The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Composite Flours
2.3. Formulation of the Bakery Products
2.4. Preparation of Bread
2.5. Preparation of Focaccia
2.6. Preparation of Pizza Crust
2.7. Chemical Analyses
2.8. Determination of the Rheological Properties and Fermentative Attitude of Flours and Composite Meals
2.9. Physical Determinations of Bakery Products
2.10. Sensory Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Characteristics of the Starting Flours
3.2. Rheological and Fermentative Characteristics of Flours and Composite Meals
3.3. Nutritional and Qualitative Properties of the Bakery Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sultani, M.; Gill, M.; Anwar, M.; Athar, M. Evaluation of soil physical properties as influenced by various green manuring legumes and phosphorus fertilization under rain fed conditions. Int. J. Environ. Sci. Technol. 2007, 4, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, K. Nutritional composition of Iranian desi and kabuli chickpea (Cicer arietinum L.) cultivars in autumn sowing. Int. J. Biol. Biomol. Agric. Food Biotech. Eng. 2015, 9, 514–517. [Google Scholar]
- Pavan, S.; Lotti, C.; Marcotrigiano, A.R.; Mazzeo, R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Taranto, F.; D’Agostino, N.; Schiavulli, A.; et al. A distinct genetic cluster in cultivated chickpea as revealed by genome-wide marker discovery and genotyping. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Summo, C.; de Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Nutritional, physico-chemical and functional characterization of a global chickpea collection. J. Food Compos. Anal. 2019, 84, 103306. [Google Scholar] [CrossRef]
- Summo, C.; de Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Data on the chemical composition, bioactive compounds, fatty acid composition, physico-chemical and functional properties of a global chickpea collection. Data Brief 2019, in press. [Google Scholar] [CrossRef]
- Summo, C.; de Angelis, D.; Rochette, I.; Mouquet-Rivier, C.; Pasqualone, A. Influence of the preparation process on the chemical composition and nutritional value of canned purée of kabuli and Apulian black chickpeas. Heliyon 2019, 5, e01361. [Google Scholar] [CrossRef]
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and new food uses of pulses. Cereal Chem. 2017, 94, 66–73. [Google Scholar] [CrossRef]
- Wang, S.; Chelikani, V.; Serventi, L. Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT Food Sci. Technol. 2018, 97, 570–572. [Google Scholar] [CrossRef]
- Meng, X.; Threinen, D.; Hansen, M.; Driedger, D. Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Res. Int. 2010, 43, 650–658. [Google Scholar] [CrossRef]
- Sabanis, D.; Makri, E.; Doxastakis, G. Effect of durum flour enrichment with chickpea flour on the characteristics of dough and lasagna. J. Sci. Food Agric. 2006, 86, 1938–1944. [Google Scholar] [CrossRef]
- Miñarro, B.; Albanell, E.; Aguilar, N.; Guamis, B.; Capellas, M. Effect of legume flours on baking characteristics of gluten-free bread. J. Cereal Sci. 2012, 56, 476–481. [Google Scholar] [CrossRef]
- Pasqualone, A.; Caponio, F.; Summo, C.; Arapi, V. Characterisation of traditional Albanian breads derived from different cereals. Eur. Food Res. Technol. 2004, 219, 48–51. [Google Scholar]
- Fernandez, L.M.; Berry, J.W. Rheological properties of flour and sensory characteristics of bread made from germinated chickpea. Int. J. Food Sci. Technol. 1989, 24, 103–110. [Google Scholar] [CrossRef]
- Mohammed, I.; Adberahman, R.; Ahmed, B.S. Effects of chickpea flour on wheat pasting properties and bread making quality. J. Food Sci. Technol. 2014, 51, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Ahmeda, A.R.; Sengea, B. Dough rheology and bread quality of wheat–chickpea flour blends. Ind. Crops Prod. 2012, 36, 196–202. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Calasso, M.; Campanella, D.; de Angelis, M.; Gobbetti, M. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. Int. J. Food Microbiol. 2014, 180, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Ertop, M.H.; Coşkun, Y. Shelf-life, physicochemical, and nutritional properties of wheat bread with optimized amount of dried chickpea sourdough and yeast by response surface methodology. J. Food Process. Preserv. 2018, 42, e13650. [Google Scholar] [CrossRef]
- Shrivastava, C.; Chakraborty, S. Bread from wheat flour partially replaced by fermented chickpea flour: Optimizing the formulation and fuzzy analysis of sensory data. LWT Food Sci. Technol. 2018, 90, 215–223. [Google Scholar] [CrossRef]
- Zafar, T.A.; Al-Hassawi, F.; Al-Khulaifi, F.; Al-Rayyes, G.; Waslien, C.; Huffman, F.G. Organoleptic and glycemic properties of chickpea-wheat composite breads. J. Food Sci. Technol. Mysore 2015, 52, 2256–2263. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Muccilli, S.; Padalino, L.; Giannone, V.; Lecce, L.; Giovanniello, V.; del Nobile, M.A.; de Vita, P.; Spina, A. Durum wheat breads ‘high in fibre’and with reduced in vitro glycaemic response obtained by partial semolina replacement with minor cereals and pulses. J. Food Sci. Technol. 2018, 55, 4458–4467. [Google Scholar] [CrossRef]
- Pasqualone, A. Italian durum wheat breads. In Bread Consumption and Health; Pedrosa Silva Clerici, M.T., Ed.; Nova Science Publisher Inc.: Hauppauge, NY, USA, 2012; pp. 57–59. [Google Scholar]
- Giannone, V.; Giarnetti, M.; Spina, A.; Todaro, A.; Pecorino, B.; Summo, C.; Caponio, F.; Paradiso, V.M.; Pasqualone, A. Physico-chemical properties and sensory profile of durum wheat Dittaino PDO (Protected Designation of Origin) bread and quality of re-milled semolina used for its production. Food Chem. 2018, 241, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, R. Food industry overview: Frozen pizza. Food Technol. Fact Sheet 2000, 103, 1–4. [Google Scholar]
- Field, C. The Italian Baker, Revised: The Classic Tastes of the Italian Countryside—Its Breads, Pizza, Focaccia, Cakes, Pastries, and Cookies; Ten Speed Press: New York, NY, USA, 2011. [Google Scholar]
- Pasqualone, A.; Delcuratolo, D.; Gomes, T. Focaccia Italian flat fatty bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 47–58. [Google Scholar]
- American Association of Cereal Chemists (AACC) International. Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists: St Paul, MN, USA, 2009. [Google Scholar]
- Association of Official Agricultural Chemists (AOAC) International. Official Method 991.43. Total, Soluble, and Insoluble Dietary Fiber in Foods, Enzymatic-Gravimetric Method, MES-TRIS Buffer. Official Methods of Analysis, 16th ed.; AOAC International: Arlington, WA, USA, 1995. [Google Scholar]
- European Parliament and Council. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Union 2011, L304, 18–63. [Google Scholar]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Pasqualone, A.; Gambacorta, G.; Summo, C.; Caponio, F.; Di Miceli, G.; Flagella, Z.; Marrese, P.P.; Piro, G.; Perrotta, C.; de Bellis, L.; et al. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 2016, 213, 545–553. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 3093:2009. Wheat, Rye and Their Flours, Durum Wheat and Durum Wheat Semolina. Determination of the Falling Number According to Hagberg-Perten; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Pasqualone, A.; Summo, C.; Bilancia, M.T.; Caponio, F. Variation of the sensory profile of durum wheat Altamura PDO (Protected Designation of Origin) bread during staling. J. Food Sci. 2007, 72, S191–S196. [Google Scholar] [CrossRef]
- Pasqualone, A.; Caponio, F.; Simeone, R. Quality evaluation of re-milled durum wheat semolinas used for bread-making in Southern Italy. Eur. Food Res. Technol. 2004, 219, 630–634. [Google Scholar] [CrossRef]
- Pasqualone, A.; Laddomada, B.; Spina, A.; Todaro, A.; Guzmàn, C.; Summo, C.; Mita, G.; Giannone, V. Almond by-products: Extraction and characterization of phenolic compounds and evaluation of their potential use in composite dough with wheat flour. LWT Food Sci. Technol. 2018, 89, 299–306. [Google Scholar] [CrossRef]
- Moussou, N.; Corzo-Martínez, M.; Sanz, M.L.; Zaidi, F.; Montilla, A.; Villamiel, M. Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours. J. Food Sci. Technol. 2017, 54, 890–900. [Google Scholar] [CrossRef]
- Singh, U.; Kherdekar, M.S.; Jambunathan, R. Studies on desi and kabuli chickpea (Cicer arietinum L.) cultivars. The levels of amylase inhibitors, levels of oligosaccharides and in vitro starch digestibility. J. Food Sci. 1982, 47, 510–512. [Google Scholar] [CrossRef]
- Pasqualone, A.; Caponio, F.; Pagani, M.A.; Summo, C.; Paradiso, V.M. Effect of salt reduction on quality and acceptability of durum wheat bread. Food Chem. 2019, 289, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Baixauli, R.; Salvador, A.; Hough, G.; Fiszman, S.M. How information about fibre (traditional and resistant starch) influences consumer acceptance of muffins. Food Qual. Prefer. 2008, 19, 628–635. [Google Scholar] [CrossRef]
- European Parliament and European Council. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, L404, 9–25. [Google Scholar]
- Hossain, A.K.M.; Brennan, M.A.; Mason, S.L.; Guo, X.; Zeng, X.A.; Brennan, C.S. The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 2017, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Erazo-Castrejón, S.V.; Doehlert, D.C.; D’Appolonia, B.L. Application of oat oil in breadbaking. Cereal Chem. 2001, 78, 243–248. [Google Scholar] [CrossRef]
Product Type | Ingredient | |||||
---|---|---|---|---|---|---|
Durum Wheat Re-milled Semolina (g) | Apulian Black Chickpea Wholemeal Flour (g) | Water (g) | Extra Virgin Olive Oil (g) | Salt (g) | Yeast (g) | |
Bread (BC) | 60 | 40 | 67 | - | 2 | 1 |
Bread (DW) | 100 | - | 62 | - | 2 | 1 |
Focaccia (BC) | 60 | 40 | 67 | 20 1 | 2 | 1 |
Focaccia (DW) | 100 | - | 62 | 20 1 | 2 | 1 |
Pizza crust (BC) | 60 | 40 | 67 | 10 | 2 | 1 |
Pizza crust (DW) | 100 | - | 62 | 10 | 2 | 1 |
Parameter | Durum Wheat Re-milled Semolina | Apulian Black Chickpea Wholemeal Flour |
---|---|---|
Moisture (g/100 g) | 14.7 ± 0.1 a | 9.3 ± 0.2 b |
Carbohydrates (g/100 g) | 68.5 ± 1.9 a | 47.4 ± 1.3 b |
Proteins (g/100 g) | 12.3 ± 0.1 b | 21.4 ± 0.4 a |
Lipids (g/100 g) | 1.5 ± 0.1 b | 4.3 ± 0.3 a |
Fibre (g/100 g) | 2.1 ± 0.3 b | 14.9 ± 1.6 a |
Ash (g/100 g) | 0.88 ± 0.01 b | 2.70 ± 0.01 a |
Total anthocyanins (mg/kg cyanidin 3-O-glucoside) | n.d. 1 | 69.5 ± 2.6 |
Total carotenoids (mg/kg β-carotene) | 5.75 ± 0.11 b | 32.7 ± 2.4 a |
Total phenolic compounds (mg/g ferulic acid) | 0.97 ± 0.03 a | 1.07 ± 0.05 a |
Antioxidant activity-ABTS method (µmol Trolox/g) | 0.86 ± 0.04 b | 1.89 ± 0.07 a |
Antioxidant activity-DPPH method (µmol Trolox/g) | 2.25 ± 0.29 b | 4.04 ± 0.01 a |
Parameter | Amount of Black Chickpea Flour (g/100 g) | ||||
---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | |
Farinograph | |||||
Water absorption at 500 B.U. 1 (g/100 g) | 61.8 ± 0.1 e | 63.2 ± 0.1 d | 64.8 ± 0.1 c | 66.3 ± 0.1 b | 67.2 ± 0.2 a |
Development time (min) | 2.0 ± 0.3 d | 2.1 ± 0.3 d | 4.1 ± 0.3 c | 4.9 ± 0.2 b | 5.7 ± 0.1 a |
Dough stability (min) | 8.5 ± 0.5 a | 6.6 ± 0.6 b | 5.7 ± 0.2 c | 3.6 ± 0.2 d | 2.6 ± 0.3 e |
Loss of consistency at 12 min (B.U.) | 49.7 ± 3.2 d | 66.3 ± 5.1 c | 76.1 ± 3.1 b | 83.3 ± 3.8 ab | 86.3 ± 1.5 a |
Alveograph | |||||
W (10−4 J) | 282 ± 4 a | 211 ± 12 b | 150 ± 10 c | 108 ± 7 d | 97 ± 11 e |
P/L | 2.7 ± 0.1 a | 2.6 ± 0.3 a | 2.6 ± 0.1 a | 2.9 ± 0.3 a | 3.0 ± 0.3 a |
Parameter | Amount of Black Chickpea Flour (g/100 g) | ||||
---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | |
Amylase activity | |||||
Falling Number (s) | 532 ± 8 b | 537 ± 6 ab | 541 ± 6 ab | 539 ± 3 ab | 549 ± 5 a |
Rheofermentograph – Curve of gas production and retention | |||||
Volume of gas produced (VT) (mL) | 2098 ± 8 a | 2077 ± 7 b | 2037 ± 3 c | 1994 ± 4 d | 1972 ± 8 d |
Volume of gas retained (VR) (mL) | 1419 ± 11 a | 1388 ± 13 b | 1325 ± 15 c | 1302 ± 21 c | 1266 ± 6 d |
Volume of gas lost (VL) (mL) | 679 ± 8 b | 689 ± 6 b | 712 ± 11 a | 692 ± 14 ab | 706 ± 8 a |
Coefficient of gas retention (VR/VT) (%) | 68 ± 1 a | 67 ± 1 ab | 65 ± 1 bc | 64 ± 1 c | 64 ± 1 c |
Maximum height of gas production curve (H’m) (mm) | 84 ± 1 a | 82 ± 1 ab | 81 ± 1 b | 74 ± 1 c | 73 ± 1 c |
Time needed to start losing gas (Tx) (min) | 59 ± 2 a | 57 ± 4 ab | 56 ± 2 ab | 53 ± 2 b | 48 ± 2 c |
Rheofermentograph – Curve of dough development | |||||
Maximum dough height (Hm) (mm) | 49 ± 2 a | 44 ± 1 b | 41 ± 1 c | 35 ± 1 d | 23 ± 1 e |
Dough height after 3 h (h) (mm) | 43 ± 2 a | 38 ± 1 b | 33 ± 1 c | 28 ± 1 d | 15 ± 1 e |
Parameter | Bread | Focaccia | Pizza Crust | |||
---|---|---|---|---|---|---|
DW | BC | DW | BC | DW | BC | |
Carbohydrates (g) | 50.9 ± 2.3 a | 44.1 ± 3.1 b | 49.1 ± 1.8 a | 41.7 ± 2.2 b | 52.6 ± 2.6 a | 46.2 ± 2.1 b |
Proteins (g) | 8.5 ± 0.1 b | 9.9 ± 0.1 a | 7.7 ± 0.1 b | 10.3 ± 0.1 a | 8.4 ± 0.1 b | 10.5 ± 0.1 a |
Lipids (g) | 0.5 ± 0.1 b | 1.3 ± 0.1 a | 5.1 ± 0.1 b | 5.8 ± 0.2 a | 1.9 ± 0.1 b | 2.2 ± 0.1 a |
Fibre (g) | 1.3 ± 0.1 b | 5.2 ± 0.3 a | 0.9 ± 0.1 b | 3.6 ± 0.2 a | 1.2 ± 0.1 b | 4.6 ± 0.2 a |
Ash (g) | 1.8 ± 0.1 b | 2.1 ± 0.1 a | 2.1 ± 0.1 b | 2.7 ± 0.1 a | 1.8 ± 0.1 b | 2.2 ± 0.1 a |
Energy value (kJ) | 1039 ± 15 a | 1008 ± 15 a | 1161 ± 19 a | 1126 ± 16 a | 1117 ± 21 a | 1081 ± 16 a |
Parameter | Bread | Focaccia | Pizza Crust | |||
---|---|---|---|---|---|---|
DW | BC | DW | BC | DW | BC | |
Total anthocyanins 1 | n.d. 5 | 7.51 ± 1.47 | n.d. | 3.49 ± 0.10 | n.d. | 4.37 ± 0.03 |
Total carotenoids 2 | 2.69 ± 0.02 b | 4.57 ± 0.45 a | 2.77 ± 0.01 b | 5.21 ± 0.15 a | 2.68 ± 0.02 b | 5.23 ± 0.16 a |
Total phenolic compounds 3 | 0.06 ± 0.01 b | 0.09 ± 0.01 a | 0.04 ± 0.01 b | 0.12 ± 0.01 a | 0.07 ± 0.01 b | 0.12 ± 0.01 a |
Antioxidant activity-ABTS 4 | 1.70 ± 0.05 b | 2.13 ± 0.02 a | 1.44 ± 0.07 b | 1.76 ± 0.03 a | 1.25 ± 0.01 b | 2.01 ± 0.01 a |
Antioxidant activity-DPPH 4 | 0.04 ± 0.03 b | 0.08 ± 0.01 a | 0.07 ± 0.01 b | 0.10 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a |
Parameter | Bread | Focaccia | Pizza Crust | |||
---|---|---|---|---|---|---|
DW | BC | DW | BC | DW | BC | |
Diameter variation (%) | - | - | −0.7 ± 0.1 a | −3.8 ± 0.1 b | −1.8 ± 0.0 a | −9.8 ± 0.0 b |
Length variation (%) | −0.4 ± 0.7 a | −15.1 ± 1.4 b | - | - | - | - |
Width variation (%) | 7.7 ± 2.1 a | −6.6 ± 3.2 b | - | - | - | - |
Thickness variation (%) | 84.3 ± 1.6 a | 83.1 ± 0.9 a | 54.2 ± 1.4 b | 59.3 ± 4.1 a | 54.2 ± 7.2 a | 66.7 ± 5.8 a |
Weight loss (%) | 10.3 ± 0.3 a | 10.2 ± 0.4 a | 9.3 ± 0.9 a | 9.3 ± 0.6 a | 8.9 ± 0.4 a | 9.2 ± 0.4 a |
Product Type | Color Parameter | ||
---|---|---|---|
b* | a* | 100 – L* | |
Bread | |||
DW 1 | 36.7 ± 3.2 a | 6.7 ± 2.2 a | 31.7 ± 6.6 b |
BC 1 | 21.4 ± 3.7 b | 10.3 ± 4.7 a | 46.9 ± 3.3 a |
DW 2 | 23.9 ± 1.2 a | 0.4 ± 0.2 b | 19.5 ± 1.9 b |
BC 2 | 12.9 ± 0.5 b | 1.9 ± 0.1 a | 52.7 ± 2.4 a |
Focaccia | |||
DW 1 | 38.3 ± 3.1 a | 5.7 ± 2.9 a | 35.4 ± 7.3 b |
BC 1 | 22.5 ± 3.1 b | 11.3 ± 6.5 a | 51.3 ± 4.9 a |
DW 2 | 25.7 ± 0.9 a | 0.4 ± 0.2 b | 19.5 ± 0.7 b |
BC 2 | 16.3 ± 0.7 b | 1.7 ± 0.2 a | 48.2 ± 1.9 a |
Pizza crust | |||
DW 1 | 22.4 ± 2.8 a | 2.6 ± 1.3 a | 25.1 ± 2.3 b |
BC 1 | 12.3 ± 2.3 b | 1.2 ± 0.9 a | 41.1 ± 8.9 a |
Parameter | Bread | Focaccia | ||
---|---|---|---|---|
DW | BC | DW | BC | |
Hardness (N) | 7.90 ± 1.54 b | 20.80 ± 0.80 a | 5.50 ± 0.45 b | 14.77 ± 2.01 a |
Springiness | 0.94 ± 0.01 a | 0.92 ± 0.01 a | 0.95 ± 0.03 a | 0.93 ± 0.02 a |
Chewiness (N) | 5.59 ± 0.92 b | 12.16 ± 1.57 a | 3.81 ± 0.35 b | 9.90 ± 1.75 a |
Cohesiveness | 0.74 ± 0.03 a | 0.63 ± 0.05 b | 0.75 ± 0.05 a | 0.72 ± 0.07 a |
Parameter | Bread | Focaccia | Pizza Crust | |||
---|---|---|---|---|---|---|
DW | BC | DW | BC | DW | BC | |
External color | 4.4 ± 0.2 b | 7.7 ± 0.2 a | 4.5 ± 0.2 b | 7.9 ± 0.1 a | 3.8 ± 0.2 b | 7.2 ± 0.3 a |
Inner color | 2.9 ± 0.1 b | 7.5 ± 0.3 a | 3.1 ± 0.5 b | 7.1 ± 0.6 a | - | - |
Presence of surface bubbles | - | - | - | - | 2.1 ± 0.5 a | 0.3 ± 0.1 b |
Chickpea odor | 0.1 ± 0.1 b | 4.7 ± 0.6 a | 0.2 ± 0.1 b | 5.6 ± 0.8 a | 0.1 ± 0.1 b | 4.8 ± 0.1 a |
Greasiness | - | - | 5.1 ± 0.2 a | 4.1 ± 0.1 b | - | - |
Crumb elasticity 1 | 5.7 ± 0.1 a | 5.2 ± 0.1 b | 6.7 ± 0.4 a | 6.3 ± 0.1 a | 6.3 ± 1.2 a | 5.7 ± 0.9 a |
Crumb consistency 1 | 2.9 ± 0.3 b | 5.2 ± 0.1 a | 1.9 ± 0.2 b | 4.6 ± 0.1 a | 2.4 ± 0.2 b | 4.5 ± 0.3 a |
Crumb porosity | 4.3 ± 0.3 a | 3.9 ± 0.3 a | 4.2 ± 0.4 a | 4.0 ± 0.1 a | - | - |
Crumb moisture 1 | 4.6 ± 0.2 b | 5.7 ± 0.2 a | 4.3 ± 0.1 b | 6.0 ± 0.4 a | 4.5 ± 1.1 a | 5.7 ± 0.8 a |
Saltiness | 3.0 ± 0.1 a | 2.9 ± 0.4 a | 2.9 ± 0.3 a | 2.7 ± 0.2 a | 2.3 ± 0.2 a | 2.1 ± 0.1 a |
Sweetness | 1.2 ± 0.2 a | 1.7 ± 0.3 a | 1.3 ± 0.2 a | 1.6 ± 0.3 a | 1.2 ± 0.3 a | 1.6 ± 0.4 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualone, A.; De Angelis, D.; Squeo, G.; Difonzo, G.; Caponio, F.; Summo, C. The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods 2019, 8, 504. https://doi.org/10.3390/foods8100504
Pasqualone A, De Angelis D, Squeo G, Difonzo G, Caponio F, Summo C. The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods. 2019; 8(10):504. https://doi.org/10.3390/foods8100504
Chicago/Turabian StylePasqualone, Antonella, Davide De Angelis, Giacomo Squeo, Graziana Difonzo, Francesco Caponio, and Carmine Summo. 2019. "The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products" Foods 8, no. 10: 504. https://doi.org/10.3390/foods8100504