 | |||
Broccoli | 633.11 ± 10.69 b | 204.51 ± 47.94 b | 32.30 ± 7.57 b |
Kale | 608.23 ± 35.63 b | 207.18 ± 10.33 b | 34.06 ± 1.70 b |
Mustard | 801.07 ± 51.16 a | 248.90 ± 25.75 b | 31.07 ± 3.21 b |
Radish | 809.62 ± 27.83 a | 512.99 ± 33.97 a | 63.36 ± 4.20 a |
Total anthocyanins (cyanidin-3-glucose) 2 | |||
Broccoli | 12.66 ± 1.53 b | ND | - |
Kale | 1.39 ± 0.43 d | ND | - |
Mustard | 36.40 ± 0.46 a | ND | - |
Radish | 5.57 ± 0.86 c | ND | - |
Total soluble polyphenols (GAE) 2 | |||
Broccoli | 2037.38 ± 103.10 b | 1427.98 ± 175.00 a | 70.09 ± 8.59 a |
Kale | 2415.95 ± 109.34 a | 1447.72 ± 140.10 a | 59.92 ± 5.80 a |
Mustard | 1889.76 ± 64.81 bc | 820.57 ± 31.00 b | 43.42 ± 1.64 b |
Radish | 2111.19 ± 132.79 b | 1434.82 ± 62.34 a | 67.96 ± 2.95 a |
Broccoli | Kale | Mustard | Radish | References | |
---|---|---|---|---|---|
Antioxidant bioactive compounds | |||||
Ascorbic acid (mg/100 g FW) | 13–110 | 70–93 | 70 | 15–39 | [33,43,44,45] |
Total carotenoids (mg β-carotene/100 g DW) | 2–28 | 27 | 0.17–0.21 | 43 | [45,46,47,48] |
Total isothiocyanates (mg sulphoraphane/100 g DW) | 5–2307 | NA | NA | 189–368 | [25,33,49] |
Total anthocyanins (mg cyaniding-3-glucoside/100 g DW) | NA | NA | 34–67 | ND-189 | [25,46,50] |
Total soluble polyphenols (mg GAE/100 g DW) * | 167–3606 | 967–3010 | 300–1702 | 0.2–13,890 | [25,33,43,44,45,46,51,52,53,54,55] |
Total antioxidant capacity (µM Trolox Eq/100 g DW) | |||||
ORAC * | 4785–15,887 | 28,698–36,030 | NA | 15,021–76,638 | [51] |
TEAC * | 26,200 | 36,200 | NA | NA | [54] |
Mineral content (mg/100 g FW) | |||||
K | 310–599 | 165–348 | 384 | 233–495 | [21,40,43,56,57] |
Ca | 27–88 | 169–254 | 115 | 25–752 | [21,40,43,56,57] |
Mg | 17–40 | 33–98 | 32 | 10–57 | [21,40,43,56,57] |
Fe | 0.34–0.73 | 0.34–1.6 | 1.64 | 0.34–3.8 | [21,40,43,56] |
Zn | 0.41–0.85 | 0.39–0.61 | 0.25 | 0.28–0.39 | [21,40,43,56] |
Microgreen | Total Content µM Trolox Eq/100 g | Bioaccessible Fraction µM Trolox Eq/100 g | Antioxidant Capacity Retained in BF (%) |
---|---|---|---|
TEAC 1 | |||
Broccoli | 421.81 ± 19.35 b | 78.39 ± 9.05 c | 18.58 ± 2.15 b |
Kale | 493.21 ± 25.10 a | 98.69 ± 11.26 b | 20.01 ± 2.28 b |
Mustard | 447.98 ± 11.55 b | 110.81 ± 18.57 b | 24.73 ± 4.15 a |
Radish | 488.65 ± 19.20 a | 137.70 ± 11.30 a | 28.18 ± 2.31 a |
ORAC 1 | |||
Broccoli | 7578.89 ± 815.87 c | 3645.50 ± 281.21 b | 48.10 ± 3.71 c |
Kale | 9782.57 ± 822.34 a | 7391.52 ± 1162.12 a | 75.56 ± 11.88 a |
Mustard | 9090.15 ± 907.25 ab | 7452.51 ± 701.65 a | 81.98 ± 7.72 a |
Radish | 9690.38 ± 935.81 a | 5258.94 ± 721.69 b | 54.27 ± 7.45 b |
Microgreen | Total Content mg/100 g | Bioaccessible Fraction mg/100 g | Bioaccessibility (%) |
---|---|---|---|
Potassium 1 | |||
Broccoli | 86.21 ± 3.23 d | 71.81 ± 2.63 b | 83.30 ± 3.06 ab |
Kale | 100.97 ± 2.02 b | 88.96 ± 2.30 a | 88.30 ± 2.28 ab |
Mustard | 101.71 ± 1.10 ab | 91.82 ± 2.07 a | 90.27 ± 9.26 a |
Radish | 95.04 ± 4.65 c | 76.15 ± 0.12 b | 80.13 ± 0.11 b |
Calcium 1 | |||
Broccoli | 37.38 ± 2.07 b | 12.67 ± 0.12 c | 33.91 ± 0.15 b |
Kale | 40.38 ± 0.60 ab | 22.48 ± 0.18 a | 55.67 ± 0.17 a |
Mustard | 32.20 ± 2.09 c | 19.8 ± 5.78 ab | 61.48 ± 17.94 a |
Radish | 31.02 ± 1.07 c | 14.84 ± 0.15 bc | 47.85 ± 0.18 ab |
Magnesium 1 | |||
Broccoli | 11.95 ± 0.35 b | 7.03 ± 0.56 c | 58.83 ± 4.66 b |
Kale | 11.21 ± 0.15 c | 7.87 ± 0.26b c | 70.26 ± 2.30 a |
Mustard | 12.87 ± 0.19 a | 9.36 ± 0.69 a | 73.41 ± 6.36 a |
Radish | 11.21 ± 0.17 c | 8.12 ± 0.42 b | 72.42 ± 3.79 ab |
Iron 1 | |||
Broccoli | 0.39 ± 0.03 a | ND | - |
Kale | 0.39 ± 0.01 a | ND | - |
Mustard | 0.32 ± 0.02 bc | ND | - |
Radish | 0.30 ± 0.02 c | ND | - |
Zinc 1 | |||
Broccoli | 0.15 ± 0.04 a | ND | - |
Kale | 0.16 ± 0.04 a | ND | - |
Mustard | 0.15 ± 0.03 a | ND | - |
Radish | 0.15 ± 0.02 a | ND | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods 2019, 8, 250. https://doi.org/10.3390/foods8070250
de la Fuente B, López-García G, Máñez V, Alegría A, Barberá R, Cilla A. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods. 2019; 8(7):250. https://doi.org/10.3390/foods8070250
Chicago/Turabian Stylede la Fuente, Beatriz, Gabriel López-García, Vicent Máñez, Amparo Alegría, Reyes Barberá, and Antonio Cilla. 2019. "Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens" Foods 8, no. 7: 250. https://doi.org/10.3390/foods8070250