Bread Enrichment with Oilseeds. A Review
Abstract
:1. Introduction
2. Nutritional Profile
3. Flaxseed and Chia Seed Mucilages
4. Dough Rheology
5. Bread Quality
6. Sensory Properties
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- USDA. National Nutrient Database for Standard Reference; USDA: Washington, DC, USA, 2018. [Google Scholar]
- Anjum, F.M.; Nadeem, M.; Khan, M.I.; Hussain, S. Nutritional and therapeutic potential of sunflower seeds: A review. Brit. Food J. 2012, 114, 544–552. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [PubMed]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Seymen, M.; Uslu, N.; Türkmen, Ö.; Juhaimi, FA.; Özcan, M.M. Chemical compositions and mineral contents of some hull-less pumpkin seed and oils. J. Am. Oil Chem. Soc. 2016, 93, 1095–1099. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agr. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed]
- Kuijsten, A.; Arts, I.C.W.; Van’t Veer, P.; Hollman, P.C.H. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J. Nutr. 2005, 135, 2812–2816. [Google Scholar] [CrossRef] [PubMed]
- Edel, A.L.; Aliani, M.; Pierce, G.N. Stability of bioactives in flaxseed and flaxseed-fortified foods. Food Res. Int. 2015, 77, 140–155. [Google Scholar] [CrossRef]
- Steffolani, E.; Martinez, M.M.; León, A.E.; Gómez, M. Effect of pre-hydration of chia (Salvia hispanica L.), seeds and flour on the quality of wheat flour breads. LWT Food Sci. Technol. 2015, 61, 401–406. [Google Scholar] [CrossRef]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Marineli, R.D.; Moraes, E.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Marostica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-Lopez, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Vázquez-Obando, A.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT Food Sci. Technol. 2009, 42, 168–173. [Google Scholar]
- Amato, M.; Caruso, M.C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. Eur. Food Res. Technol. 2015, 241, 615–625. [Google Scholar] [CrossRef]
- De Falco, B.; Amato, M.; Lanzotti, V. Chia seeds products: An overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Rajesha, J.; Murthy, K.N.C.; Kumar, M.K.; Madhusudhan, B.; Ravishankar, G.A. Antioxidant potentials of flaxseed by in vivo model. J. Agr. Food Chem. 2006, 54, 3794–3799. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.D.V.; Cardoso, C.A.; de Oliveira, G.M.M.; Rosa, G.; Moreira, A.S.B. Effects of the intake of sesame seeds (Sesamum indicum L.) and derivatives on oxidative stress: A systematic review. J. Med. Food 2016, 19, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Liyana-Pathirana, C.M.; Wall, D.S. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 2006, 99, 478–483. [Google Scholar] [CrossRef]
- Ghisoni, S.; Chiodelli, G.; Rocchetti, G.; Kane, D.; Lucini, L. UHPLC-ESI-QTOF-MS screening of lignans and other phenolics in dry seeds for human consumption. J. Funct. Foods 2017, 34, 229–236. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yashodhara, B.M.; Umakanth, S.; Pappachan, J.M.; Bhat, S.K.; Kamath, R.; Choo, B.H. Omega-3 fatty acids: A comprehensive review of their role in health and disease. Postgrad. Med. J. 2009, 85, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Toure, A.; Xu, X.M. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 261–269. [Google Scholar] [CrossRef]
- Namiki, M. The chemistry and physiological functions of sesame. Food Rev. Int. 1995, 11, 281–329. [Google Scholar] [CrossRef]
- Hyvarinen, H.K.; Pihlava, J.M.; Hiidenhovi, J.A.; Hietaniemi, V.; Korhonen, H.J.T.; Ryhanen, E.L. Effect of processing and storage on the stability of flaxseed lignan added to bakery products. J. Agr. Food Chem. 2006, 54, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Teoh, S.L.; Lai, N.M.; Vanichkulpitak, P.; Vuksan, V.; Ho, H.; Chaiyakunapruk, N. Clinical evidence on dietary supplementation with chia seed (Salvia hispanica L.): A systematic review and meta-analysis. Nutr. Rev. 2018, 76, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds (Salvia hispanica): An ancient grain and a new functional food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 2009, 54, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kanu, P.J.; Zhu, K.R.; Kanu, J.B.; Zhou, H.M.; Qian, H.F.; Zhu, K.X. Biologically active components and nutraceuticals in sesame and related products: A review and prospect. Trends Food Sci. Technol. 2007, 19, 599–608. [Google Scholar] [CrossRef]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Technol. 2007, 47, 651–673. [Google Scholar] [CrossRef] [PubMed]
- Austria, J.A.; Aliani, M.; Malcolmson, L.J.; Dibrov, E.; Blackwood, D.P.; Maddaford, T.G.; Guzman, R.; Pierce, G.N. Daily choices of functional foods supplemented with milled flaxseed by a patient population over one year. J. Funct. Foods 2016, 26, 772–780. [Google Scholar] [CrossRef]
- Mansour, E.H.; Dworschák, E.; Pollhamer, Zs.; Gergely, Á.; Hóvári, J. Pumplin and canola seed proteins and bread quality. Acta Alimentaria 1999, 28, 59–70. [Google Scholar]
- El-Soukkary, F.A.H. Evaluation of pumpkin seed products for bread fortification. Plant Food Hum. Nutr. 2001, 56, 365–384. [Google Scholar] [CrossRef]
- El-Adawy, T.A. Effect of sesame seed protein supplementation on the nutritional, physical, chemical and sensory properties of wheat flour bread. Plant Food Hum. Nutr. 1995, 48, 311–326. [Google Scholar] [CrossRef]
- Škrbíc, B.; Filipčev, B. Nutritional and sensory evaluation of wheat breads supplemented with oleic-rich sunflower seed. Food Chem. 2008, 108, 119–129. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef]
- Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Sandri, L.T.B.; Santos, F.G.; Fratelli, C.; Capriles, V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci. Nutr. 2017, 5, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambus, H.; Mikulec, A.; Gambus, F.; Pisulewski, P. Perspectives of linseed utilization in baking. Pol. J. Food Nutr. Sci. 2004, 13, 21–27. [Google Scholar]
- Seczyk, L.; Swieca, M.; Dziki, D.; Anders, A.; Gawlik-Dziki, U. Antioxidant, nutritional and functional characteristics of wheat bread enriched with ground flaxseed hulls. Food Chem. 2017, 214, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Geisel, T.; Maresch, C.; Krieger, K.; Stein, J. Inadequate nutrient intake in patients with celiac disease: Results from a German dietary survey. Digestion 2013, 87, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The gluten-free diet: Safety and nutritional quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Theethira, T.G.; Dennis, M. Celiac disease and the gluten-free diet: Consequences and recommendations for improvement. Dig. Dis. 2015, 33, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Pallone, F.; Stasi, E.; Romeo, S.; Monteleone, G. Appropriate nutrient supplementation in celiac disease. Ann. Med. 2013, 45, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Kulai, T.; Rashid, M. Assessment of nutritional adequacy of packaged gluten-free food products. Can. J. Diet. Pract. Res. 2014, 75, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, T.; Cauzzi, S.; Brighenti, F.; Pellegrini, N. The development of a composition database of gluten-free products. Public Health Nutr. 2015, 18, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Lasa, A.; Bustamante, M.A.; Churruca, I.; Simon, E. Nutritional differences between a gluten-free diet and a diet containing equivalent products with gluten. Plant Food Hum. Nutr. 2014, 69, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Missbach, B.; Schwingshackl, L.; Billmann, A.; Mystek, A.; Hickelsberger, M.; Bauer, G.; Konig, J. Gluten-free food database: The nutritional quality and cost of packaged gluten-free foods. Peer J. 2015, 3, e1337. [Google Scholar] [CrossRef] [PubMed]
- Regula, J.; Cerba, A.; Suliburska, J.; Tinkov, A.A. In vitro bioavailability of calcium, magnesium, iron, zinc, and copper from gluten-free breads supplemented with natural additives. Biol. Trace Elem. Res. 2017, 182, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Swieca, M.; Regula, J.; Suliburska, J.; Zlotek, U.; Gawlik-Dziki, U. Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum. Food Chem. 2015, 182, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.L.; Liao, C.D.; Lu, W.C.; Ho, C.T.; Hwang, L.S. Lignan glycosides from sesame meal exhibit higher oral bioavailability and antioxidant activity in rat after nano/submicrosizing. J. Funct. Food 2016, 23, 511–522. [Google Scholar] [CrossRef]
- Nesbitt, P.D.; Lam, Y.; Thompson, L.U. Human metabolism of mammalian lignan precursors in raw and processed flaxseed. Am. J. Clin. Nutr. 1999, 69, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Malcolmson, L.J.; Przybylski, R.; Duan, J.K. Storage stability of milled flaxseed. J. Am. Oil Chem. Soc. 2000, 77, 235–238. [Google Scholar] [CrossRef]
- Schorno, A.L.; Manthey, F.A.; Hall, C.A., III. Effect of particle size and sample size on lipid stability of milled flaxseed (Linum usitatissimum L.). J. Food Process Preserv. 2010, 34, 167–179. [Google Scholar] [CrossRef]
- Fedeniuk, R.W.; Biliaderis, C.G. Composition and physicochemical properties of linseed (Linum-usitatissimum L.) mucilage. J. Agr. Food Chem. 1994, 42, 240–247. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, T.; Ziobro, R.; Juszczak, L. Flaxseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT Food Sci. Technol. 2015, 62, 257–264. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G.; Biliaderis, C.G. Chemical-structure, molecular-size distributions, and rheological properties of flaxseed gum. J. Agr. Food Chem. 1994, 42, 1891–1895. [Google Scholar] [CrossRef]
- Capitani, M.I.; Ixtaina, V.Y.; Nolasco, S.M.; Tomas, M.C. Microstructure, chemical composition and mucilage exudation of chia (Salvia hispanica L.) nutlets from Argentina. J. Sci. Food Agr. 2013, 93, 3856–3862. [Google Scholar] [CrossRef] [PubMed]
- Capitani, M.I.; Corzo-Rios, L.J.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomas, M.C. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng. 2015, 149, 70–77. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Capitani, M.I.; Nolasco, S.M.; Tomas, M.C. Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocolloids 2016, 61, 537–546. [Google Scholar] [CrossRef]
- Mazza, G.; Biliaderis, C.G. Functional-properties of flax seed mucilage. J. Food Sci. 1989, 54, 1302–1305. [Google Scholar] [CrossRef]
- Campos, B.E.; Ruivo, T.D.; Scapim, M.R.D.; Madrona, G.S.; Bergamasco, R.D. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT Food Sci. Technol. 2016, 65, 874–883. [Google Scholar] [CrossRef]
- Borneo, R.; Aguirre, A.; León, A.E. Chia (Salvia hispanica L.) gel can be used as egg or oil replacer in cake formulations. J. Am. Diet. Assoc. 2010, 110, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Felisberto, M.H.F.; Wahanik, A.L.; Gomes-Ruffi, C.R.; Clerici, M.T.P.S.; Chang, Y.K.; Steel, C.J. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Sci. Technol. 2015, 63, 1049–1055. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Salas-Mellado, M.D.L.M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.S.; Salas-Mellado, M.D.L.M. Development of mayonnaise with substitution of oil or egg yolk by the addition of chia (Salvia hispanica L.) mucilage. J. Food Sci. 2018, 83, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Rosell, C.M.; Rojas, J.A.; de Barber, C.B. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll. 2001, 15, 75–81. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Perez, G.T.; Leon, A.E.; Añon, M.C. Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocoll. 2004, 18, 305–313. [Google Scholar] [CrossRef]
- Guarda, A.; Rosell, C.M.; Benedito, C.; Galotto, M.J. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll. 2004, 18, 241–247. [Google Scholar] [CrossRef]
- Mandala, I.; Karabela, D.; Kostaropoulos, A. Physical properties of breads containing hydrocolloids stored at low temperature. I. Effect of chilling. Food Hydrocoll. 2007, 21, 1397–1406. [Google Scholar] [CrossRef]
- Anton, A.A.; Artfield, S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008, 59, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Sabanis, D.; Tzia, C. Effect of hydrocolloids on selected properties of gluten-free dough and bread. Food Sci Technol. Int. 2011, 17, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.S.; Blake, D.E.; Ellis, P.R.; Schofield, J.D. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 1996, 24, 151–160. [Google Scholar] [CrossRef]
- Lu, Z.X.; Walker, K.Z.; Muir, J.G.; O’Dea, K. Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur. J. Clin. Nutr. 2004, 58, 621–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado-Cruz, M.D.; Ramirez-Miranda, M.; Diaz-Ramirez, M.; Alamilla-Beltran, L.; Calderon-Dominguez, G. Microstructural characterisation and glycemic index evaluation of pita bread enriched with chia mucilage. Food Hydrocoll. 2017, 69, 141–149. [Google Scholar] [CrossRef]
- Sluimer, P. Principles of Breadmaking. In Functionality of Raw Materials and Process Steps; AACC: St Paul. MN, USA, 2005. [Google Scholar]
- Liu, X.; Li, T.; Liu, B.Y.; Zhao, H.F.; Zhou, F.; Zhang, B.L. An external addition of soy protein isolate hydrolysate to sourdough as a new strategy to improve the quality of chinese steamed bread. J. Food Qual. 2016, 39, 3–12. [Google Scholar] [CrossRef]
- Perez-Carrillo, E.; Chew-Guevara, A.A.; Heredia-Olea, E.; Chuck-Hernandez, C.; Serna-Saldivar, S.O. Evaluation of the functionality of five different soybean proteins in hot-press wheat flour tortillas. Cereal Chem. 2015, 92, 98–104. [Google Scholar] [CrossRef]
- Gomez, M.; Ronda, F.; Blanco, C.A.; Caballero, P.A.; Apesteguia, A. Effect of dietary fibre on dough rheology and bread quality. Eur. Food Res. Technol. 2003, 216, 51–56. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef]
- Koca, A.F.; Anil, M. Effect of flaxseed and wheat flour blends on dough rheology and bread quality. J. Sci. Food Agr. 2007, 87, 1172–1175. [Google Scholar]
- Moreira, R.; Chenlo, F.; Torres, M.D. Effect of chia (Salvia hispanica L.) and hydrocolloids on the rheology of gluten-free doughs based on chestnut flour. LWT Food Sci. Technol. 2013, 50, 160–166. [Google Scholar] [CrossRef]
- Matthews, R.H.; Sharpe, E.J.; Clark, W.M. The use of some oilseed flours in bread. Cereal Chem. 1970, 47, 181–188. [Google Scholar]
- Svec, I.; Hruskova, M.; Jurinova, I. Pasting characteristics of wheat-chia blends. J. Food Eng. 2016, 172, 25–30. [Google Scholar] [CrossRef]
- Verdú, S.; Vásquez, F.; Ivorra, E.; Sánchez, A.J.; Barat, J.M.; Grau, R. Physicochemical effects of chia (Salvia hispanica) seed flour on each wheat bread-making process phase and product storage. J. Cereal Sci. 2015, 66, 67–73. [Google Scholar] [CrossRef]
- Agyare, K.K.; Addo, K.; Xiong, Y.L.; Akoh, C.C. Effect of structured lipid on alveograph characteristics, baking and textural qualities of soft wheat flour. J. Cereal Sci. 2005, 42, 309–316. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Arnulphi, S.A.; Leon, A.E.; Añon, M.C. Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour. J. Sci. Food Agr. 2005, 85, 1889–1896. [Google Scholar] [CrossRef]
- Zettel, V.; Hitzmann, B. Chia (Salvia hispanica L.) as fat replacer in sweet pan breads. Int. J. Food Sci. Technol. 2016, 51, 1425–1432. [Google Scholar] [CrossRef]
- Steffolani, E.; de la Hera, E.; Perez, G.; Gomez, M. Effect of chia (Salvia hispanica L.) addition on the quality of gluten-free bread. J. Food Qual. 2014, 5, 309–317. [Google Scholar] [CrossRef]
- Zhou, J.M.; Liu, J.F.; Tang, X.Z. Effects of whey and soy protein addition on bread rheological property of wheat flour. J. Texture Stud. 2018, 49, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Luna Pizarro, P.; Almeida, E.L.; Coelho, A.S.; Sammán, N.C.; Hubinger, M.D.; Chang, Y.K. Functional bread with n-3 alpha linolenic acid from whole chia (Salvia hispanica L.) flour. J. Food Sci. Technol. 2015, 52, 4475–4482. [Google Scholar] [CrossRef] [PubMed]
- Mentes, Ö.; Bakkalbasi, E.; Ercan, R. Effect of the use of ground flaxseed on quality and chemical composition of bread. Food Sci. Technol. Int. 2008, 14, 299–306. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of nutritional and technological attributes of whole wheat based bread fortified with chia flour. Foods 2018, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.M.; Diaz, A.; Gomez, M. Effect of different microstructural features of soluble and insoluble fibres on gluten-free dough rheology and bread-making. J. Food Eng. 2014, 142, 49–56. [Google Scholar] [CrossRef]
- Sahagún, M.; Gómez, M. Assessing influence of protein source on characteristics of gluten-free breads optimising their hydration level. Food Bioprocess Technol. 2018, 11, 1686–1694. [Google Scholar] [CrossRef]
- Mancebo, C.M.; Martinez, M.M.; Merino, C.; de la Hera, E.; Gomez, M. Effect of oil and shortening in rice bread quality: Relationship between dough rheology and quality characteristics. J. Texture Stud. 2017, 48, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Oliete, B.; Pando, V.; Ronda, F.; Caballero, P.A. Effect of fermentation conditions on bread staling kinetics. Eur. Food Res. Technol. 2008, 226, 1379–1387. [Google Scholar] [CrossRef]
- Eliasson, A.C.; Ljunger, G. Interactions between amylopectin and lipid additives during retrogradation in a model system. J. Sci. Food Agr. 1988, 44, 353–361. [Google Scholar] [CrossRef]
- Rogers, D.E.; Zeleznak, K.J.; Lai, C.S.; Hoseney, R.C. Effect of native lipids, shortening, and bread moisture on bread firming. Cereal Chem. 1988, 65, 398–401. [Google Scholar]
- Conforti, F.D.; Davis, S.F. The effect of soya flour and flaxseed as a partial replacement for bread flour in yeast bread. Int. J. Food Sci. Technol. 2006, 41, 95–101. [Google Scholar] [CrossRef]
- Mesias, M.; Holgado, F.; Marquez-Ruiz, G.; Morales, F.J. Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT Food Sci. Technol. 2016, 73, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, E.; Rodriguez, G.; Aguirre, E.; Castro, V. Influence of antioxidants on oxidative stability of the oil Chia (Salvia hispanica L.) by rancimat. Sci. Agropecu. 2017, 8, 19–27. [Google Scholar] [CrossRef]
- Konsoula, Z.; Liakopoulou-Kyriakides, M. Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT Food Sci. Technol. 2010, 43, 1379–1386. [Google Scholar] [CrossRef]
- Ghosh, M.; Upadhyay, R.; Mahato, D.K.; Mishra, H.N. Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat. Food Chem. 2019, 272, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Verdú, S.; Barat, J.M.; Grau, R. Improving bread-making processing phases of fibre-rich formulas using chia (Salvia hispanica) seed flour. LWT Food Sci. Technol. 2017, 84, 419–425. [Google Scholar] [CrossRef]
Wheat | Sunflower | Flaxseed | Sesame | Chia | Pumpkin | Poppy | ||
---|---|---|---|---|---|---|---|---|
Nutrients | Water (g) | 12.42 | 1.2 | 6.96 | 4.69 | 5.8 | 4.50 | 5.95 |
Energy value (kcal) | 332 | 582 | 534 | 573 | 486 | 446 | 525 | |
Protein (g) | 9.61 | 19.33 | 18.29 | 17.73 | 16.54 | 18.55 | 17.99 | |
Total lipid (fat) (g) | 1.95 | 49.8 | 42.16 | 49.67 | 30.74 | 19.40 | 41.56 | |
Carbohydrate (g) | 74.48 | 24.07 | 28.88 | 23.45 | 42.12 | 53.75 | 28.13 | |
Fiber (g) | 13.1 | 9 | 27.3 | 11.8 | 34.4 | 18.4 | 19.5 | |
Sugar (g) | 1.02 | 2,73 | 1.55 | 0,30 | N | N | 2.99 | |
Minerals | Calcium (mg) | 33 | 70 | 255 | 975 | 631 | 55 | 1438 |
Iron (mg) | 3.71 | 3.8 | 5.73 | 14.55 | 7.72 | 3.31 | 9.76 | |
Magnesium (mg) | 117 | 129 | 392 | 351 | 335 | 262 | 347 | |
Phosphorous (mg) | 323 | 1115 | 642 | 629 | 860 | 92 | 870 | |
Potassium (mg) | 394 | 850 | 813 | 468 | 407 | 919 | 719 | |
Sodium (mg) | 3 | 655 | 30 | 11 | 16 | 18 | 26 | |
Zinc (mg) | 2.96 | 5.29 | 4.34 | 7.75 | 4.58 | 10.30 | 7.9 | |
Vitamins | Vitamin C (mg) | 0 | 1.40 | 0.6 | 0 | 1.6 | 0.3 | 1 |
Thiamin (mg) | 0.297 | 0.106 | 1.644 | 0.791 | 0.62 | 0.034 | 0.854 | |
Riboflavin (mg) | 0.188 | 0,246 | 0.161 | 0.247 | 0.17 | 0.052 | 0.1 | |
Niacin (mg) | 5.347 | 7.04 | 3.08 | 4.515 | 8.83 | 0.286 | 0.896 | |
Vitamin B6 (mg) | 0.191 | 0.804 | 0.473 | 0.79 | N | 0.037 | 0.247 | |
Folate (µg) | 28 | 237 | 87 | 97 | 49 | 9 | 82 | |
Vitamin E (mg) | 0.53 | 26.1 | 0,31 | 0,25 | 0,50 | N | 1.77 | |
Lipids | Saturated (g) | 5.219 | 3.663 | 6.957 | 3.33 | 3.670 | 4.517 | |
Monounsaturated (g) | 9.505 | 7.527 | 18.759 | 2.309 | 6.032 | 5.982 | ||
18:1 (g) | 9.399 | 7.359 | 18.521 | 2.203 | 5.985 | 5.864 | ||
Polyunsaturated (g) | 32.884 | 28.73 | 21.773 | 23.665 | 8.844 | 28.569 | ||
18:2 (g) | 32.782 | 5.903 | 21.375 | 5.835 | 8.759 | 28.295 | ||
18:3 (g) | 0.069 | 22.813 | 0.376 | 17.830 | 0.077 | 0.0273 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lamo, B.; Gómez, M. Bread Enrichment with Oilseeds. A Review. Foods 2018, 7, 191. https://doi.org/10.3390/foods7110191
De Lamo B, Gómez M. Bread Enrichment with Oilseeds. A Review. Foods. 2018; 7(11):191. https://doi.org/10.3390/foods7110191
Chicago/Turabian StyleDe Lamo, Beatriz, and Manuel Gómez. 2018. "Bread Enrichment with Oilseeds. A Review" Foods 7, no. 11: 191. https://doi.org/10.3390/foods7110191
APA StyleDe Lamo, B., & Gómez, M. (2018). Bread Enrichment with Oilseeds. A Review. Foods, 7(11), 191. https://doi.org/10.3390/foods7110191