Next Article in Journal
High-Hydrostatic-Pressure (HHP) Processing Technology as a Novel Control Method for Listeria monocytogenes Occurrence in Mediterranean-Style Dry-Fermented Sausages
Previous Article in Journal
Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions
Open AccessArticle

Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) Edible Oils

1
Center of Studies and Innovation of Functional Foods (CEIAF)-Faculty of Industrial Engineering, Institute of Scientific Research, IDIC, University of Lima, Avda. Javier Prado Este, 4600 Surco, Lima 15023, Peru
2
National Institute of Industrial Technology, INTI- Av. Gral. Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina
3
Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, Ctra. Sevilla-Utrera km 1, Campus University Pablo de Olavide. Bg. 46, E-41013 Sevilla, Spain
*
Author to whom correspondence should be addressed.
Foods 2019, 8(12), 671; https://doi.org/10.3390/foods8120671
Received: 7 November 2019 / Revised: 9 December 2019 / Accepted: 10 December 2019 / Published: 12 December 2019
(This article belongs to the Section Food Analytical Methods)
Sacha inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) edible oils were microencapsulated and the lipid fraction of the microparticles was characterized. Hi-cap®, Capsule®, Arabic gum, and the binary combination of Arabic gum + maltodextrin and the ternary combination of Arabic gum + maltodextrin + whey protein isolate, were used as coating materials for the encapsulation process using spray-drying. The surface and the total oils obtained from the microparticles were evaluated in terms of fatty acid composition, minor glyceride polar compounds, polymers, oxidized triglycerides, diglycerides, monoglycerides, and free fatty acids, along with their unsaponifiable components, sterols, and tocopherols. Differences between the original oils and the microencapsulated ones were determined. The most remarkable results included the presence of polymers when there were none in the original oils, the slight loss in ω3-fatty acids, up to 6%, the loss in tocopherols, in some of the cases around 30%, the maintaining of the phytosterol in their initial levels and the presence of cholesterol in the oils encapsulated with whey protein isolate. View Full-Text
Keywords: analytical methods; coating materials; microencapsulation; omega-3; phytosterols; sacha inchi oils; tocopherols analytical methods; coating materials; microencapsulation; omega-3; phytosterols; sacha inchi oils; tocopherols
Show Figures

Figure 1

MDPI and ACS Style

Chasquibol, N.A.; Gallardo, G.; Gómez-Coca, R.B.; Trujillo, D.; Moreda, W.; Pérez-Camino, M.C. Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) Edible Oils. Foods 2019, 8, 671.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop