Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Proximate Chemical Composition and Energy Content
2.3. Fatty Acid Analysis
2.4. Cholesterol Determination
2.5. Amino Acid Analysis
2.6. Minerals
2.7. Statistics
3. Results and Discussion
3.1. Biometric Data and Proximate Chemical Composition
3.2. Fatty Acid Profile and Cholesterol Content
3.3. Amino Acid Profile
3.4. Essential Elements and Contaminants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manning, R.B.; Holthuis, L.B. West African Brachyuran Crabs (Crustacea: Decapoda). In Smithsonian Contributions to Zoology; Smithsonian Institution Press: Washington, DC, USA, 1981; pp. 1–306. [Google Scholar]
- Carvalho, T.B.; Filho, R.R.O.; Monteiro, T.; Lotufo, T.M.C. Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil. Lat. Am. J. Aquat. Res. 2009, 37, 571–576. [Google Scholar] [CrossRef]
- Otwell, W.S.; Bellairs, J.; Sweat, D. Initial Development of a Deep-Sea Crab Fishery in the Gulf of Mexico; Report/Florida Sea Grant College; Food and Agriculture Organization of the United Nations: Rome, Italy, 1984; Volume 61, pp. 1–29. [Google Scholar]
- Melville-Smith, R. The reproductive biology of Geryon maritae (Decapoda, Brachyura) off south west Africa/Namibia. Crustaceana 1987, 53, 259–275. [Google Scholar] [CrossRef]
- Melville-Smith, R. The commercial fishery for and population dynamics of red crab Geryon maritae of South West Africa, 1976–1986. Afr. J. Mar. Sci. 1988, 6, 79–95. [Google Scholar] [CrossRef]
- Le Roux, L. The impact of emigration on population estimates of deep-sea red crab Chaceon maritae off Namibia. Afr. J. Mar. Sci. 2001, 23, 61–66. [Google Scholar] [CrossRef]
- Perry, H.; Isphording, W.; Trigg, C.; Riedel, R. Heavy metals in red crabs, Chaceon quinquedens, from the Gulf of Mexico. Mar. Pollut. Bull. 2015, 101, 845–851. [Google Scholar] [CrossRef]
- Melville-Smith, R. A growth model for the deep-sea Red Crab (Geryon maritae) off South West Africa/Namibia (Decapoda, Brachyura). Crustaceana 1989, 56, 279–292. [Google Scholar] [CrossRef]
- Governo Provincial do Namibe, República de Angola. Plano de Desenvolvimento Económico e Social da Província do Namibe para o Período 2013–2017. Acedido 2013, 3, 2015. [Google Scholar]
- Gabinete de Estudo, Planeamento e Estatística, Ministério das Pescas de Angola; Luanda, Angola. Personal Communication, 2018.
- Vasconcelos, P.; Braz, N.R. Proximate composition of the deep-sea crab, Chaceon affinis from an exploratory fishery off Madeira island (Portugal-Eastern Central Atlantic). In Proceedings of the Symposium Deep-sea Fisheries. Scientific Council Annual Meeting, Matanzas, Cuba, 12–14 September 2001; pp. 17–21. [Google Scholar]
- Barrento, S.; Marques, A.; Teixeira, B.; Mendes, R.; Bandarra, N.; Vaz-Pires, P.; Nunes, M.L. Chemical composition, cholesterol, fatty acid and amino acid in two populations of brown crab Cancer pagurus: Ecological and human health implications. J. Food Compost. Anal. 2010, 23, 716–725. [Google Scholar] [CrossRef]
- Marques, A.; Teixeira, B.; Barrento, S.; Anacleto, P.; Carvalho, M.L.; Nunes, M.L. Chemical composition of Atlantic spider crab Maja brachydactyla: Human health implications. J. Food Compost. Anal. 2010, 23, 230–237. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, B.; Cheng, Y.; Zeng, C.; Wang, C.; Feng, L. Comparison of gender differences in biochemical composition and nutritional value of various edible parts of the blue swimmer crab. J. Food Compost. Anal. 2010, 23, 154–159. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Anacleto, P.; Lourenço, H.M.; Carvalho, M.L.; Nunes, M.L.; Marques, A. Nutritional quality and safety of cooked edible crab (Cancer pagurus). Food Chem. 2012, 133, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Risso, S.J.; Carelli, A.A. Nutrient composition of raw and cooked meat of male southern king crab (Lithodes santolla Molina, 1782). J. Aquat. Food Prod. Technol. 2012, 21, 433–444. [Google Scholar] [CrossRef]
- He, J.; Xuan, F.; Shi, H.; Xie, J.; Wang, W.; Wang, G.; Xu, W. Comparison of nutritional quality of three edible tissues of the wild-caught and pond-reared swimming crab (Portunus trituberculatus) females. LWT-Food Sci. Technol. 2017, 75, 624–630. [Google Scholar] [CrossRef]
- Yagi, S.; Fukuda, D.; Aihara, K.I.; Akaike, M.; Shimabukuro, M.; Sata, M. N-3 polyunsaturated fatty acids: Promising nutrients for preventing cardiovascular disease. J. Atheroscler. Thromb. 2017, 24, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Endo, J.; Arita, M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SanGiovanni, J.P.; Chew, E.Y.; Clemons, T.E.; Davis, M.D.; Ferris, F.L.; Gensler, G.R.; Kurinij, N.; Lindblad, A.S.; Milton, R.C.; Seddon, J.M.; et al. The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Arch. Ophthalmol. 2007, 125, 671–679. [Google Scholar]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Zanoaga, O.; Jurj, A.; Raduly, L.; Cojocneanu-Petric, R.; Fuentes-Mattei, E.; Wu, O.; Braicu, C.; Gherman, C.D.; Berindan-Neagoe, I. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer. Exp. Ther. Med. 2018, 15, 1167–1176. [Google Scholar] [CrossRef]
- Liu, J.J.; Green, P.; Mann, J.J.; Rapoport, S.I.; Sublette, M.E. Pathways of polyunsaturated fatty acid utilization: Implications for brain function in neuropsychiatric health and disease. Brain Res. 2015, 1597, 220–246. [Google Scholar] [CrossRef]
- Tchipalanga, P.; Saquenha, E.S.C.; Farncisco, J.A.; Fidel, Q. A Investigação pesqueira no largo do Namibe. Boletim Anual 2015; República de Angola, Ministério das Pescas Instituto Nacional de Investigação Pesqueira, Centro de Investigação Pesqueira do Namibe: Moçamedes, Angola, 2015; pp. 1–13. [Google Scholar]
- Josileen, J. Morphometrics and length-weight relationship in the blue swimmer crab, Portunus pelagicus (Linnaeus, 1958) (Decapoda, Brachyura) from the Mandapam coast, India. Crustaceana 2011, 84, 1665–1681. [Google Scholar] [CrossRef]
- AOAC Official. Methods of Analysis of AOAC International, 18th ed.; Latimer, G., Horwitz, W., Eds.; AOAC International: Gaithersburg, MD, USA, 2005; p. 3000. [Google Scholar]
- Cardoso, C.; Mendes, R.; Vaz-Pires, P.; Nunes, M.L. Effect of dietary fibre and MTGase on the quality of mackerel surimi gels. J. Sci. Food Agric. 2009, 89, 1648–1658. [Google Scholar] [CrossRef]
- FAO. Yield and nutritional value of the commercially more important fish species. FAO Fish. Tech. Pap. 1989, 309, 1–187. [Google Scholar]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [PubMed]
- Cohen, Z.; Vonshak, A.; Richmond, A. Effect of environmental conditions on fatty acid composition of the red algae Porphyridium cruentum: Correlation to growth rate. J. Phycol. 1988, 24, 328–332. [Google Scholar]
- Ulbricht, T.L.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein content and amino acids profile of pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef] [PubMed]
- WHO; FAO; UNU. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO, WHO, UNU Expert Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2007; p. 150. [Google Scholar]
- Jorhem, L. Determination of metals in food by atomic absorption spectrometry after dry ashing: NMKL collaborative study. J. AOAC Int. 2000, 83, 1204–1211. [Google Scholar] [PubMed]
- EPA. Test Method 7473: Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation and Atomic Absorption Spectrometry; SW-846; Environment Protection Agency: Washington, DC, USA, 2007; pp. 1–17.
- ISO Standard 13730:1996. International Standards Meat and Meat Products; International Organization for Standardization: Geneva, Switzerland, 1996; pp. 1–6. [Google Scholar]
- Raimundo, J.; Vale, C.; Caetano, M.; Giacomello, E.; Anes, B.; Menezes, G.M. Natural trace element enrichment in fishes from a volcanic and tectonically active region (Azores archipelago). Deep Sea Res. 2013, 98, 137–147. [Google Scholar] [CrossRef]
- BS EN 15111:2007. Foodstuffs. Determination of Trace Elements. Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry); European Committee for Standardization: Brussels, Belgium, 2017; pp. 1–16. [Google Scholar]
- BS EN 15763. 2009 Foodstuffs—Determination of Trace Elements—Determination of Arsenic, Cadmium, Mercury and Lead in Foodstuffs by Inductively Coupled Plasma Mass Spectrometry (ICPMS) after Pressure Digestion; European Committee for Standardization: Brussels, Belgium, 2009; pp. 1–22. [Google Scholar]
- NP EN ISO/IEC 17025. 2005–Requisitos Gerais de Competência para Laboratórios de Ensaio e Calibração, 2ª Edição; Instituto Português da Qualidade: Caparica, Portugal, 2005; pp. 1–37. [Google Scholar]
- Skonberg, D.I.; Perkins, B.L. Nutrient composition of green crab (Carcinus maenus) leg meat and claw meat. Food Chem. 2002, 77, 401–404. [Google Scholar] [CrossRef]
- Lauer, B.H.; Murray, M.C.; Anderson, W.E.; Guptill, E.B. Atlantic queen crab (Chionoecetes opilio), Jonah crab (Cancer borealis), and red crab (Geryon quinquedens). Proximate composition of crabmeat from edible tissues and concentrations of some major mineral constituents in the ash. J. Food Sci. 1974, 39, 383–385. [Google Scholar] [CrossRef]
- Krzynowek, J.; Wiggin, K.; Donahue, P. Cholesterol and fatty acid content in three species of crab found in the Northwest Atlantic. J. Food Sci. 1982, 47, 1025–1026. [Google Scholar] [CrossRef]
- Cuculescu, M.; Hyde, D.; Bowler, K. Temperature acclimation of marine crabs: Changes in plasma membrane fluidity and lipid composition. J. Therm. Biol. 1995, 20, 207–222. [Google Scholar] [CrossRef]
- EFSA Overview on Dietary Reference Values for the EU Population as Derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Summary of Dietary Reference Values-Version 4. September 2017. Available online: https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf (accessed on 19 March 2018).
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- EUFIC. The European Food Information Council Facts on Fats: Dietary Fats and Health. 2015. Available online: http://www.eufic.org/en/whats-in-food/article/facts-on-fats-dietary-fats-and-health (accessed on 19 March 2018).
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108, S183–S211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Tolerable Upper Intake Levels for Vitamins and Minerals-Scientific Committee on Food/Scientific Panel on Dietetic Products, Nutrition, Allergies; EFSA: Brussel, Belgium, 2006.
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for chromium EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2014, 12, 1–66. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of Setting Maximum Levels for Certain Contaminants in Foodstuffs. OJ 2006, L 364, 5–24. [Google Scholar]
- Jeckel, W.H.; Roth, R.R.; Ricci, L. Patterns of trace-metal distribution in tissues of Pleoticus muelleri (Crustacea: Decapoda: Solenoceridae). Mar. Biol. 1996, 125, 297–306. [Google Scholar] [CrossRef]
- Marsden, I.D.; Rainbow, P.S. Does the accumulation of trace metals in crustaceans affect their ecology—The amphipod example? J. Exp. Mar. Biol. Ecol. 2004, 300, 373–408. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–23. [Google Scholar] [CrossRef]
- Stoffaneller, R.; Morse, N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef]
- Julshamn, K.; Valdersnes, S.; Duinker, A.; Nedreaas, K.; Sundet, J.H.; Maage, A. Heavy metals and POPs in red king crab from the Barents Sea. Food Chem. 2015, 167, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Wiech, M.; Amlund, H.; Jensen, K.A.; Aldenberg, T.; Duinker, A.; Maage, A. Tracing simultaneous cadmium accumulation from different uptake routes in brown crab Cancer pagurus by the use of stable isotopes. Aquat. Toxicol. 2018, 201, 198–206. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Subject: Consumption of Brown Crab Meat. Information Note from Health and Consumers Directorate-General; European Commission: Brussels, Belgium, 2011; pp. 1–2. [Google Scholar]
- Ruttens, A.; Blanpain, A.C.; De Temmerman, L.; Waegeneers, N. Arsenic speciation in food in Belgium: Part 1: Fish, molluscs and crustaceans. J. Geochem. Explor. 2012, 121, 55–61. [Google Scholar] [CrossRef]
March | October | |
---|---|---|
Number of specimens | 26 (females) | 30 (females) |
Carapace width (CW) (mm) | 87.1 ± 3.2 a (81-95) | 79.6 3.1 b (72–89) |
Carapace length (CL) (mm) | 75.5 ± 3.4 a (69–84) | 73.7 ± 3.8 a (67–85) |
Total weight (g) | 156.8 ± 29.5 a (99.0–211.0) | 145.0 ± 20.7 a (110.0–182.0) |
Content | March | October | ||||
---|---|---|---|---|---|---|
Muscle | Ovaries | Hepatopancreas | Muscle | Ovaries | Hepatopancreas | |
Moisture | 76.6 ± 0.4 a | 60.2±0.4 e | 67.3 ± 0.1 c | 75.8 ± 0.1 b | 60.0 ± 0.1 e | 64.4 ± 0.1 d |
Ash | 3.2 ± 0.1 a | 2.1 ± 0.1 d | 2.6 ± 0.1 b | 3.0 ± 0.1 a | 2.0 ± 0.0 d | 2.4 ± 0.1 c |
Protein | 17.7 ± 0.4 b | 21.4 ± 0.4 a | 11.5 ± 0.4 c | 17.1 ± 0.1 b | 21.9 ± 0.2 a | 12.2 ± 0.2 c |
Fat | 1.0 ± 0.0 e | 11.8 ± 0.2 d | 16.8 ± 0.1 b | 1.0 ± 0.0 e | 12.7 ± 0.1 c | 20.0 ± 0.3 a |
Energy | 84.5 ± 2.4 d | 196.9 ± 3.7 c | 200.2 ± 0.4 c | 82.2 ± 0.3 d | 207.9 ± 0.5 b | 232.3 ± 3.0 a |
Fatty acid | March | October | ||||
---|---|---|---|---|---|---|
Muscle | Ovaries | Hepatopancreas | Muscle | Ovaries | Hepatopancreas | |
Saturated | ||||||
14:0 (%) | 1.71 ± 0.15 a | 3.60 ± 1.86 a | 3.40 ± 0.40 a | 2.05 ± 0.28 a | 2.27 ± 0.06 a | 3.93 ± 0.69 a |
16:0 (%) | 10.95 ± 0.50 a | 13.59 ± 2.86 a | 12.54 ± 0.18 a | 12.03 ± 0.87 a | 11.41 ± 0.12 a | 13.61 ± 0.42 a |
18:0 (%) | 4.94 ± 0.06 b | 3.24 ± 0.18 c | 4.85 ± 0.16 b | 5.17 ± 0.02 a,b | 3.52 ± 0.01 c | 5.47 ± 0.08 a |
Other SFA (%) | 3.49 ± 0.09 b | 4.22 ± 0.54 a | 4.09 ± 0.12 a,b | 3.54 ± 0.08 a,b | 3.72 ± 0.06 a,b | 4.48 ± 0.22 a |
ΣSFA (%) | 21.07 ± 0.62 a | 24.65 ± 5.07 a | 24.87 ± 0.58 a | 22.78 ± 1.21 a | 20.90 ± 0.11 a | 27.48 ± 1.25 a |
ΣSFA (mg/100 g ww) | 143.9 ± 4.2 d,C | 2695 ± 516 c,B | 3927 ± 107 b,C | 155.6 ± 10.4 d,C | 2480 ± 37 c,C | 5178 ± 284 a,B |
Monounsaturated | ||||||
16:1(ω9 + ω7) (%) | 4.50 ± 0.22 b | 8.42 ± 2.07 a | 5.78 ± 0.15 b | 5.18 ± 0.43 b | 6.87 ± 0.07 a,b | 6.17 ± 0.27 a,b |
18:1(ω9) (%) | 12.77 ± 0.45 b | 14.88 ± 0.55 a | 15.27 ± 0.99 a | 14.27 ± 0.07 a,b | 15.66 ± 0.01 a | 16.08 ± 0.57 a |
18:1(ω7) (%) | 4.23 ± 0.06 cd | 4.06 ± 0.22 d | 5.23 ± 0.07 b | 4.56 ± 0.03 c | 4.41 ± 0.00 c,d | 5.70 ± 0.04 a |
20:1(ω11 + ω9 + ω7) (%) | 3.40 ± 0.29 d | 3.66 ± 0.59 d | 6.19 ± 0.11 b | 3.94 ± 0.34 c,d | 5.01 ± 0.04 c | 7.76 ± 0.07 a |
22:1(ω11) (%) | 1.67 ± 0.22 c,d | 1.42 ± 0.24 d | 3.15 ± 0.10 b | 1.74 ± 0.18 c,d | 2.14 ± 0.01 c | 4.27 ± 0.09 a |
Other MUFA (%) | 2.11 ± 0.05 b | 1.46 ± 0.36 c | 1.95 ± 0.06 b | 2.17 ± 0.04 b | 2.30 ± 0.01 b | 2.97 ± 0.10 a |
Σ MUFA (%) | 28.68 ± 0.92 e | 33.90 ± 1.28 c,d | 37.56 ± 1.03 b | 31.86 ± 0.23 d | 36.38 ± 0.01 b,c | 42.95 ± 0.33 a |
Σ MUFA (mg/100 g ww) | 195.9 ± 6.3 e,B | 3714 ± 99 d,A | 5928 ± 126 b,A | 217.6 ± 8.6 e,B | 4318 ± 20 c,B | 8094 ± 303 a,A |
Polyunsaturated | ||||||
18:2(ω6) (%) | 0.78 ± 0.08 b,c | 0.85 ± 0.02 b,c | 1.06 ± 0.06 a | 0.77 ± 0.01 c | 0.81 ± 0.01 b,c | 0.94 ± 0.02 a,b |
18:3(ω3) (%) | 0.21 ± 0.05 c | 0.31 ± 0.03 b | 0.41 ± 0.01 a | 0.19 ± 0.01 c | 0.30 ± 0.00b | 0.34 ± 0.01 a,b |
20:4(ω6) (%) | 3.70 ± 0.05 a | 2.98 ± 0.35 b,c | 2.76 ± 0.07 c | 3.43 ± 0.08 a,b | 3.12 ± 0.01 b,c | 2.06 ± 0.02 d |
20:5(ω3) (%) | 17.29 ± 0.49 a | 11.54 ± 1.66 b | 8.21 ± 0.22 c | 15.91 ± 0.43 a | 11.92 ± 0.09 b | 5.75 ± 0.02 c |
22:5(ω3) (%) | 2.18 ± 0.03 a,b | 2.54 ± 0.68 a,b | 2.17 ± 0.11 a,b | 1.90 ± 0.09 a,b | 2.99 ± 0.03 a | 1.70 ± 0.04 b |
22:6(ω3) (%) | 17.33 ± 0.62 a | 11.50 ± 3.08 b,c | 11.14 ± 0.62 b,c | 14.98 ± 0.82 a,b | 12.72 ± 0.23 a,b | 6.68 ± 0.15 c |
Other PUFA (%) | 5.42 ± 0.06 c | 6.32 ± 0.19 a | 6.22 ± 0.14 a,b | 5.11 ± 0.10 c | 6.49 ± 0.07 a | 5.94 ± 0.02 b |
Σ PUFA (%) | 46.90 ± 0.97 a | 36.04 ± 5.95 b,c | 31.95 ± 0.96 c,d | 42.27 ± 1.51 a,b | 38.34 ± 0.03 a,b,c | 23.56 ± 0.13 d |
Σ PUFA (mg/100 g ww) | 320.3 ± 6.6 c,A | 3957 ± 709 b,A | 5045 ± 186 a,B | 288.7 ± 12.2 c,A | 4550 ± 59 a,b,A | 4440 ± 84 a,b,C |
Σ PUFAω3 (%) | 38.97 ± 0.98 a | 28.45 ± 5.67 b,c | 24.31 ± 0.92 c,d | 34.83 ± 1.37 a,b | 30.52 ± 0.04 a,b,c | 16.52 ± 0.16 d |
Σ PUFAω3 (mg/100 g ww) | 266.2 ± 6.7 b | 3124 ± 666 a | 3839 ± 172 a | 237.9 ± 10.7 b | 3622 ± 50 a | 3114 ± 53 a |
Σ PUFAω6 (%) | 6.83 ± 0.10 a | 5.91 ± 0.72 b | 6.46 ± 0.06 a,b | 6.18 ± 0.13 a,b | 6.25 ± 0.01 a,b | 5.44 ± 0.02 b |
Σ PUFAω6 (mg/100 g ww) | 46.67 ± 0.65 c | 648 ± 88 b | 1020 ± 13 a | 42.21 ± 1.35 c | 742 ± 7 b | 1024 ± 23 a |
Σ PUFAω3/Σ PUFAω6 | 5.70 ± 0.16 a | 4.78 ± 0.40 c | 3.76 ± 0.14 d | 5.63 ± 0.11 a,b | 4.88 ± 0.01 b,c | 3.04 ± 0.02 e |
EPA + DHA (%) | 34.62 ± 1.02 a | 23.04 ± 4.73 c | 19.35 ± 0.76 c,d | 30.89 ± 1.25 a,b | 24.64 ± 0.13 b,c | 12.60 ± 0.13 d |
EPA + DHA (mg/100 g ww) | 236.4 ± 6.9 b | 2530 ± 555 a | 3056 ± 141 a | 210.9 ± 8.6 b | 2924 ± 38 a | 2375 ± 32 a |
SFA + MUFA + PUFA (%) | 96.66 ± 0.39 a | 94.58 ± 0.51 b | 94.38 ± 0.39 b | 96.90 ± 0.54 a | 95.62 ± 0.16 a,b | 93.98 ± 1.05 b |
SFA + MUFA + PUFA(mg/100 g ww) | 660.2 ± 2.69 e | 10366 ± 130 d | 14900 ± 155 b | 661.8 ± 31.1 e | 11348 ± 116 c | 17712 ± 670 a |
Atherogenic index | 0.24 ± 0.02 a | 0.42 ± 0.18 a | 0.38 ± 0.03 a | 0.28 ± 0.03 a | 0.28 ± 0.00 a | 0.45 ± 0.05 a |
Thrombogenic Index | 0.13 ± 0.00 b | 0.19 ± 0.07 a,b | 0.21 ± 0.01 a,b | 0.15 ± 0.01 b | 0.15 ± 0.00 b | 0.30 ± 0.01 a |
Cholesterol (mg/100 g) | 62.8 ± 2.2 a | na | na | 79.2 ± 9.3 a | na | na |
Amino Acids | March | October | ||
---|---|---|---|---|
Amino Acids (mg/100g) | Amino Acids (mg/g Protein) | Amino Acids (mg/100g) | Amino Acids (mg/g Protein) | |
Essential | ||||
Threonine | 639 ± 33 | 36 ± 1 | 620 ± 118 | 36 ± 6 |
Valine | 586 ± 41 | 33 ± 2 | 597 ± 102 | 34 ± 6 |
Methionine | 487 ± 34 | 27 ± 1 | 453 ± 83 | 26 ± 4 |
Isoleucine | 579 ±43 | 32 ± 2 | 606 ± 112 | 35 ± 6 |
Leucine | 1167 ± 86 | 65 ± 4 | 1152 ± 214 | 67 ± 12 |
Phenylalanine | 609 ± 40 | 34 ± 2 | 611 ± 91 | 35 ± 5 |
Histidine | 320± 23 | 18 ± 1 | 306 ± 51 | 17 ± 3 |
Lysine | 1096 ± 36 | 61 ± 2 | 1069 ± 208 | 62 ± 12 |
∑EAA | 5486± 339 | 309 ± 19 | 5418 ± 982 | 316 ± 57 |
Non-essential | ||||
Aspartic acid | 1706 ± 33 | 96 ± 1 | 1627 ± 323 | 95 ± 19 |
Serine | 664 ± 32 | 37 ± 1 | 635 ± 106 | 37 ± 6 |
Cysteine | 103 ± 13 | 5 ± 0 | 87 ± 17 | 5 ± 0 |
Glutamic acid | 2856 ± 59 | 161 ± 3 | 2740 ± 513 | 160 ± 30 |
Glycine | 1023 ± 95 | 57 ± 5 | 979 ± 143 | 57 ± 8 |
Alanine | 938 ± 36 | 53 ± 2 | 887 ± 154 | 51 ± 9 |
Tyrosine | 601 ± 37 | 33 ± 2 | 595 ± 86 | 34 ± 5 |
Proline | 696 ± 60 | 39 ± 3 | 681 ± 112 | 39 ± 6 |
Arginine | 1377 ± 100 | 77 ± 5 | 1309 ± 234 | 76 ± 13 |
∑NEAA | 9966 ± 470 | 563 ± 26 | 9545 ± 1698 | 558 ± 99 |
∑TAA | 15453 ± 809 | 873 ± 45 | 14963 ± 2680 | 875 ± 156 |
EAA/NEAA | 0.55 ± 0.01 | 0.55 ± 0.01 | 0.57 ± 0.02 | 0.57 ± 0.02 |
Amino Acids | Requirements (mg/g Protein) | Amino Acid Score | |
---|---|---|---|
March | October | ||
Threonine | 23 | 157 | 157 |
Valine | 39 | 84 | 89 |
Methionine | 16 | 172 | 165 |
Isoleucine | 30 | 109 | 118 |
Leucine | 59 | 111 | 114 |
Phenylalanine + tyrosine | 38 | 179 | 185 |
Histidine | 15 | 120 | 119 |
Lysine | 45 | 137 | 138 |
Element | March | October | ||||
---|---|---|---|---|---|---|
Muscle | Ovaries | Muscle | Ovaries | Hepatopancreas | ||
Macro | AI (mg/day) | |||||
Sodium (Na) | 1500 1,* | 690.63 ± 35.75 a | na | 653.24 ± 3.78 a | na | na |
Magnesium (Mg) | 230–350 2 | 76.08 ± 5.69 a | na | 79.03 ± 1.55 a | na | na |
Phosphorous (P) | 440–550 2 | 152.00 ± 5.04 a | na | 155.19 ± 1.12 a | na | na |
Potassium (K) | 1100–3500 2 | 214.51 ± 16.13 a | na | 219.42 ± 1.62 a | na | na |
Trace | ||||||
Iron (Fe) | 7–16 2 | 1.850 ± 0.030 a | na | 1.200 ± 0.221 a | na | na |
Selenium (Se) | 0.020–0.070 2 | 0.173 ± 0.003 a | na | 0.116 ± 0.011 b | na | na |
Iodine (I) | 0.090–0.150 2 | 0.147 ± 0.010 b | na | 0.187 ± 0.008 a | na | na |
Manganese (Mn) | 1.0–3.0 2 | 0.028 ± 0.009 c | 0.139 ± 0.001 a | 0.024 ± 0.002 c | 0.125 ± 0.003 b | 0.145 ± 0.002 a |
Copper (Cu) | 1.0–1.6 2 | 1.492 ± 0.103 c | 2.425 ± 0.224 a | 1.506 ± 0.028 c | 2.245 ± 0.057 b | 2.623 ± 0.062 a |
Zinc (Zn) | 5.5–16.3 2 | 4.035 ± 0.002 b | 22.048 ± 0.309 a | 4.168 ± 0.063 b | 19.271 ± 0.549 a | 5.484 ± 0.081 b |
Nickel (Ni) | NDf 1 | 0.022 ± 0.002 c | 0.063 ± 0.011 b | 0.019 ± 0.000 c | 0.047 ± 0.003 b | 0.091 ± 0.001 a |
Chromium (Cr) | NDf 3 | 0.006 ± 0.001 c | 0.008 ± 0.000 c | 0.007 ± 0.000 c | 0.014 ± 0.002 a | 0.011 ± 0.001 b |
Cobalt (Co) | NDf | 0.003 ± 0.000 d | 0.010 ± 0.001 b | 0.002 ± 0.000 d | 0.008 ± 0.000 c | 0.014 ± 0.000 a |
Vanadium (V) | NDf 1 | 0.033 ± 0.001 b | 0.044 ± 0.009 b | 0.031 ± 0.003 b | 0.037 ± 0.000 b | 0.070 ± 0.001 a |
Toxic | MPC (mg/100g) | |||||
Arsenic (As) | NDf | 0.109 ± 0.003 c | 0.166 ± 0.008 b | 0.120 ± 0.005 c | 0.162 ± 0.013 b | 0.222 ± 0.005 a |
Cadmium (Cd) | 0.05 4 | 0.001 ± 0.000 a | <LoD | 0.001 ± 0.000 a | <LoD | 0.002 ± 0.000 a |
Lead (Pb) | 0.05 4 | 0.001 ± 0.000 a | <LoD | 0.001 ± 0.000 a | <LoD | 0.002 ± 0.000 a |
Mercury (Hg) | 0.05 4 | 0.018 ± 0.001 a | 0.003 ± 0.000 c | 0.018 ± 0.001 a | 0.004 ± 0.000 c | 0.010 ± 0.001 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandume, C.M.C.; Bandarra, N.M.; Raimundo, J.; Lourenço, H.M.; Gonçalves, S.; Ventura, M.; Delgado, I.; Rego, A.; Motta, C.; Castanheira, I.; et al. Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola). Foods 2019, 8, 227. https://doi.org/10.3390/foods8070227
Mandume CMC, Bandarra NM, Raimundo J, Lourenço HM, Gonçalves S, Ventura M, Delgado I, Rego A, Motta C, Castanheira I, et al. Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola). Foods. 2019; 8(7):227. https://doi.org/10.3390/foods8070227
Chicago/Turabian StyleMandume, Celso Manuel Cristovão, Narcisa M. Bandarra, Joana Raimundo, Helena Maria Lourenço, Susana Gonçalves, Marta Ventura, Inês Delgado, Andreia Rego, Carla Motta, Isabel Castanheira, and et al. 2019. "Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola)" Foods 8, no. 7: 227. https://doi.org/10.3390/foods8070227
APA StyleMandume, C. M. C., Bandarra, N. M., Raimundo, J., Lourenço, H. M., Gonçalves, S., Ventura, M., Delgado, I., Rego, A., Motta, C., Castanheira, I., Nunes, M. L., & Duarte, M. P. (2019). Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola). Foods, 8(7), 227. https://doi.org/10.3390/foods8070227