Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods
Abstract
:1. Introduction
Research Aim and Outcome
2. Materials and Methods
2.1. Sugar Identification Using GCMS
2.1.1. Standard Sugar Preparation
2.1.2. Date Juice Sample Preparation
2.1.3. Oximation and Silylation
2.1.4. Measurements
2.2. Sugar Quantification
2.2.1. Sugar Quantification Using a Delta pH Device (First Method)
Procedure
Enzyme Preparation
Date Juice Sugar Determination
2.2.2. Sugar Quantification Using a Standard Enzymatic Assay (Second Method)
Materials
- Solution 1: Imadazol buffer (2 M, pH 7.6) + MgCl2 (100 mM) + sodium azide (0.02% w/v)
- Solution 2: NADP+ (12.5 mg/mL) + ATP (36.7 mg/mL)
- Suspension 3: Hexokinase (425 U/mL) + glucose-6-phosphate dehydrogenase (212 U/mL)
- Suspension 4: Phosphoglucose isomerase (1000 U/mL)
- Solution 5: Sugar solutions that were obtained by using bidest water 0.005 µS as described later.
- Solution 6: β-Fructosidase (200 U/mL) dissolved in citrate buffer (pH 4.6)
Preparation of a Glucose Calibration Curve
Determination of the Sugars in the Date Juice (Syrup) Sample
Before Hydrolysis
After Hydrolysis
3. Results
3.1. Qualitative Analysis Using Gas Chromatography Mass Spectrometry
3.2. Quantification of the Sugar Concentration
4. Discussion
4.1. Qualitative Analysis Using GCMS
4.2. Quantification of the Sugar Concentration in Date Juice Enzymatic Kit Assay
4.3. Measuring the pH Change in the Solution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mehaia, M.; Cheryan, M. Fermentation of date extracts to ethanol and vinegar in batch and continuous membrane reactors. Enzyme Microb. Technol. 1991, 13, 257–261. [Google Scholar] [CrossRef]
- Basil, S. Dates as a potential substrate for single cell protein production. Enzyme Microb. Technol. 1979, 1, 180–182. [Google Scholar]
- Kaavessina, M.; Khanifatun, F.; Alzahrani, S.M. Lactic acid production from date juice using lactobacillus casei ATCC 393 in batch fermentation. In MATEC Web of Conferences; EDP Sciences: Paris, France, 2017. [Google Scholar]
- Karbasi, M.; Yarmand, M.S.; Mousavi, M. Fermentation Potential of L actobacillus rhamnosus and L actobacillus acidophilus in Date Syrup to Develop a Functional Fermented Beverage: A Comparative Study. J. Food Process. Preserv. 2015, 39, 863–870. [Google Scholar] [CrossRef]
- Putra, M.D.; Abasaeed, A.E. Prospective Production of Fructose and Ethanol for Food and Fuel Markets by Selective Fermentation of Date Syrups. Appl. Eng. Agric. 2015, 31, 497–504. [Google Scholar]
- Al-Hooti, S.; Sidhu, J.; Qabazard, H. Physicochemical characteristics of five date fruit cultivars grown in the UAE. Plant Food Hum. Nutr. 1997, 50, 101–113. [Google Scholar] [CrossRef]
- Al-Hooti, S.; Sidhu, J.; Al-Saqer, J.; Al-Othman, A. Chemical composition and quality of date syrup as affected by pectinase/ cellulose enzyme treatment. Food Chem. 2002, 79, 215–220. [Google Scholar] [CrossRef]
- Mohamed, M.; Ahmed, A. Libyan Date Syrup (Rub Al-Tamr). J. Food Sci. 1981, 46, 1162–1166. [Google Scholar] [CrossRef]
- Füzfai, Z.; Boldizsar, I.; Molnar-Perl, I. Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl-oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. J. Chromatogr. A 2008, 1177, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Sanz, J.; Martinez-Castro, I.; Diez-Barrio, M. Gc behaviour of disaccharide trimethylsilyl oximes. J. Chromatogr. Sci. 2003, 41, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Sanz, J.; Martinez-Castro, I.; Diez-Barrio, M. Gas chromatographic-mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey. J. Chromatogr. Sci. 2004, 1059, 143–148. [Google Scholar] [CrossRef]
- Sweeley, C.C.; Bentley, R.; Makita, M.; Wells, W.W. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substrances. J. Am. Chem. Soc. 1963, 85, 2497–2507. [Google Scholar] [CrossRef]
- Blau, K.; Halket, J. Handbook of Derivatives for Chromatography; John Wiley & Sons: New Yourk, NY, USA, 1993. [Google Scholar]
- Al-Mhanna, N.M. Optimization of Differential pH Sensors Device Operation Conditions to Be Used in Quantification of Low Glucose Concentration. Int. J. Chem. 2011, 3, 149–157. [Google Scholar] [CrossRef]
- K-SUFRG Megazyme International, Bray, Ireland. Available online: https://secure.megazyme.com/files/Booklet/K-SUFRG_DATA.pdf (accessed on 6 November 2018).
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Parvin, S.; Easmin, D.; Sheikh, A.; Biswas, M.; Sharma, S.C.D.; Jahan, M.G.S.; Roy, N. Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. Am. J. Life Sci. 2015, 3, 274–278. [Google Scholar] [CrossRef]
- Al-Khateeb, A.A. Enhancing the growth of date palm (Phoenix Dactylifera) in vitro tissue by adding date syrup to the culture medium. Sci. J. King Faisal Univ. (Basic Appl. Sci.) 2008, 9, 71–85. [Google Scholar]
- Silver, B.S. Processes for Extracting Sugars from Dates and for Making Novel Food Products. U.S. Patent No 5,853,488, 29 December 1998. [Google Scholar]
- Barreveld, W. Date Palm Products; FAO: Rome, Italy, 1993. [Google Scholar]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Shimasaki, C.; Kanaki, T.; Zakeuchi, S.; Hasegawa, K.; Horita, D.; Tsukurimichi, E.; Yoshimura, T. Pyrolysis and mass spectra of trimethylsilyl derivatives of monosaccharides. J. Therm. Anal. 1995, 44, 855–867. [Google Scholar] [CrossRef]
- Dejongh, D.C.; Radford, T.; Haribar, J.D.; Hanessian, S.; Bieber, M.; Dawson, G.; Sweeley, C.C. Analysis of trimethylsilyl derivatives of carbohydrates by gas chromatography and mass spectrometry. J. Am. Chem. Soc. 1969, 91, 1728–1740. [Google Scholar] [CrossRef]
- Monalisa Trade AB: Stockholm, Sweden. Available online: https://www.amazon.co.uk/Basra-Date-Syrup-450-Pack/dp/B078GZ53ZN (accessed on 6 November 2018).
- Shafiei, M.; Karimi, K.; Taherzadeh, M. Palm Date Fibers: Analysis and Enzymatic Hydrolysis. Int. J. Mol. Sci. 2010, 11, 4285–4296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sohaimy, S.; Hafez, E. Biochemical and nutritional characterizations of date palm fruits. J. Appl. Sci. Res. 2010, 6, 1060–1067. [Google Scholar]
- Al-Farsi, M. Clarification of date juice. Int. J. Food Sci. Technol. 2003, 38, 241–245. [Google Scholar] [CrossRef]
Parameter | Gas Chromatography | Mass Spectrometry |
---|---|---|
Pressure | 459 kPa | - |
Ionisation energy | 70 eV | - |
Total flow rate | 64.7 mL/min | - |
Column flow | 0.87 mL/min | - |
Linear velocity | 59.5 cm/s | - |
Purge flow | 3.0 mL/min | - |
Split ratio | 70.0 | - |
Carrier gas | Helium | - |
Column oven temperature | 80 °C | - |
Ion source temperature | - | 250 °C |
Interface temperature | - | 280 °C |
Start time | - | 2 min |
End time | - | 7.5 min |
Full scan | - | 45–750 amu |
Pipette into Cuvettes | Blank (Glucose Test) | Sample (Glucose Test) | Blank (Fructose Test) | Sample (Fructose Test) | Blank (Sucrose Test) | Sample (Sucrose Test) |
---|---|---|---|---|---|---|
Bidest water (µL) | 473 | 451.5 | 468 | 446.5 | 425 | 403.5 |
Sample (µL) | - | 21.5 | - | 21.5 | - | 21.5 |
Solution 1 (µL) | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 |
Solution 2 (µL) | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 |
Suspension 3 (µL) | 5 | 5 | 5 | 5 | 5 | 5 |
Suspension 4 (µL) | - | - | 5 | 5 | 5 | 5 |
Solution 6 (µL) | - | - | - | - | 43 | 43 |
Regression Statistics | |
---|---|
Multiple R | 0.999715238 |
R Square | 0.999430557 |
Adjusted R Square | −1.66666667 |
Standard Error | 0.328476556 |
Observations | 5 |
Coefficients | Standard Error | t Stat | p-Value | Lower 95% | Upper 95% | |
---|---|---|---|---|---|---|
Intercept | 0.350821377 | 0.278089 | 1.261545 | 0.296283 | −0.53418 | 1.235824 |
delta pH | 0.779763723 | 0.010746 | 72.56242 | 5.77 × 10−6 | 0.745565 | 0.813963 |
This Research | Palm Date (Iraq) [2] | Date Juice (Iraq) [24] | Palm Date (UAE) [6] | Palm Date [25] | Date Syrup (Libya) [8] | Date Syrup (Egypt) [26] | Date Syrup [27] | Palm Date (Kuwait) [7] | |
---|---|---|---|---|---|---|---|---|---|
Na | - | 4.45 | 12 | 2.3–5.1 | - | 70.4 | - | - | 595–673 |
K | - | 701 | 858 | 402–652 | - | 217 | 521 | - | 497.9–531.8 |
Ca | - | 58 | 106.8 | 43–56 | - | 37.7 | 65 | - | 26–35.4 |
Mg | - | 54.4 | 58.1 | 43.6–53.3 | - | - | 20 | - | 22.7–28.4 |
Fe | - | 150 | - | 1.38–2.17 | - | 9.3 | 2.69 | - | 0.1 |
Cu | - | 0.19 | - | 0.27–0.35 | - | - | - | - | 0.13–0.18 |
P | -- | 58.52 | 126 | 48.8–68.2 | - | - | 72 | - | 138.1–152.3 |
S | - | 47.4 | - | - | - | - | - | - | - |
Cl | - | 269 | - | - | - | - | - | - | - |
Thiamine | - | 0.7 | - | - | - | 0.08 | - | - | |
Riboflavin | - | 0.03 | - | - | - | 0.05 | - | - | |
Nicotinic acid B3 | - | - | - | - | - | - | 2.2 | - | |
Protein | - | - | 1.3 | 2.0–2.5 | - | 1.2 | 3 | - | 2.03–2.6 |
Sugar | 60–61.5 | 60–70 | 63.6 | 78–79.39 | - | 70.81 | 73 | - | - |
Reducing sugar | - | - | - | - | - | 67.01–68.42 | - | - | 87.53–88.02 |
Mn | - | - | - | 0.31–0.44 | - | - | - | 0.2–0.29 | |
Glucose | 27.37 | - | - | 38.47–40.4 | 32 | 33.32 | - | 26.9–34.5 | 38.02–38.45 |
Fructose | 27.7 | - | - | 38.55–39.95 | 30 | 30.93 | - | 29.1–33.2 | 39.12–39.69 |
Sucrose | 6.4–6.8 | - | - | - | - | 1.08–3.97 | - | - | - |
Fructose: Glucose | 0.99:1 | - | - | 1:1 | 0.93:1 | 0.93:1 | - | - | 1.03:1 |
Fructose + Glucose | 52.75–55.07 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mhanna, N.M.; Huebner, H.; Buchholz, R. Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods. Foods 2018, 7, 185. https://doi.org/10.3390/foods7110185
Al-Mhanna NM, Huebner H, Buchholz R. Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods. Foods. 2018; 7(11):185. https://doi.org/10.3390/foods7110185
Chicago/Turabian StyleAl-Mhanna, Najah M., Holger Huebner, and Rainer Buchholz. 2018. "Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods" Foods 7, no. 11: 185. https://doi.org/10.3390/foods7110185
APA StyleAl-Mhanna, N. M., Huebner, H., & Buchholz, R. (2018). Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods. Foods, 7(11), 185. https://doi.org/10.3390/foods7110185