Bread Enrichment with Oilseeds. A Review
Abstract
1. Introduction
2. Nutritional Profile
3. Flaxseed and Chia Seed Mucilages
4. Dough Rheology
5. Bread Quality
6. Sensory Properties
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- USDA. National Nutrient Database for Standard Reference; USDA: Washington, DC, USA, 2018. [Google Scholar]
- Anjum, F.M.; Nadeem, M.; Khan, M.I.; Hussain, S. Nutritional and therapeutic potential of sunflower seeds: A review. Brit. Food J. 2012, 114, 544–552. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [PubMed]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Seymen, M.; Uslu, N.; Türkmen, Ö.; Juhaimi, FA.; Özcan, M.M. Chemical compositions and mineral contents of some hull-less pumpkin seed and oils. J. Am. Oil Chem. Soc. 2016, 93, 1095–1099. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agr. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed]
- Kuijsten, A.; Arts, I.C.W.; Van’t Veer, P.; Hollman, P.C.H. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J. Nutr. 2005, 135, 2812–2816. [Google Scholar] [CrossRef] [PubMed]
- Edel, A.L.; Aliani, M.; Pierce, G.N. Stability of bioactives in flaxseed and flaxseed-fortified foods. Food Res. Int. 2015, 77, 140–155. [Google Scholar] [CrossRef]
- Steffolani, E.; Martinez, M.M.; León, A.E.; Gómez, M. Effect of pre-hydration of chia (Salvia hispanica L.), seeds and flour on the quality of wheat flour breads. LWT Food Sci. Technol. 2015, 61, 401–406. [Google Scholar] [CrossRef]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Marineli, R.D.; Moraes, E.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Marostica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-Lopez, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Vázquez-Obando, A.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT Food Sci. Technol. 2009, 42, 168–173. [Google Scholar]
- Amato, M.; Caruso, M.C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. Eur. Food Res. Technol. 2015, 241, 615–625. [Google Scholar] [CrossRef]
- De Falco, B.; Amato, M.; Lanzotti, V. Chia seeds products: An overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Rajesha, J.; Murthy, K.N.C.; Kumar, M.K.; Madhusudhan, B.; Ravishankar, G.A. Antioxidant potentials of flaxseed by in vivo model. J. Agr. Food Chem. 2006, 54, 3794–3799. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.D.V.; Cardoso, C.A.; de Oliveira, G.M.M.; Rosa, G.; Moreira, A.S.B. Effects of the intake of sesame seeds (Sesamum indicum L.) and derivatives on oxidative stress: A systematic review. J. Med. Food 2016, 19, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Liyana-Pathirana, C.M.; Wall, D.S. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 2006, 99, 478–483. [Google Scholar] [CrossRef]
- Ghisoni, S.; Chiodelli, G.; Rocchetti, G.; Kane, D.; Lucini, L. UHPLC-ESI-QTOF-MS screening of lignans and other phenolics in dry seeds for human consumption. J. Funct. Foods 2017, 34, 229–236. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Yashodhara, B.M.; Umakanth, S.; Pappachan, J.M.; Bhat, S.K.; Kamath, R.; Choo, B.H. Omega-3 fatty acids: A comprehensive review of their role in health and disease. Postgrad. Med. J. 2009, 85, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Toure, A.; Xu, X.M. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 261–269. [Google Scholar] [CrossRef]
- Namiki, M. The chemistry and physiological functions of sesame. Food Rev. Int. 1995, 11, 281–329. [Google Scholar] [CrossRef]
- Hyvarinen, H.K.; Pihlava, J.M.; Hiidenhovi, J.A.; Hietaniemi, V.; Korhonen, H.J.T.; Ryhanen, E.L. Effect of processing and storage on the stability of flaxseed lignan added to bakery products. J. Agr. Food Chem. 2006, 54, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Teoh, S.L.; Lai, N.M.; Vanichkulpitak, P.; Vuksan, V.; Ho, H.; Chaiyakunapruk, N. Clinical evidence on dietary supplementation with chia seed (Salvia hispanica L.): A systematic review and meta-analysis. Nutr. Rev. 2018, 76, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds (Salvia hispanica): An ancient grain and a new functional food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 2009, 54, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kanu, P.J.; Zhu, K.R.; Kanu, J.B.; Zhou, H.M.; Qian, H.F.; Zhu, K.X. Biologically active components and nutraceuticals in sesame and related products: A review and prospect. Trends Food Sci. Technol. 2007, 19, 599–608. [Google Scholar] [CrossRef]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Technol. 2007, 47, 651–673. [Google Scholar] [CrossRef] [PubMed]
- Austria, J.A.; Aliani, M.; Malcolmson, L.J.; Dibrov, E.; Blackwood, D.P.; Maddaford, T.G.; Guzman, R.; Pierce, G.N. Daily choices of functional foods supplemented with milled flaxseed by a patient population over one year. J. Funct. Foods 2016, 26, 772–780. [Google Scholar] [CrossRef]
- Mansour, E.H.; Dworschák, E.; Pollhamer, Zs.; Gergely, Á.; Hóvári, J. Pumplin and canola seed proteins and bread quality. Acta Alimentaria 1999, 28, 59–70. [Google Scholar]
- El-Soukkary, F.A.H. Evaluation of pumpkin seed products for bread fortification. Plant Food Hum. Nutr. 2001, 56, 365–384. [Google Scholar] [CrossRef]
- El-Adawy, T.A. Effect of sesame seed protein supplementation on the nutritional, physical, chemical and sensory properties of wheat flour bread. Plant Food Hum. Nutr. 1995, 48, 311–326. [Google Scholar] [CrossRef]
- Škrbíc, B.; Filipčev, B. Nutritional and sensory evaluation of wheat breads supplemented with oleic-rich sunflower seed. Food Chem. 2008, 108, 119–129. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef]
- Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Sandri, L.T.B.; Santos, F.G.; Fratelli, C.; Capriles, V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci. Nutr. 2017, 5, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Gambus, H.; Mikulec, A.; Gambus, F.; Pisulewski, P. Perspectives of linseed utilization in baking. Pol. J. Food Nutr. Sci. 2004, 13, 21–27. [Google Scholar]
- Seczyk, L.; Swieca, M.; Dziki, D.; Anders, A.; Gawlik-Dziki, U. Antioxidant, nutritional and functional characteristics of wheat bread enriched with ground flaxseed hulls. Food Chem. 2017, 214, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Geisel, T.; Maresch, C.; Krieger, K.; Stein, J. Inadequate nutrient intake in patients with celiac disease: Results from a German dietary survey. Digestion 2013, 87, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The gluten-free diet: Safety and nutritional quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Theethira, T.G.; Dennis, M. Celiac disease and the gluten-free diet: Consequences and recommendations for improvement. Dig. Dis. 2015, 33, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Pallone, F.; Stasi, E.; Romeo, S.; Monteleone, G. Appropriate nutrient supplementation in celiac disease. Ann. Med. 2013, 45, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Kulai, T.; Rashid, M. Assessment of nutritional adequacy of packaged gluten-free food products. Can. J. Diet. Pract. Res. 2014, 75, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, T.; Cauzzi, S.; Brighenti, F.; Pellegrini, N. The development of a composition database of gluten-free products. Public Health Nutr. 2015, 18, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Lasa, A.; Bustamante, M.A.; Churruca, I.; Simon, E. Nutritional differences between a gluten-free diet and a diet containing equivalent products with gluten. Plant Food Hum. Nutr. 2014, 69, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Missbach, B.; Schwingshackl, L.; Billmann, A.; Mystek, A.; Hickelsberger, M.; Bauer, G.; Konig, J. Gluten-free food database: The nutritional quality and cost of packaged gluten-free foods. Peer J. 2015, 3, e1337. [Google Scholar] [CrossRef] [PubMed]
- Regula, J.; Cerba, A.; Suliburska, J.; Tinkov, A.A. In vitro bioavailability of calcium, magnesium, iron, zinc, and copper from gluten-free breads supplemented with natural additives. Biol. Trace Elem. Res. 2017, 182, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Swieca, M.; Regula, J.; Suliburska, J.; Zlotek, U.; Gawlik-Dziki, U. Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum. Food Chem. 2015, 182, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.L.; Liao, C.D.; Lu, W.C.; Ho, C.T.; Hwang, L.S. Lignan glycosides from sesame meal exhibit higher oral bioavailability and antioxidant activity in rat after nano/submicrosizing. J. Funct. Food 2016, 23, 511–522. [Google Scholar] [CrossRef]
- Nesbitt, P.D.; Lam, Y.; Thompson, L.U. Human metabolism of mammalian lignan precursors in raw and processed flaxseed. Am. J. Clin. Nutr. 1999, 69, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Malcolmson, L.J.; Przybylski, R.; Duan, J.K. Storage stability of milled flaxseed. J. Am. Oil Chem. Soc. 2000, 77, 235–238. [Google Scholar] [CrossRef]
- Schorno, A.L.; Manthey, F.A.; Hall, C.A., III. Effect of particle size and sample size on lipid stability of milled flaxseed (Linum usitatissimum L.). J. Food Process Preserv. 2010, 34, 167–179. [Google Scholar] [CrossRef]
- Fedeniuk, R.W.; Biliaderis, C.G. Composition and physicochemical properties of linseed (Linum-usitatissimum L.) mucilage. J. Agr. Food Chem. 1994, 42, 240–247. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, T.; Ziobro, R.; Juszczak, L. Flaxseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT Food Sci. Technol. 2015, 62, 257–264. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G.; Biliaderis, C.G. Chemical-structure, molecular-size distributions, and rheological properties of flaxseed gum. J. Agr. Food Chem. 1994, 42, 1891–1895. [Google Scholar] [CrossRef]
- Capitani, M.I.; Ixtaina, V.Y.; Nolasco, S.M.; Tomas, M.C. Microstructure, chemical composition and mucilage exudation of chia (Salvia hispanica L.) nutlets from Argentina. J. Sci. Food Agr. 2013, 93, 3856–3862. [Google Scholar] [CrossRef] [PubMed]
- Capitani, M.I.; Corzo-Rios, L.J.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomas, M.C. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng. 2015, 149, 70–77. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Capitani, M.I.; Nolasco, S.M.; Tomas, M.C. Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocolloids 2016, 61, 537–546. [Google Scholar] [CrossRef]
- Mazza, G.; Biliaderis, C.G. Functional-properties of flax seed mucilage. J. Food Sci. 1989, 54, 1302–1305. [Google Scholar] [CrossRef]
- Campos, B.E.; Ruivo, T.D.; Scapim, M.R.D.; Madrona, G.S.; Bergamasco, R.D. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT Food Sci. Technol. 2016, 65, 874–883. [Google Scholar] [CrossRef]
- Borneo, R.; Aguirre, A.; León, A.E. Chia (Salvia hispanica L.) gel can be used as egg or oil replacer in cake formulations. J. Am. Diet. Assoc. 2010, 110, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Felisberto, M.H.F.; Wahanik, A.L.; Gomes-Ruffi, C.R.; Clerici, M.T.P.S.; Chang, Y.K.; Steel, C.J. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Sci. Technol. 2015, 63, 1049–1055. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Salas-Mellado, M.D.L.M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.S.; Salas-Mellado, M.D.L.M. Development of mayonnaise with substitution of oil or egg yolk by the addition of chia (Salvia hispanica L.) mucilage. J. Food Sci. 2018, 83, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Rosell, C.M.; Rojas, J.A.; de Barber, C.B. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll. 2001, 15, 75–81. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Perez, G.T.; Leon, A.E.; Añon, M.C. Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocoll. 2004, 18, 305–313. [Google Scholar] [CrossRef]
- Guarda, A.; Rosell, C.M.; Benedito, C.; Galotto, M.J. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll. 2004, 18, 241–247. [Google Scholar] [CrossRef]
- Mandala, I.; Karabela, D.; Kostaropoulos, A. Physical properties of breads containing hydrocolloids stored at low temperature. I. Effect of chilling. Food Hydrocoll. 2007, 21, 1397–1406. [Google Scholar] [CrossRef]
- Anton, A.A.; Artfield, S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008, 59, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Sabanis, D.; Tzia, C. Effect of hydrocolloids on selected properties of gluten-free dough and bread. Food Sci Technol. Int. 2011, 17, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.S.; Blake, D.E.; Ellis, P.R.; Schofield, J.D. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 1996, 24, 151–160. [Google Scholar] [CrossRef]
- Lu, Z.X.; Walker, K.Z.; Muir, J.G.; O’Dea, K. Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur. J. Clin. Nutr. 2004, 58, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Cruz, M.D.; Ramirez-Miranda, M.; Diaz-Ramirez, M.; Alamilla-Beltran, L.; Calderon-Dominguez, G. Microstructural characterisation and glycemic index evaluation of pita bread enriched with chia mucilage. Food Hydrocoll. 2017, 69, 141–149. [Google Scholar] [CrossRef]
- Sluimer, P. Principles of Breadmaking. In Functionality of Raw Materials and Process Steps; AACC: St Paul. MN, USA, 2005. [Google Scholar]
- Liu, X.; Li, T.; Liu, B.Y.; Zhao, H.F.; Zhou, F.; Zhang, B.L. An external addition of soy protein isolate hydrolysate to sourdough as a new strategy to improve the quality of chinese steamed bread. J. Food Qual. 2016, 39, 3–12. [Google Scholar] [CrossRef]
- Perez-Carrillo, E.; Chew-Guevara, A.A.; Heredia-Olea, E.; Chuck-Hernandez, C.; Serna-Saldivar, S.O. Evaluation of the functionality of five different soybean proteins in hot-press wheat flour tortillas. Cereal Chem. 2015, 92, 98–104. [Google Scholar] [CrossRef]
- Gomez, M.; Ronda, F.; Blanco, C.A.; Caballero, P.A.; Apesteguia, A. Effect of dietary fibre on dough rheology and bread quality. Eur. Food Res. Technol. 2003, 216, 51–56. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef]
- Koca, A.F.; Anil, M. Effect of flaxseed and wheat flour blends on dough rheology and bread quality. J. Sci. Food Agr. 2007, 87, 1172–1175. [Google Scholar]
- Moreira, R.; Chenlo, F.; Torres, M.D. Effect of chia (Salvia hispanica L.) and hydrocolloids on the rheology of gluten-free doughs based on chestnut flour. LWT Food Sci. Technol. 2013, 50, 160–166. [Google Scholar] [CrossRef]
- Matthews, R.H.; Sharpe, E.J.; Clark, W.M. The use of some oilseed flours in bread. Cereal Chem. 1970, 47, 181–188. [Google Scholar]
- Svec, I.; Hruskova, M.; Jurinova, I. Pasting characteristics of wheat-chia blends. J. Food Eng. 2016, 172, 25–30. [Google Scholar] [CrossRef]
- Verdú, S.; Vásquez, F.; Ivorra, E.; Sánchez, A.J.; Barat, J.M.; Grau, R. Physicochemical effects of chia (Salvia hispanica) seed flour on each wheat bread-making process phase and product storage. J. Cereal Sci. 2015, 66, 67–73. [Google Scholar] [CrossRef]
- Agyare, K.K.; Addo, K.; Xiong, Y.L.; Akoh, C.C. Effect of structured lipid on alveograph characteristics, baking and textural qualities of soft wheat flour. J. Cereal Sci. 2005, 42, 309–316. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Arnulphi, S.A.; Leon, A.E.; Añon, M.C. Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour. J. Sci. Food Agr. 2005, 85, 1889–1896. [Google Scholar] [CrossRef]
- Zettel, V.; Hitzmann, B. Chia (Salvia hispanica L.) as fat replacer in sweet pan breads. Int. J. Food Sci. Technol. 2016, 51, 1425–1432. [Google Scholar] [CrossRef]
- Steffolani, E.; de la Hera, E.; Perez, G.; Gomez, M. Effect of chia (Salvia hispanica L.) addition on the quality of gluten-free bread. J. Food Qual. 2014, 5, 309–317. [Google Scholar] [CrossRef]
- Zhou, J.M.; Liu, J.F.; Tang, X.Z. Effects of whey and soy protein addition on bread rheological property of wheat flour. J. Texture Stud. 2018, 49, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Luna Pizarro, P.; Almeida, E.L.; Coelho, A.S.; Sammán, N.C.; Hubinger, M.D.; Chang, Y.K. Functional bread with n-3 alpha linolenic acid from whole chia (Salvia hispanica L.) flour. J. Food Sci. Technol. 2015, 52, 4475–4482. [Google Scholar] [CrossRef] [PubMed]
- Mentes, Ö.; Bakkalbasi, E.; Ercan, R. Effect of the use of ground flaxseed on quality and chemical composition of bread. Food Sci. Technol. Int. 2008, 14, 299–306. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of nutritional and technological attributes of whole wheat based bread fortified with chia flour. Foods 2018, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.M.; Diaz, A.; Gomez, M. Effect of different microstructural features of soluble and insoluble fibres on gluten-free dough rheology and bread-making. J. Food Eng. 2014, 142, 49–56. [Google Scholar] [CrossRef]
- Sahagún, M.; Gómez, M. Assessing influence of protein source on characteristics of gluten-free breads optimising their hydration level. Food Bioprocess Technol. 2018, 11, 1686–1694. [Google Scholar] [CrossRef]
- Mancebo, C.M.; Martinez, M.M.; Merino, C.; de la Hera, E.; Gomez, M. Effect of oil and shortening in rice bread quality: Relationship between dough rheology and quality characteristics. J. Texture Stud. 2017, 48, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Oliete, B.; Pando, V.; Ronda, F.; Caballero, P.A. Effect of fermentation conditions on bread staling kinetics. Eur. Food Res. Technol. 2008, 226, 1379–1387. [Google Scholar] [CrossRef]
- Eliasson, A.C.; Ljunger, G. Interactions between amylopectin and lipid additives during retrogradation in a model system. J. Sci. Food Agr. 1988, 44, 353–361. [Google Scholar] [CrossRef]
- Rogers, D.E.; Zeleznak, K.J.; Lai, C.S.; Hoseney, R.C. Effect of native lipids, shortening, and bread moisture on bread firming. Cereal Chem. 1988, 65, 398–401. [Google Scholar]
- Conforti, F.D.; Davis, S.F. The effect of soya flour and flaxseed as a partial replacement for bread flour in yeast bread. Int. J. Food Sci. Technol. 2006, 41, 95–101. [Google Scholar] [CrossRef]
- Mesias, M.; Holgado, F.; Marquez-Ruiz, G.; Morales, F.J. Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT Food Sci. Technol. 2016, 73, 528–535. [Google Scholar] [CrossRef]
- Villanueva, E.; Rodriguez, G.; Aguirre, E.; Castro, V. Influence of antioxidants on oxidative stability of the oil Chia (Salvia hispanica L.) by rancimat. Sci. Agropecu. 2017, 8, 19–27. [Google Scholar] [CrossRef]
- Konsoula, Z.; Liakopoulou-Kyriakides, M. Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT Food Sci. Technol. 2010, 43, 1379–1386. [Google Scholar] [CrossRef]
- Ghosh, M.; Upadhyay, R.; Mahato, D.K.; Mishra, H.N. Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat. Food Chem. 2019, 272, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Verdú, S.; Barat, J.M.; Grau, R. Improving bread-making processing phases of fibre-rich formulas using chia (Salvia hispanica) seed flour. LWT Food Sci. Technol. 2017, 84, 419–425. [Google Scholar] [CrossRef]
Wheat | Sunflower | Flaxseed | Sesame | Chia | Pumpkin | Poppy | ||
---|---|---|---|---|---|---|---|---|
Nutrients | Water (g) | 12.42 | 1.2 | 6.96 | 4.69 | 5.8 | 4.50 | 5.95 |
Energy value (kcal) | 332 | 582 | 534 | 573 | 486 | 446 | 525 | |
Protein (g) | 9.61 | 19.33 | 18.29 | 17.73 | 16.54 | 18.55 | 17.99 | |
Total lipid (fat) (g) | 1.95 | 49.8 | 42.16 | 49.67 | 30.74 | 19.40 | 41.56 | |
Carbohydrate (g) | 74.48 | 24.07 | 28.88 | 23.45 | 42.12 | 53.75 | 28.13 | |
Fiber (g) | 13.1 | 9 | 27.3 | 11.8 | 34.4 | 18.4 | 19.5 | |
Sugar (g) | 1.02 | 2,73 | 1.55 | 0,30 | N | N | 2.99 | |
Minerals | Calcium (mg) | 33 | 70 | 255 | 975 | 631 | 55 | 1438 |
Iron (mg) | 3.71 | 3.8 | 5.73 | 14.55 | 7.72 | 3.31 | 9.76 | |
Magnesium (mg) | 117 | 129 | 392 | 351 | 335 | 262 | 347 | |
Phosphorous (mg) | 323 | 1115 | 642 | 629 | 860 | 92 | 870 | |
Potassium (mg) | 394 | 850 | 813 | 468 | 407 | 919 | 719 | |
Sodium (mg) | 3 | 655 | 30 | 11 | 16 | 18 | 26 | |
Zinc (mg) | 2.96 | 5.29 | 4.34 | 7.75 | 4.58 | 10.30 | 7.9 | |
Vitamins | Vitamin C (mg) | 0 | 1.40 | 0.6 | 0 | 1.6 | 0.3 | 1 |
Thiamin (mg) | 0.297 | 0.106 | 1.644 | 0.791 | 0.62 | 0.034 | 0.854 | |
Riboflavin (mg) | 0.188 | 0,246 | 0.161 | 0.247 | 0.17 | 0.052 | 0.1 | |
Niacin (mg) | 5.347 | 7.04 | 3.08 | 4.515 | 8.83 | 0.286 | 0.896 | |
Vitamin B6 (mg) | 0.191 | 0.804 | 0.473 | 0.79 | N | 0.037 | 0.247 | |
Folate (µg) | 28 | 237 | 87 | 97 | 49 | 9 | 82 | |
Vitamin E (mg) | 0.53 | 26.1 | 0,31 | 0,25 | 0,50 | N | 1.77 | |
Lipids | Saturated (g) | 5.219 | 3.663 | 6.957 | 3.33 | 3.670 | 4.517 | |
Monounsaturated (g) | 9.505 | 7.527 | 18.759 | 2.309 | 6.032 | 5.982 | ||
18:1 (g) | 9.399 | 7.359 | 18.521 | 2.203 | 5.985 | 5.864 | ||
Polyunsaturated (g) | 32.884 | 28.73 | 21.773 | 23.665 | 8.844 | 28.569 | ||
18:2 (g) | 32.782 | 5.903 | 21.375 | 5.835 | 8.759 | 28.295 | ||
18:3 (g) | 0.069 | 22.813 | 0.376 | 17.830 | 0.077 | 0.0273 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lamo, B.; Gómez, M. Bread Enrichment with Oilseeds. A Review. Foods 2018, 7, 191. https://doi.org/10.3390/foods7110191
De Lamo B, Gómez M. Bread Enrichment with Oilseeds. A Review. Foods. 2018; 7(11):191. https://doi.org/10.3390/foods7110191
Chicago/Turabian StyleDe Lamo, Beatriz, and Manuel Gómez. 2018. "Bread Enrichment with Oilseeds. A Review" Foods 7, no. 11: 191. https://doi.org/10.3390/foods7110191
APA StyleDe Lamo, B., & Gómez, M. (2018). Bread Enrichment with Oilseeds. A Review. Foods, 7(11), 191. https://doi.org/10.3390/foods7110191