Novel Modelling Approaches to Characterize and Quantify Carryover Effects on Sensory Acceptability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Statistical Experiment and Analysis
(i = 1… 90, j = 1, 2, 3 and k = 1, …, 6)
(i = 1, …, 90, j = 1, 2, 3 and k = 1, …, 6)
(i = 1, …, 90, j = 1, 2, 3 and k = 1, …, 6)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Chapman & Hall Press: New York, NY, USA, 1998. [Google Scholar]
- Ferris, S.J.; Kempton, R.A.; Muir, D.D. Carryover in sensory trials. Food Qual. Prefer. 2003, 14, 299–304. [Google Scholar] [CrossRef]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ball, R.D. Incomplete block designs for the minimisation of order and carry-over effects in sensory analysis. Food Qual. Prefer. 1997, 8, 111–118. [Google Scholar] [CrossRef]
- Bose, M.; Stufken, J. Optimal crossover designs when carryover effects are proportional to direct effects. J. Stat. Plan. Inference 2007, 137, 3291–3302. [Google Scholar] [CrossRef]
- Clouser-Roche, A.; Johnson, K.; Fast, D.; Tang, D. Beyond pass/fail: A procedure for evaluating the effect of carryover in bioanalytical LC/MS/MS methods. J. Pharm. Biomed. Anal. 2008, 47, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Walter, F.; Boakes, R.A. Long-term range effects in hedonic ratings. Food Qual. Prefer. 2009, 20, 440–449. [Google Scholar] [CrossRef]
- Jirangrat, W.; Wang, J.; Sriwattana, S.; No, H.K.; Prinyawiwatkul, W. The split plot with repeated randomised complete block design can reduce psychological biases in consumer acceptance testing. Int. J. Food Sci. Technol. 2014, 49, 1106–1111. [Google Scholar] [CrossRef]
- Johnson, E.A.; Vickers, Z. The effectiveness of palate cleansing strategies for evaluating the bitterness of caffeine in cream cheese. Food Qual. Prefer. 2004, 15, 311–316. [Google Scholar] [CrossRef]
- Warnock, A.R.; Delwiche, J.F. Regional variation in sweet suppression. J. Sens. Stud. 2006, 21, 348–361. [Google Scholar] [CrossRef]
- Kilcast, D.; Clegg, S. Sensory perception of creaminess and its relationship with food structure. Food Qual. Prefer. 2002, 13, 609–623. [Google Scholar] [CrossRef]
- Lethuaut, L.; Brossard, C.; Rousseau, F.; Bousseau, B.; Genot, C. Sweetness–texture interactions in model dairy desserts: Effect of sucrose concentration and the carrageenan type. Int. Dairy J. 2003, 13, 631–641. [Google Scholar] [CrossRef]
- Rason, J.; Martin, J.F.; Dufour, E.; Lebecque, A. Diversity of the sensory characteristics of traditional dry sausages from the centre of France: Relation with regional manufacturing practice. Food Qual. Prefer. 2007, 18, 517–530. [Google Scholar] [CrossRef]
- Richardson-Harman, N.J.; Stevens, R.; Walker, S.; Gamble, J.; Miller, M.; Wong, M.; McPherson, A. Mapping consumer perceptions of creaminess and liking for liquid dairy products. Food Qual. Prefer. 2000, 11, 239–246. [Google Scholar] [CrossRef]
- Rétiveau, A.; Chambers, D.H.; Esteve, E. Developing a lexicon for the flavor description of French cheeses. Food Qual. Prefer. 2005, 16, 517–527. [Google Scholar] [CrossRef]
- King, E.S.; Dunn, R.L.; Heymann, H. The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Schifferstein, H.N.; Kuiper, W.E. Sequence effects in hedonic judgments of taste stimuli. Percept. Psychophys. 1997, 59, 900–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacFie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Davidian, M.; Giltinan, D.M. Nonlinear models for repeated measurement data: An overview and update. J. Agric. Biol. Environ. Stat. 2003, 8, 387. [Google Scholar] [CrossRef]
- Bakker, J.; Brown, W.E.; Hills, B.M.; Boudaud, N.; Wilson, C.E.; Harrison, M. Effect of the food matrix on flavour release and perception. Spec. Publ. R. Soc. Chem. 1996, 197, 369–374. [Google Scholar]
- Cochran, W.G.; Cox, G.M. Experimental Design; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Cordonnier, S.M.; Delwiche, J.F. An alternative method for assessing liking: Positional relative rating versus the 9-point hedonic scale. J. Sens. Stud. 2008, 23, 284–292. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, K.O.; O’Mahony, M. Effects of forgetting on various protocols for category and line scales of intensity. J. Sens. Stud. 2001, 16, 327–342. [Google Scholar] [CrossRef]
- Laska, E.; Meisner, M.; Kushner, H.B. Optimal crossover designs in the presence of carryover effects. Biometrics 1983, 39, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Stone, H. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Muir, D.D.; Hunter, E.A. Sensory evaluation of Cheddar cheese: Order of tasting and carryover effects. Food Qual. Prefer. 1991, 3, 141–145. [Google Scholar] [CrossRef]
- Kofes, J.; Naqvi, S.; Cece, A.; Yeh, M. Understanding presentation order effects and ways to control them in consumer testing. In Proceedings of the 8th Pangborn Sensory Science Symposium, Florence, Italy, 26–30 July 2009. [Google Scholar]
- Schlich, P. Uses of change-over designs and repeated measurements in sensory and consumer studies. Food Qual. Prefer. 1993, 4, 223–235. [Google Scholar] [CrossRef]
- Bruvold, W.H. Rated acceptability of mineral taste in water: III. Contrast and position effects in quality scale ratings. J. Exp. Psychol. 1970, 85, 258. [Google Scholar] [CrossRef] [PubMed]
- Mead, R.; Gay, C. Sequential design of sensory trials. Food Qual. Prefer. 1995, 6, 271–280. [Google Scholar] [CrossRef]
- Deliza, R.; MacFie, H.J. The generation of sensory expectation by external cues and its effect on sensory perception and hedonic ratings: A review. J. Sens. Stud. 1996, 11, 103–128. [Google Scholar] [CrossRef]
- Hyman, A. The influence of color on the taste perception of carbonated water preparations. Bull. Psychon. Soc. 1983, 21, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Zampini, M.; Sanabria, D.; Phillips, N.; Spence, C. The multisensory perception of flavor: Assessing the influence of color cues on flavor discrimination responses. Food Qual. Prefer. 2007, 18, 975–984. [Google Scholar] [CrossRef]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata, 2nd ed.; Stata Press: College Station, TX, USA, 2006. [Google Scholar]
Subject | Position | |||
---|---|---|---|---|
1 | 2 | 3 | ||
Sequence ABC | 1 | y1,111 (A) | y1,121 (B) | y1,131 (C) |
2 | y2,111 (A) | y2,121 (B) | y2,131 (C) | |
. | ||||
. | ||||
90 | y90,111 (A) | y90,121 (B) | y90,131 (C) | |
Sequence BCA | 1 | y1,112 (B) | y1,122 (C) | y1,132 (A) |
2 | y2,112 (B) | y2,122 (C) | y2,132 (A) | |
. | ||||
. | ||||
90 | y90,112 (B) | y90,122 (C) | y90,132 (A) | |
Sequence CAB | 1 | |||
. | ||||
. | ||||
90 | ||||
Sequence CBA | 1 | |||
. | ||||
. | ||||
90 | ||||
Sequence ACB | 1 | |||
. | ||||
. | ||||
90 | ||||
Sequence BAC | 1 | |||
. | ||||
. | ||||
90 |
Input Design Effect | Description | Classification |
---|---|---|
Treatments/Samples (3) | A (good), B (medium), C (poor) 1 | Fixed |
Sequences (6) | ABC, ACB, BAC, BCA, CAB, CBA | Fixed |
Sample position (3) | 1 (left), 2 (center), 3 (right) | Fixed |
Panelists (540) | 90 panelists per sequence | Random |
Carryover effects (3) | Carryover effect of each treatment | Fixed |
Attribute | Effect | Num DF 1 | Den DF 1 | F-Value 2 | Pr > F 2 |
---|---|---|---|---|---|
Color | Sequence | 5 | 534 | 2.00 | 0.0778 |
Position | 2 | 1074 | 1.18 | 0.3072 | |
Treatment | 2 | 1074 | 1180.95 | <0.0001 | |
Carryover | 2 | 1074 | 1.94 | 0.1440 | |
Taste | Sequence | 5 | 534 | 1.60 | 0.1595 |
Position | 2 | 1074 | 3.91 | 0.0204 | |
Treatment | 2 | 1074 | 558.52 | <0.0001 | |
Carryover | 2 | 1074 | 0.63 | 0.5333 | |
Overall Liking | Sequence | 5 | 534 | 1.15 | 0.3328 |
Position | 2 | 1074 | 1.43 | 0.2388 | |
Treatment | 2 | 1074 | 706.40 | <0.0001 | |
Carryover | 2 | 1074 | 0.59 | 0.5549 |
Samples 2 | Color | Taste | Overall Liking |
---|---|---|---|
A | 7.36 ± 1.49 a | 7.74 ± 1.30 a | 7.40 ± 1.45 a |
B | 6.71 ± 1.32 b | 6.37 ± 1.75 b | 6.37 ± 1.60 b |
C | 3.50 ± 1.75 c | 3.90 ± 2.08 c | 3.74 ± 1.92 c |
Attribute | Parameters 1 | Carryover Effect for Treatment A | Carryover Effect for Treatment B | Carryover Effect for Treatment C |
---|---|---|---|---|
Color | Estimate | +0.10 | −0.15 | +0.05 |
SE | 0.08 | 0.08 | 0.08 | |
DF | 1074 | 1074 | 1074 | |
t-value | 1.31 | −1.93 | 0.62 | |
Pr > |t| | 0.19 | 0.05 | 0.53 | |
% of the scale 2 | +1.29% | −1.90% | +0.61% | |
Taste | Estimate | +0.03 | +0.07 | −0.10 |
SE | 0.09 | 0.09 | 0.09 | |
DF | 1074 | 1074 | 1074 | |
t-value | 0.34 | 0.76 | −1.09 | |
Pr > |t| | 0.74 | 0.45 | 0.27 | |
% of the scale 2 | +0.39% | +0.87% | −1.26% | |
Overall Liking | Estimate | +0.03 | +0.07 | −0.09 |
SE | 0.09 | 0.09 | 0.09 | |
DF | 1074 | 1074 | 1074 | |
t-value | 0.30 | 0.75 | −1.05 | |
Pr > |t| | 0.76 | 0.45 | 0.29 | |
% of the scale 2 | +0.33% | +0.82% | −1.15% |
Previous Sample | Present Sample | Carryover Effects | ||
---|---|---|---|---|
Effect on Color | Effect on Taste | Effect on Overall Liking | ||
A | B | Convergence | Convergence | Convergence |
A | C | Convergence | Convergence | Convergence |
B | A | Convergence | Contrast | Contrast |
B | C | Contrast | Convergence | Convergence |
C | A | Contrast | Convergence | Convergence |
C | B | Contrast | Convergence | Convergence |
Attribute | Estimate (λ) | SE 1 | Approximate 95% Confidence Limits | % of Treatment Effect 2 | |
---|---|---|---|---|---|
Color | −0.16 | 0.03 | −0.21 | −0.10 | −15.46% |
Taste | −0.004 | 0.03 | −0.06 | 0.05 | −0.38% |
Overall liking | −0.04 | 0.03 | −0.09 | 0.01 | −3.85% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrico, D.D.; Jirangrat, W.; Wang, J.; Chompreeda, P.; Sriwattana, S.; Prinyawiwatkul, W. Novel Modelling Approaches to Characterize and Quantify Carryover Effects on Sensory Acceptability. Foods 2018, 7, 186. https://doi.org/10.3390/foods7110186
Torrico DD, Jirangrat W, Wang J, Chompreeda P, Sriwattana S, Prinyawiwatkul W. Novel Modelling Approaches to Characterize and Quantify Carryover Effects on Sensory Acceptability. Foods. 2018; 7(11):186. https://doi.org/10.3390/foods7110186
Chicago/Turabian StyleTorrico, Damir Dennis, Wannita Jirangrat, Jing Wang, Penkwan Chompreeda, Sujinda Sriwattana, and Witoon Prinyawiwatkul. 2018. "Novel Modelling Approaches to Characterize and Quantify Carryover Effects on Sensory Acceptability" Foods 7, no. 11: 186. https://doi.org/10.3390/foods7110186
APA StyleTorrico, D. D., Jirangrat, W., Wang, J., Chompreeda, P., Sriwattana, S., & Prinyawiwatkul, W. (2018). Novel Modelling Approaches to Characterize and Quantify Carryover Effects on Sensory Acceptability. Foods, 7(11), 186. https://doi.org/10.3390/foods7110186